Approaches to Delineate Disulfide Connectivities in Pharmaceutical Peptides

  • David Wilson
  • Norelle L. Daly
Reference work entry


Disulfide-rich peptides have been developed as treatments for diseases and disorders such as diabetes and pain, and many more are being explored for their potential in drug design. Based on this potential and the enormous diversity of these peptides in nature, particularly in venoms and plants, there is significant interest in characterizing novel disulfide-rich peptides. Elucidating the disulfide-bond connectivities is a crucial step to enable the structure-function relationships to be determined, which can assist in the development of more potent and selective analogues. NMR spectroscopy can be a very convenient and powerful tool for determining the disulfide connectivities, and being a nondestructive technique allows other analyses to be subsequently carried out. The range of NMR-based approaches that have been used include simple, comparative analyses for analogues of well-characterized peptides, determination of high-resolution structures, and measurement of scalar couplings across diselenide bonds. The use of computational Bayesian methodologies is also a promising approach for determining connectivities using cysteine-only NMR data.


Disulfide bond Cystine knot Cyclotide Venom peptide Selenocysteine 


  1. 1.
    Santos GB, Ganesan A, Emery FS. Oral administration of peptide-based drugs: beyond Lipinski’s rule. ChemMedChem. 2016;11:2245–51.CrossRefGoogle Scholar
  2. 2.
    Williams JA, Day M, Heavner JE. Ziconotide: an update and review. Expert Opin Pharmacother. 2008;9:1575–83.CrossRefGoogle Scholar
  3. 3.
    Yu SW, Rao SS. Advances in the management of constipation-predominant irritable bowel syndrome: the role of linaclotide. Therap Adv Gastroenterol. 2014;7:193–205.CrossRefGoogle Scholar
  4. 4.
    Chan LY, Craik DJ, Daly NL. Dual-targeting anti-angiogenic cyclic peptides as potential drug leads for cancer therapy. Sci Rep. 2016;6:35347.CrossRefGoogle Scholar
  5. 5.
    Carstens BB, Berecki G, Daniel JT, Lee HS, Jackson KA, Tae HS, et al. Structure-activity studies of cysteine-rich alpha-conotoxins that inhibit high-voltage-activated calcium channels via gaba(b) receptor activation reveal a minimal functional motif. Angew Chem Int Ed Engl. 2016;55:4692–6.CrossRefGoogle Scholar
  6. 6.
    King GF, Hardy MC. Spider-venom peptides: structure, pharmacology, and potential for control of insect pests. Annu Rev Entomol. 2013;58:475–96.CrossRefGoogle Scholar
  7. 7.
    Gunasekera S, Foley FM, Clark RJ, Sando L, Fabri LJ, Craik DJ, et al. Engineering stabilized vascular endothelial growth factor-A antagonists: synthesis, structural characterization, and bioactivity of grafted analogues of cyclotides. J Med Chem. 2008;51:7697–704.CrossRefGoogle Scholar
  8. 8.
    Wong CT, Rowlands DK, Wong CH, Lo TW, Nguyen GK, Li HY, et al. Orally active peptidic bradykinin B1 receptor antagonists engineered from a cyclotide scaffold for inflammatory pain treatment. Angew Chem Int Ed. 2012;51:5620–4.CrossRefGoogle Scholar
  9. 9.
    Aboye T, Meeks CJ, Majumder S, Shekhtman A, Rodgers K, Camarero JA. Design of a MCoTI-based cyclotide with angiotensin (1-7)-like activity. Molecules. 2016;21:152.CrossRefGoogle Scholar
  10. 10.
    Wang CK, Gruber CW, Cemazar M, Siatskas C, Tagore P, Payne N, et al. Molecular grafting onto a stable framework yields novel cyclic peptides for the treatment of multiple sclerosis. ACS Chem Biol. 2014;9:156–63.CrossRefGoogle Scholar
  11. 11.
    Mir R, Karim S, Kamal MA, Wilson CM, Mirza Z. Conotoxins: structure, therapeutic potential and pharmacological applications. Curr Pharm Des. 2016;22:582–9.CrossRefGoogle Scholar
  12. 12.
    Jin AH, Dutertre S, Kaas Q, Lavergne V, Kubala P, Lewis RJ, et al. Transcriptomic messiness in the venom duct of Conus miles contributes to conotoxin diversity. Mol Cell Proteomics. 2013;12:3824–33.CrossRefGoogle Scholar
  13. 13.
