Advertisement

Solid-State NMR for Studying Peptide Structures and Peptide-Lipid Interactions in Membranes

Reference work entry

Abstract

Peptide-lipid interactions can be conveniently studied using solid-state NMR (SSNMR), as various approaches have been developed to resolve the structures of membrane-bound peptides under quasi-native conditions. By labeling peptides with NMR-active nuclei, it is possible to characterize their conformation, orientation, and dynamics within a lipid bilayer and to obtain information about their self-assembly and aggregation behavior. This review is focused on peptides that are labeled with 2H or 15N and describe results primarily from two important classes of helical peptides: (i) hydrophobic transmembrane model peptides and (ii) amphipathic antimicrobial peptides. It can be concluded from these SSNMR studies that both types of peptides exhibit specific effects under conditions of hydrophobic mismatch, i.e., when the (hydrophobic) length of the peptide differs from the hydrophobic thickness of the bilayer. In particular, when the peptide is too long, it compensates this mismatch by tilting in the membrane, thereby providing an effective (hydrophobic) length to match the membrane thickness. It was also observed that peptides can more easily insert into membranes when the bilayer is composed of lipids with a large positive spontaneous curvature, such as lysolipids.

Keywords

Solid-state NMR 2H- and 15N-labeled peptides Alpha-helical membrane-bound peptides Transmembrane model peptides Amphipathic antimicrobial peptides Peptide orientation and dynamics Hydrophobic mismatch Lipid spontaneous curvature Geometric analysis of labeled alanine (GALA) method 

References

  1. 1.
    Bechinger B, Gierasch LM, Montal M, Zasloff M, Opella SJ. Orientations of helical peptides in membrane bilayers by solid state NMR spectroscopy. Solid State Nucl Magn Reson. 1996;7:185–91.CrossRefGoogle Scholar
  2. 2.
    Ramamoorthy A, Wei YF, Lee DK. PISEMA solid-state NMR spectroscopy. Ann Rep Nucl Magn Reson Spect. 2004;52:1–52.Google Scholar
  3. 3.
    Wang J, Denny J, Tian C, Kim S, Mo Y, Kovacs F, Song Z, Nishimura K, Gan Z, Fu R, Quine JR, Cross TA. Imaging membrane protein helical wheels. J Magn Reson. 2000;144:162–7.CrossRefGoogle Scholar
  4. 4.
    Marassi FM, Opella SJ. A solid-state NMR index of helical membrane protein structure and topology. J Magn Reson. 2000;144:150–5.CrossRefGoogle Scholar
  5. 5.
    Walther TH, Grage SL, Roth N, Ulrich AS. Membrane alignment of the pore-forming component TatAd of the twin-arginine translocase from Bacillus subtilis resolved by solid-state NMR spectroscopy. J Am Chem Soc. 2010;132:15945–56.CrossRefGoogle Scholar
  6. 6.
    Strandberg E, Özdirekcan S, Rijkers DTS, Van der Wel PCA, Koeppe II RE, Liskamp RMJ, Killian JA. Tilt angles of transmembrane model peptides in oriented and non-oriented lipid bilayers as determined by 2H solid state NMR. Biophys J. 2004;86:3709–21.CrossRefGoogle Scholar
  7. 7.
    Van der Wel PCA, Strandberg E, Killian JA, Koeppe II RE. Geometry and intrinsic tilt of a tryptophan-anchored transmembrane α-helix determined by 2H NMR. Biophys J. 2002;83:1479–88.CrossRefGoogle Scholar
  8. 8.
    Naito A. Structure elucidation of membrane-associated peptides and proteins in oriented bilayers by solid-state NMR spectroscopy. Solid State Nucl Magn Reson. 2009;36:67–76.CrossRefGoogle Scholar
  9. 9.
    Naito A, Nagao T, Norisada K, Mizuno T, Tuzi S, Saito H. Conformation and dynamics of melittin bound to magnetically oriented lipid bilayers by solid-state 31P and 13C NMR spectroscopy. Biophys J. 2000;78:2405–17.CrossRefGoogle Scholar
  10. 10.
