NMR Relaxation Analysis of Pharmaceutically Active Peptides

  • Conan K. Wang
Reference work entry


Nuclear spin relaxation (NSR) is a powerful approach for studying dynamics at the ps-ns timescale, and is typically used to characterize fundamental biophysical phenomena such as bond vibrations and fluctuations, which affect the activity of the molecule in question. Here, this chapter will look to the application of NSR to study peptides, which are short chains of amino acids and have shown promise as modalities in drug design. This chapter will begin with a brief description of theoretical and practical aspects related to the use of NSR, such as experimental considerations during data acquisition and processing. As an example of this approach for studying peptide dynamics, this chapter will step through a case study that examines the effect of backbone cyclization on the dynamics of polycyclic disulfide-rich peptides. This case study will focus on a cyclic and linear variant of a promising drug scaffold isolated from sunflower seeds called SFTI-1 (sunflower trypsin inhibitor-1), which is a naturally backbone-cyclic peptide that comprises one cross-bracing disulfide bond.


NMR relaxation Peptides Cyclization 


  1. 1.
    Kleckner IR, Foster MP. An introduction to NMR-based approaches for measuring protein dynamics. Biochim Biophys Acta. 2011;1814:942–68.CrossRefGoogle Scholar
  2. 2.
    Palmer 3rd AG. A dynamic look backward and forward. J Magn Reson. 2016;266:73–80.Google Scholar
  3. 3.
    Palmer 3rd AG. Nmr probes of molecular dynamics: overview and comparison with other techniques. Annu Rev Biophys Biomol Struct. 2001;30:129–55.Google Scholar
  4. 4.
    Rule GS, Hitchens TK. Nuclear Spin Relaxation and Molecular Dynamics. In: Fundamentals of Protein NMR Spectroscopy. Netherlands: Springer; 2006. p. 431–74.Google Scholar
  5. 5.
    Choy WY, Kay LE. Probing residual interactions in unfolded protein states using NMR spin relaxation techniques: an application to delta131delta. J Am Chem Soc. 2003;125:11988–92.CrossRefGoogle Scholar
  6. 6.
    Horne J, d'Auvergne EJ, Coles M, Velkov T, Chin Y, Charman WN, Prankerd R, Gooley PR, Scanlon MJ. Probing the flexibility of the DsbA oxidoreductase from Vibrio cholerae--a 15N - 1H heteronuclear NMR relaxation analysis of oxidized and reduced forms of DsbA. J Mol Biol. 2007;371:703–16.CrossRefGoogle Scholar
  7. 7.
    Craik DJ, Fairlie DP, Liras S, Price D. The future of peptide-based drugs. Chem Biol Drug Des. 2013;81:136–47.CrossRefGoogle Scholar
  8. 8.
    Brady RM, Baell JB, Norton RS. Strategies for the development of conotoxins as new therapeutic leads. Mar Drugs. 2013;11:2293–313.CrossRefGoogle Scholar
  9. 9.
    Daly NL, Seymour J, Wilson D. Exploring the therapeutic potential of jellyfish venom. Future Med Chem. 2014;6:1715–24.CrossRefGoogle Scholar
  10. 10.
    Nguyen LT, Haney EF, Vogel HJ. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol. 2011;29:464–72.CrossRefGoogle Scholar
  11. 11.
    Porter CJ, Matthews JM, Mackay JP, Pursglove SE, Schmidberger JW, Leedman PJ, Pero SC, Krag DN, Wilce MC, Wilce JA. Grb7 SH2 domain structure and interactions with a cyclic peptide inhibitor of cancer cell migration and proliferation. BMC Struct Biol. 2007;7:58.CrossRefGoogle Scholar
  12. 12.
    Wang G, Drinkwater N, Drew DR, MacRaild CA, Chalmers DK, Mohanty B, Lim SS, Anders RF, Beeson JG, Thompson PE, McGowan S, Simpson JS, Norton RS, Scanlon MJ. Structure-Activity Studies of beta-Hairpin Peptide Inhibitors of the Plasmodium falciparum AMA1-RON2 Interaction. J Mol Biol. 2016;428:3986–98.CrossRefGoogle Scholar
  13. 13.
    Strandberg E, Horn D, Reisser S, Zerweck J, Wadhwani P, Ulrich AS. 2H-NMR and MD Simulations Reveal Membrane-Bound Conformation of Magainin 2 and Its Synergy with PGLa. Biophys J. 2016;111:2149–61.CrossRefGoogle Scholar