    Lebbe EK, Peigneur S, Wijesekara I, Tytgat J. Conotoxins targeting nicotinic acetylcholine receptors: an overview. Mar Drugs. 2014;12:2970–3004.CrossRefGoogle Scholar
  14. 14.
    Vetter I, Lewis RJ. Therapeutic potential of cone snail venom peptides (conopeptides). Curr Top Med Chem. 2012;12:1546–52.CrossRefGoogle Scholar
  15. 15.
    Hu SH, Gehrmann J, Alewood PF, Craik DJ, Martin JL. Crystal structure at 1.1 A resolution of alpha-conotoxin PnIB: comparison with alpha-conotoxins PnIA and GI. Biochemistry. 1997;36:11323–30.CrossRefGoogle Scholar
  16. 16.
    Wang CK, Hu SH, Martin JL, Sjogren T, Hajdu J, Bohlin L, et al. Combined X-ray and NMR analysis of the stability of the cyclotide cystine knot fold that underpins its insecticidal activity and potential use as drug scaffold. J Biol Chem. 2009;284:10672–83.CrossRefGoogle Scholar
  17. 17.
    Mobli M, King GF. NMR methods for determining disulfide-bond connectivities. Toxicon. 2010;56:849–54.CrossRefGoogle Scholar
  18. 18.
    Craik DJ. Plant cyclotides: circular, knotted peptide toxins. Toxicon. 2001;39:1809–13.CrossRefGoogle Scholar
  19. 19.
    Craik DJ. Seamless proteins tie up their loose ends. Science. 2006;311:1563–4.CrossRefGoogle Scholar
  20. 20.
    Craik DJ, Clark RJ, Daly NL. Potential therapeutic applications of the cyclotides and related cystine knot mini-proteins. Expert Opin Investig Drugs. 2007;16:595–604.CrossRefGoogle Scholar
  21. 21.
    Craik DJ, Cĕmažar M, Daly NL. The cyclotides and related macrocyclic peptides as scaffolds in drug design. Curr Opin Drug Discov Devel. 2006;9:251–60.Google Scholar
  22. 22.
    Thell K, Hellinger R, Sahin E, Michenthaler P, Gold-Binder M, Haider T, et al. Oral activity of a nature-derived cyclic peptide for the treatment of multiple sclerosis. Proc Natl Acad Sci USA. 2016;113:3960–5.CrossRefGoogle Scholar
  23. 23.
    Rosengren KJ, Daly NL, Plan MR, Waine C, Craik DJ. Twists, knots, and rings in proteins: structural definition of the cyclotide framework. J Biol Chem. 2003;278:8606–16.CrossRefGoogle Scholar
  24. 24.
    Saether O, Craik DJ, Campbell ID, Sletten K, Juul J, Norman DG. Elucidation of the primary and three-dimensional structure of the uterotonic polypeptide kalata B1. Biochemistry. 1995;34:4147–58.CrossRefGoogle Scholar
  25. 25.
    Gran L. Oxytocic principles of Oldenlandia affinis. Lloydia. 1973;36:174–8.Google Scholar
  26. 26.
    Gran L. On the effect of a polypeptide isolated from “Kalata-Kalata” (Oldenlandia affinis DC) on the oestrogen dominated uterus. Acta Pharmacol Toxicol. 1973;33:400–8.CrossRefGoogle Scholar
  27. 27.
    Simonsen SM, Sando L, Rosengren KJ, Wang CK, Colgrave ML, Daly NL, et al. Alanine scanning mutagenesis of the prototypic cyclotide reveals a cluster of residues essential for bioactivity. J Biol Chem. 2008;283:9805–13.CrossRefGoogle Scholar
  28. 28.
    Gunasekera S, Daly NL, Clark RJ, Craik DJ. Dissecting the oxidative folding of circular cystine knot miniproteins. Antioxid Redox Signal. 2009;11:971–80.CrossRefGoogle Scholar
  29. 29.
    Craik DJ, Daly NL, Bond T, Waine C. Plant cyclotides: a unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif. J Mol Biol. 1999;294:1327–36.CrossRefGoogle Scholar
  30. 30.
    Leta Aboye T, Clark RJ, Craik DJ, Goransson U. Ultra-stable peptide scaffolds for protein engineering-synthesis and folding of the circular cystine knotted cyclotide cycloviolacin O2. ChemBioChem. 2008;9:103–13.CrossRefGoogle Scholar
  31. 31.
    Adams DJ, Alewood PF, Craik DJ, Drinkwater RD, Lewis RJ. Conotoxins and their potential pharmaceutical applications. Drug Dev Res. 1999;46:219–34.CrossRefGoogle Scholar
  32. 32.
    Lovelace ES, Armishaw CJ, Colgrave ML, Wahlstrom ME, Alewood PF, Daly NL, et al. Cyclic MrIA: a stable and potent cyclic conotoxin with a novel topological fold that targets the norepinephrine transporter. J Med Chem. 2006;49:6561–8.CrossRefGoogle Scholar
  33. 33.