    Smith R, Separovic F, Milne TJ, Whittaker A, Bennett FM, Cornell BA, Makriyannis A. Structure and orientation of the pore-forming peptide, melittin, in lipid bilayers. J Mol Biol. 1994;241:456–66.CrossRefGoogle Scholar
  11. 11.
    Ieronimo M, Afonin S, Koch K, Berditsch M, Wadhwani P, Ulrich AS. 19F NMR analysis of the antimicrobial peptide PGLa bound to native cell membranes from bacterial protoplasts and human erythrocytes. J Am Chem Soc. 2010;132:8822–4.CrossRefGoogle Scholar
  12. 12.
    Koch K, Afonin S, Ieronimo M, Berditsch M, Ulrich AS. Solid-state 19F-NMR of peptides in native membranes. Top Curr Chem. 2012;306:89–118.CrossRefGoogle Scholar
  13. 13.
    Strandberg E, Ulrich AS. AMPs and OMPs: is the folding and bilayer insertion of β-stranded outer membrane proteins governed by the same biophysical principles as for α-helical antimicrobial peptides? Biochim Biophys Acta. 1848;2015:1944–54.Google Scholar
  14. 14.
    Strandberg E, Ulrich AS. NMR methods for studying membrane-active antimicrobial peptides. Concepts Magn Reson A. 2004;23A:89–120.CrossRefGoogle Scholar
  15. 15.
    Kara S, Afonin S, Babii O, Tkachenko AN, Ulrich AS. Diphytanoyl lipids as sturdy model systems for studying membrane-active peptides. Submitted. 2017.Google Scholar
  16. 16.
    Nolandt OV, Walther TH, Grage SL, Ulrich AS. Magnetically oriented dodecylphosphocholine bicelles for solid-state NMR structure analysis. Biochim Biophys Acta. 1818;2012:1142–7.Google Scholar
  17. 17.
    Sanders CR, Prosser RS. Bicelles: a model membrane system for all seasons? Structure. 1998;6:1227–34.CrossRefGoogle Scholar
  18. 18.
    Prosser RS, Hunt SA, DiNatale JA, Vold RR. Magnetically aligned membrane model systems with positive order parameter: switching the sign of Szz with paramagnetic ions. J Am Chem Soc. 1996;118:269–70.CrossRefGoogle Scholar
  19. 19.
    Glaser RW, Sachse C, Dürr UHN, Wadhwani P, Ulrich AS. Orientation of the antimicrobial peptide PGLa in lipid membranes determined from 19F-NMR dipolar couplings of 4-CF3-phenylglycine labels. J Magn Reson. 2004;168:153–63.CrossRefGoogle Scholar
  20. 20.
    Moll III F, Cross TA. Optimizing and characterizing alignment of oriented lipid bilayers containing gramicidin D. Biophys J. 1990;57:351–62.CrossRefGoogle Scholar
  21. 21.
    Ramamoorthy A, Marassi FM, Zasloff M, Opella SJ. Three-dimensional solid-state NMR spectroscopy of a peptide oriented in membrane bilayers. J Biomol NMR. 1995;6:329–34.CrossRefGoogle Scholar
  22. 22.
    Strandberg E, Wadhwani P, Tremouilhac P, Dürr UHN, Ulrich AS. Solid-state NMR analysis of the PGLa peptide orientation in DMPC bilayers: structural fidelity of 2H-labels versus high sensitivity of 19F-NMR. Biophys J. 2006;90:1676–86.CrossRefGoogle Scholar
  23. 23.
    Tremouilhac P, Strandberg E, Wadhwani P, Ulrich AS. Conditions affecting the re-alignment of the antimicrobial peptide PGLa in membranes as monitored by solid state 2H-NMR. Biochim Biophys Acta. 1758;2006:1330–42.Google Scholar
  24. 24.