  14. 14.
    Klint JK, Chin YK, Mobli M. Rational Engineering Defines a Molecular Switch That Is Essential for Activity of Spider-Venom Peptides against the Analgesics Target NaV1.7. Mol Pharmacol. 2015;88:1002–10.CrossRefGoogle Scholar
  15. 15.
    Korzhnev DM, Bocharov EV, Zhuravlyova AV, Orekhov VY, Ovchinnikova TV, Billeter M, Arseniev AS. Backbone dynamics of the channel-forming antibiotic zervamicin IIB studied by 15N NMR relaxation. FEBS Lett. 2001;495:52–5.CrossRefGoogle Scholar
  16. 16.
    Conibear AC, Wang CK, Bi T, Rosengren KJ, Camarero JA, Craik DJ. Insights into the molecular flexibility of theta-defensins by NMR relaxation analysis. J Phys Chem B. 2014;118:14257–66.CrossRefGoogle Scholar
  17. 17.
    Rovo P, Straner P, Lang A, Bartha I, Huszar K, Nyitray L, Perczel A. Structural insights into the Trp-cage folding intermediate formation. Chemistry. 2013;19:2628–40.CrossRefGoogle Scholar
  18. 18.
    Goldenberg DP, Koehn RE, Gilbert DE, Wagner G. Solution structure and backbone dynamics of an omega-conotoxin precursor. Protein Sci. 2001;10:538–50.CrossRefGoogle Scholar
  19. 19.
    Peto H, Stott K, Sunde M, Broadhurst RW. Backbone dynamics of oxidised and reduced forms of human atrial natriuretic peptide. J Struct Biol. 2004;148:214–25.CrossRefGoogle Scholar
  20. 20.
    Rogne P, Ozdowy P, Richter C, Saxena K, Schwalbe H, Kuhn LT. Atomic-level structure characterization of an ultrafast folding mini-protein denatured state. PLoS One. 2012;7:e41301.CrossRefGoogle Scholar
  21. 21.
    Rawat A, Kumar D. NMR investigations of structural and dynamics features of natively unstructured drug peptide - salmon calcitonin: implication to rational design of potent sCT analogs. J Pept Sci. 2013;19:33–45.CrossRefGoogle Scholar
  22. 22.
    Song J, Vranken W, Xu P, Gingras R, Noyce RS, Yu Z, Shen SH, Ni F. Solution structure and backbone dynamics of the functional cytoplasmic subdomain of human ephrin B2, a cell-surface ligand with bidirectional signaling properties. Biochemistry. 2002;41:10942–9.CrossRefGoogle Scholar
  23. 23.
    Daly NL, Thorstholm L, Greenwood KP, King GJ, Rosengren KJ, Heras B, Martin JL, Craik DJ. Structural insights into the role of the cyclic backbone in a squash trypsin inhibitor. J Biol Chem. 2013;288:36141–8.CrossRefGoogle Scholar
  24. 24.
    Sher I, Chang SC, Li Y, Chhabra S, Palmer 3rd AG, Norton RS, Chill JH. Conformational flexibility in the binding surface of the potassium channel blocker ShK. Chembiochem. 2014;15:2402–10.CrossRefGoogle Scholar
  25. 25.
    Saez NJ, Mobli M, Bieri M, Chassagnon IR, Malde AK, Gamsjaeger R, Mark AE, Gooley PR, Rash LD, King GF. Mol Pharmacol. 2011;80:796–808.CrossRefGoogle Scholar
  26. 26.
    Yan Y, Wang C. J Mol Biol. 2006;364:853–62.CrossRefGoogle Scholar
  27. 27.
    Shalom-Elazari H, Zazrin-Greenspon H, Shaked H, Chill JH. Biochim Biophys Acta. 2014;1838:2919–28.CrossRefGoogle Scholar
  28. 28.
    de Medeiros LN, Angeli R, Sarzedas CG, Barreto-Bergter E, Valente AP, Kurtenbach E, Almeida FC. Biochim Biophys Acta. 2010;1798:105–13.CrossRefGoogle Scholar
  29. 29.
    Bader R, Bettio A, Beck-Sickinger AG, Zerbe O. J Mol Biol. 2001;305:307–29.CrossRefGoogle Scholar
  30. 30.
    Ingolfsson HI, Li Y, Vostrikov VV, Gu H, Hinton JF, Koeppe 2nd RE, Roux B, OS Andersen. J Phys Chem B. 2011;115:7417–26.Google Scholar
  31. 31.
    Yushmanov VE, Mandal PK, Liu Z, Tang P, Xu Y. Biochemistry. 2003;42:3989–95.CrossRefGoogle Scholar
  32. 32.
    Campbell AP, Spyracopoulos L, Wong WY, Irvin RT, Sykes BD. Biochemistry. 2003;42:11334–46.CrossRefGoogle Scholar
  33. 33.
    Wang M, Prorok M, Castellino FJ. Biophys J. 2010;99:302–12.CrossRefGoogle Scholar
  34. 34.