    Clark RJ, Jensen J, Nevin ST, Callaghan BP, Adams DJ, Craik DJ. The engineering of an orally active conotoxin for the treatment of neuropathic pain. Angew Chem Int Ed. 2010;49:6545–8.CrossRefGoogle Scholar
  34. 34.
    Luo S, Kulak JM, Cartier GE, Jacobsen RB, Yoshikami D, Olivera BM, et al. Alpha-conotoxin AuIB selectively blocks alpha3 beta4 nicotinic acetylcholine receptors and nicotine-evoked norepinephrine release. J Neurosci. 1998;18:8571–9.CrossRefGoogle Scholar
  35. 35.
    Lovelace ES, Gunasekera S, Alvarmo C, Clark RJ, Nevin ST, Grishin AA, et al. Stabilization of alpha-conotoxin AuIB: influences of disulfide connectivity and backbone cyclization. Antioxid Redox Signal. 2011;14:87–95.CrossRefGoogle Scholar
  36. 36.
    Dutton JL, Bansal PS, Hogg RC, Adams DJ, Alewood PF, Craik DJ. A new level of conotoxin diversity, a non-native disulfide bond connectivity in alpha-conotoxin AuIB reduces structural definition but increases biological activity. J Biol Chem. 2002;277:48849–57.CrossRefGoogle Scholar
  37. 37.
    Daly NL, Ekberg JA, Thomas L, Adams DJ, Lewis RJ, Craik DJ. Structures of muO-conotoxins from Conus marmoreus. Inhibitors of tetrodotoxin (TTX)-sensitive and TTX-resistant sodium channels in mammalian sensory neurons. J Biol Chem. 2004;279:25774–82.Google Scholar
  38. 38.
    Bende NS, Dziemborowicz S, Herzig V, Ramanujam V, Brown GW, Bosmans F, et al. The insecticidal spider toxin SFI1 is a knottin peptide that blocks the pore of insect voltage-gated sodium channels via a large beta-hairpin loop. FEBS J. 2015;282:904–20.CrossRefGoogle Scholar
  39. 39.
    Pineda SS, Undheim EA, Rupasinghe DB, Ikonomopoulou MP, King GF. Spider venomics: implications for drug discovery. Future Med Chem. 2014;6:1699–714.CrossRefGoogle Scholar
  40. 40.
    Pallaghy PK, Nielsen KJ, Craik DJ, Norton RS. A common structural motif incorporating a cystine knot and a triple-stranded b-sheet in toxic and inhibitory polypeptides. Protein Sci. 1994;3:1833–9.CrossRefGoogle Scholar
  41. 41.
    Skjeldal L, Gran L, Sletten K, Volkman BF. Refined structure and metal binding site of the kalata B1 peptide. Arch Biochem Biophys. 2002;399:142–8.CrossRefGoogle Scholar
  42. 42.
    Göransson U, Craik DJ. Disulfide mapping of the cyclotide kalata B1. Chemical proof of the cyclic cystine knot motif. J Biol Chem. 2003;278:48188–96.CrossRefGoogle Scholar
  43. 43.
    Mobli M, de Araujo AD, Lambert LK, Pierens GK, Windley MJ, Nicholson GM, et al. Direct visualization of disulfide bonds through diselenide proxies using 77Se NMR spectroscopy. Angew Chem Int Ed Engl. 2009;48:9312–4.CrossRefGoogle Scholar
  44. 44.
    Wang X, Connor M, Smith R, Maciejewski MW, Howden ME, Nicholson GM, et al. Discovery and characterization of a family of insecticidal neurotoxins with a rare vicinal disulfide bridge. Nat Struct Biol. 2000;7:505–13.CrossRefGoogle Scholar
  45. 45.
    Armishaw CJ, Daly NL, Nevin ST, Adams DJ, Craik DJ, Alewood PF. Alpha-selenoconotoxins, a new class of potent alpha7 neuronal nicotinic receptor antagonists. J Biol Chem. 2006;281:14136–43.CrossRefGoogle Scholar
  46. 46.
    de Araujo AD, Callaghan B, Nevin ST, Daly NL, Craik DJ, Moretta M, et al. Total synthesis of the analgesic conotoxin MrVIB through selenocysteine-assisted folding. Angew Chem Int Ed Engl. 2011;50:6527–9.CrossRefGoogle Scholar
  47. 47.
    Poppe L, Hui JO, Ligutti J, Murray JK, Schnier PD. PADLOC: a powerful tool to assign disulfide bond connectivities in peptides and proteins by NMR spectroscopy. Anal Chem. 2012;84:262–6.CrossRefGoogle Scholar
  48. 48.
    Klaus W, Broger C, Gerber P, Senn H. Determination of the disulphide bonding pattern in proteins by local and global analysis of nuclear magnetic resonance data: application to flavoridin. J Mol Biol. 1993;232:897–906.CrossRefGoogle Scholar
  49. 49.
    Koradi R, Billeter M, Wüthrich K. MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph. 1996;14:51–5. 29–32.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and MedicineJames Cook UniversityCairnsAustralia

Personalised recommendations