    Killian JA, Salemink I, de Planque MR, Lindblom G, Koeppe II RE, Greathouse DV. Induction of nonbilayer structures in diacylphosphatidylcholine model membranes by transmembrane α-helical peptides: importance of hydrophobic mismatch and proposed role of tryptophans. Biochemistry. 1996;35:1037–45.CrossRefGoogle Scholar
  25. 25.
    Morein S, Koeppe II RE, Lindblom G, de Kruijff B, Killian JA. The effect of peptide/lipid hydrophobic mismatch on the phase behavior of model membranes mimicking the lipid composition in Escherichia coli membranes. Biophys J. 2000;78:2475–85.CrossRefGoogle Scholar
  26. 26.
    Van der Wel PC, Pott T, Morein S, Greathouse DV, Koeppe II RE, Killian JA. Tryptophan-anchored transmembrane peptides promote formation of nonlamellar phases in phosphatidylethanolamine model membranes in a mismatch-dependent manner. Biochemistry. 2000;39:3124–33.CrossRefGoogle Scholar
  27. 27.
    Strandberg E, Morein S, Rijkers DTS, Liskamp RMJ, Van der Wel PCA, Killian JA. Lipid dependence of membrane anchoring properties and snorkeling behavior of aromatic and charged residues in transmembrane peptides. Biochemistry. 2002;41:7190–8.CrossRefGoogle Scholar
  28. 28.
    de Planque MR, Boots JW, Rijkers DT, Liskamp RM, Greathouse DV, Killian JA. The effects of hydrophobic mismatch between phosphatidylcholine bilayers and transmembrane α-helical peptides depend on the nature of interfacially exposed aromatic and charged residues. Biochemistry. 2002;41:8396–404.CrossRefGoogle Scholar
  29. 29.
    Strandberg E, Esteban-Martín S, Ulrich AS, Salgado J. Hydrophobic mismatch of mobile transmembrane helices: merging theory and experiments. Biochim Biophys Acta. 1818;2012:1242–9.Google Scholar
  30. 30.
    Strandberg E, Esteban-Martín S, Salgado J, Ulrich AS. Orientation and dynamics of peptides in membranes calculated from 2H-NMR data. Biophys J. 2009;96:3223–32.CrossRefGoogle Scholar
  31. 31.
    Esteban-Martín S, Strandberg E, Fuertes G, Ulrich AS, Salgado J. Influence of whole-body dynamics on 15N PISEMA NMR spectra of membrane peptides: a theoretical analysis. Biophys J. 2009;96:3233–41.CrossRefGoogle Scholar
  32. 32.
    Park SH, Opella SJ. Tilt angle of a trans-membrane helix is determined by hydrophobic mismatch. J Mol Biol. 2005;350:310–8.CrossRefGoogle Scholar
  33. 33.
    Grage SL, Strandberg E, Wadhwani P, Esteban-Martin S, Salgado J, Ulrich AS. Comparative analysis of the orientation of transmembrane peptides using solid-state 2H- and 15N-NMR: mobility matters. Eur Biophys J. 2012;41:475–82.CrossRefGoogle Scholar
  34. 34.
    Esteban-Martín S, Strandberg E, Salgado J, Ulrich AS. Solid state NMR analysis of peptides in membranes: influence of dynamics and labeling scheme. Biochim Biophys Acta. 1798;2010:252–7.Google Scholar
  35. 35.
    Windisch D, Ziegler C, Grage SL, Burck J, Zeitler M, Gor’kov PL, Ulrich AS. Hydrophobic mismatch drives the interaction of E5 with the transmembrane segment of PDGF receptor. Biophys J. 2015;109:737–49.CrossRefGoogle Scholar
  36. 36.
    Windisch D, Ziegler C, Burck J, Ulrich AS. Structural characterization of a C-terminally truncated E5 oncoprotein from papillomavirus in lipid bilayers. Biol Chem. 2014;395:1443–52.CrossRefGoogle Scholar
  37. 37.