    Puttamadappa SS, Jagadish K, Shekhtman A, Camarero JA. Angew Chem Int Ed Eng. 2010;49:7030–4.CrossRefGoogle Scholar
  35. 35.
    De Paula VS, Gomes NS, Lima LG, Miyamoto CA, Monteiro RQ, Almeida FC, Valente AP. J Mol Biol. 2013;425:4479–95.CrossRefGoogle Scholar
  36. 36.
    Bobby R, Medini K, Neudecker P, Lee TV, Brimble MA, McDonald FJ, Lott JS, Dingley AJ. Biochim Biophys Acta. 2013;1834:1632–41.CrossRefGoogle Scholar
  37. 37.
    Lipari G, Szabo A. J Am Chem Soc. 1982;104:4546–59.CrossRefGoogle Scholar
  38. 38.
    Lipari G, Szabo A. J Am Chem Soc. 1982;104:4559–70.CrossRefGoogle Scholar
  39. 39.
    Meirovitch E, Shapiro YE, Polimeno A, Freed JH. Prog Nucl Magn Reson Spectrosc. 2010;56:360–405.CrossRefGoogle Scholar
  40. 40.
    Clore GM, Szabo A, Bax A, Kay LE, Driscoll PC, Gronenborn AM. J Am Chem Soc. 1990;112:4989–91.CrossRefGoogle Scholar
  41. 41.
    Schurr JM, Babcock HP, Fujimoto BS. J Magn Reson. 1994;105:211–24.CrossRefGoogle Scholar
  42. 42.
    Allerhand A, Doddrell D, Glushko V, Cochran DW, Wenkert E, Lawson PJ, Gurd FR. J Am Chem Soc. 1971;93:544–6.CrossRefGoogle Scholar
  43. 43.
    Wagner G. Q Rev Biophys. 1983;16:1–57.CrossRefGoogle Scholar
  44. 44.
    Nirmala NR, Wagner G. J Am Chem Soc. 1988;110:7557–8.CrossRefGoogle Scholar
  45. 45.
    Price WS. NMR diffusometry. In: Webb GA, editor. Modern magnetic resonance. 2006 Dordrecht: Springer. p. 109–15.Google Scholar
  46. 46.
    Wang CK, Northfield SE, Swedberg JE, Harvey PJ, Mathiowetz AM, Price DA, Liras S, Craik DJ. J Phys Chem B. 2014;118:11129–36.CrossRefGoogle Scholar
  47. 47.
    Mandel AM, Akke M, Palmer 3rd AG. J Mol Biol. 1995;246:144–63.CrossRefGoogle Scholar
  48. 48.
    Palmer 3rd AG, Rance M, Wright PE. J Am Chem Soc. 1991;113:4371–80.CrossRefGoogle Scholar
  49. 49.
    d'Auvergne EJ, Gooley PR. J Biomol NMR. 2008;40:107–19.CrossRefGoogle Scholar
  50. 50.
    d'Auvergne EJ, Gooley PR. J Biomol NMR. 2008;40:121–33.CrossRefGoogle Scholar
  51. 51.
    Wang CK, Swedberg JE, Northfield SE, Craik DJ. J Phys Chem B. 2015;119:15821–30.CrossRefGoogle Scholar
  52. 52.
    d'Auvergne EJ, Gooley PR. J Biomol NMR. 2003;25:25–39.CrossRefGoogle Scholar
  53. 53.
    Clark RJ, Jensen J, Nevin ST, Callaghan BP, Adams DJ, Craik DJ. Angew Chem Int Ed Eng. 2010;49:6545–8.CrossRefGoogle Scholar
  54. 54.
    Wang CK, Northfield SE, Colless B, Chaousis S, Hamernig I, Lohman RJ, Nielsen DS, Schroeder CI, Liras S, Price DA, Fairlie DP, Craik DJ. Proc Natl Acad Sci USA. 2014;111:17504–9.CrossRefGoogle Scholar
  55. 55.
    Zorzi A, Deyle K, Heinis C. Curr Opin Chem Biol. 2017;38:24–9.CrossRefGoogle Scholar
  56. 56.
    Veber DF, Freidlinger RM, Perlow DS, Paleveda Jr WJ, Holly FW, Strachan RG, Nutt RF, Arison BH, Homnick C, Randall WC, Glitzer MS, Saperstein R, Hirschmann R. Nature. 1981;292:55–8.CrossRefGoogle Scholar
  57. 57.
    Luckett S, Garcia RS, Barker JJ, Konarev AV, Shewry PR, Clarke AR, Brady RL. J Mol Biol. 1999;290:525–33.CrossRefGoogle Scholar
  58. 58.
    Northfield SE, Wang CK, Schroeder CI, Durek T, Kan MW, Swedberg JE, Craik DJ. Eur J Med Chem. 2014;77:248–57.CrossRefGoogle Scholar
  59. 59.
    Wang CK, King GJ, Northfield SE, Ojeda PG, Craik DJ. Angew Chem Int Ed Eng. 2014;53:11236–41.CrossRefGoogle Scholar
  60. 60.
    Ortega A, Amoros D, Garcia de la Torre J. Biophys J. 2011;101:892–8.CrossRefGoogle Scholar
  61. 61.
    Vranken WF, Boucher W, Stevens TJ, Fogh RH, Pajon A, Llinas M, Ulrich EL, Markley JL, Ionides J, Laue ED. Proteins. 2005;59:687–96.CrossRefGoogle Scholar
  62. 62.
    Korsinczky ML, Schirra HJ, Rosengren KJ, West J, Condie BA, Otvos L, Anderson MA, Craik DJ. J Mol Biol. 2001;311:579–91.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Molecular BioscienceThe University of QueenslandBrisbaneAustralia

Personalised recommendations