    Muhle-Goll C, Hoffmann S, Afonin S, Grage SL, Polyansky AA, Windisch D, Zeitler M, Bürck J, Ulrich AS. Hydrophobic matching controls the tilt and stability of the dimeric platelet-derived growth factor receptor (PDGFR) β transmembrane segment. J Biol Chem. 2012;287:26178–86.CrossRefGoogle Scholar
  38. 38.
    Vostrikov VV, Grant CV, Daily AE, Opella SJ, Koeppe II RE. Comparison of “Polarization Inversion with Spin Exchange at Magic Angle” and “Geometric Analysis of Labeled Alanines” methods for transmembrane helix alignment. J Am Chem Soc. 2008;130:12584–5.CrossRefGoogle Scholar
  39. 39.
    Vostrikov VV, Daily AE, Greathouse DV, Koeppe II RE. Charged or aromatic anchor residue dependence of transmembrane peptide tilt. J Biol Chem. 2010;285:31723–30.CrossRefGoogle Scholar
  40. 40.
    Rankenberg JM, Vostrikov VV, DuVall CD, Greathouse DV, Koeppe II RE, Grant CV, Opella SJ. Proline kink angle distributions for GWALP23 in lipid bilayers of different thicknesses. Biochemistry. 2012;51:3554–64.CrossRefGoogle Scholar
  41. 41.
    Gleason NJ, Vostrikov VV, Greathouse DV, Grant CV, Opella SJ, Koeppe II RE. Tyrosine replacing tryptophan as an anchor in GWALP peptides. Biochemistry. 2012;51:2044–53.CrossRefGoogle Scholar
  42. 42.
    Gu H, Lum K, Kim JH, Greathouse DV, Andersen OS, Koeppe II RE. The membrane interface dictates different anchor roles for “inner pair” and “outer pair” tryptophan indole rings in gramicidin A channels. Biochemistry. 2011;50:4855–66.CrossRefGoogle Scholar
  43. 43.
    Gleason NJ, Vostrikov VV, Greathouse DV, Koeppe II RE. Buried lysine, but not arginine, titrates and alters transmembrane helix tilt. Proc Natl Acad Sci U S A. 2013;110:1692–5.CrossRefGoogle Scholar
  44. 44.
    Vostrikov VV, Hall BA, Greathouse DV, Koeppe II RE, Sansom MS. Changes in transmembrane helix alignment by arginine residues revealed by solid-state NMR experiments and coarse-grained MD simulations. J Am Chem Soc. 2010;132:5803–11.CrossRefGoogle Scholar
  45. 45.
    Thomas R, Vostrikov VV, Greathouse DV, Koeppe II RE. Influence of proline upon the folding and geometry of the WALP19 transmembrane peptide. Biochemistry. 2009;48:11883–91.CrossRefGoogle Scholar
  46. 46.
    Bechinger B, Zasloff M, Opella SJ. Structure and dynamics of the antibiotic peptide PGLa in membranes by solution and solid-state nuclear magnetic resonance spectroscopy. Biophys J. 1998;74:981–7.CrossRefGoogle Scholar
  47. 47.
    Strandberg E, Zerweck J, Horn D, Pritz G, Wadhwani P, Berditsch M, Bürck J, Ulrich AS. Influence of hydrophobic residues on the activity of the antimicrobial peptide magainin 2 and its synergy with PGLa. J Pept Sci. 2015;21:436–45.CrossRefGoogle Scholar
  48. 48.
    Afonin S, Grage SL, Ieronimo M, Wadhwani P, Ulrich AS. Temperature-dependent transmembrane insertion of the amphiphilic peptide PGLa in lipid bilayers observed by solid state 19F-NMR spectroscopy. J Am Chem Soc. 2008;130:16512–4.CrossRefGoogle Scholar
  49. 49.
    Marassi FM, Ma C, Gesell JJ, Opella SJ. Three-dimensional solid-state NMR spectroscopy is essential for resolution of resonances from in-plane residues in uniformly 15N-labeled helical membrane proteins in oriented lipid bilayers. J Magn Reson. 2000;144:156–61.CrossRefGoogle Scholar
  50. 50.
    Strandberg E, Horn D, Reißer S, Zerweck J, Wadhwani P, Ulrich AS. 2H-NMR and MD simulations reveal membrane-bound conformation of magainin 2 and its synergy with PGLa. Biophys J. 2016;111:2149–61.CrossRefGoogle Scholar
  51. 51.
    Strandberg E, Tremouilhac P, Wadhwani P, Ulrich AS. Synergistic transmembrane insertion of the heterodimeric PGLa/magainin 2 complex studied by solid-state NMR. Biochim Biophys Acta. 1788;2009:1667–79.Google Scholar
  52. 52.
    Tremouilhac P, Strandberg E, Wadhwani P, Ulrich AS. Synergistic transmembrane alignment of the antimicrobial heterodimer PGLa/magainin. J Biol Chem. 2006;281:32089–94.CrossRefGoogle Scholar
  53. 53.
    Strandberg E, Zerweck J, Wadhwani P, Ulrich AS. Synergistic insertion of antimicrobial magainin-family peptides in membranes depends on the lipid spontaneous curvature. Biophys J. 2013;104:L9–11.CrossRefGoogle Scholar
  54. 54.
    Salnikov ES, Bechinger B. Lipid-controlled peptide topology and interactions in bilayers: structural insights into the synergistic enhancement of the antimicrobial activities of PGLa and magainin 2. Biophys J. 2011;100:1473–80.CrossRefGoogle Scholar
  55. 55.
    Zerweck J, Strandberg E, Bürck J, Reichert J, Wadhwani P, Kukharenko O, Ulrich AS. Homo- and heteromeric interaction strengths of the synergistic antimicrobial peptides PGLa and magainin 2 in membranes. Eur Biophys J. 2016;45:535–47.CrossRefGoogle Scholar
  56. 56.
    Maloy WL, Kari UP. Structure-activity studies on magainins and other host-defense peptides. Biopolymers. 1995;37:105–22.CrossRefGoogle Scholar
  57. 57.
    Strandberg E, Kanithasen N, Bürck J, Wadhwani P, Tiltak D, Zwernemann O, Ulrich AS. Solid state NMR analysis comparing the designer-made antibiotic MSI-103 with its parent peptide PGLa in lipid bilayers. Biochemistry. 2008;47:2601–16.CrossRefGoogle Scholar
  58. 58.
    Strandberg E, Tiltak D, Ehni S, Wadhwani P, Ulrich AS. Lipid shape is a key factor for membrane interactions of amphipathic helical peptides. Biochim Biophys Acta. 1818;2012:1764–76.Google Scholar
  59. 59.
    Afonin S, Glaser RW, Sachse C, Salgado J, Wadhwani P, Ulrich AS. 19F NMR screening of unrelated antimicrobial peptides shows that membrane interactions are largely governed by lipids. Biochim Biophys Acta. 1838;2014:2260–8.Google Scholar
  60. 60.
    Grau-Campistany A, Strandberg E, Wadhwani P, Reichert J, Bürck J, Rabanal F, Ulrich AS. Hydrophobic mismatch demonstrated for membranolytic peptides, and their use as molecular rulers to measure bilayer thickness in native cells. Sci Rep. 2015;5:9388.CrossRefGoogle Scholar
  61. 61.
    Grau-Campistany A, Strandberg E, Wadhwani P, Rabanal F, Ulrich AS. Extending the hydrophobic mismatch concept to amphiphilic membranolytic peptides. J Phys Chem Lett. 2016;7:1116–20.CrossRefGoogle Scholar
  62. 62.
    Badosa E, Ferre R, Planas M, Feliu L, Besalu E, Cabrefiga J, Bardaji E, Montesinos E. A library of linear undecapeptides with bactericidal activity against phytopathogenic bacteria. Peptides. 2007;28:2276–85.CrossRefGoogle Scholar
  63. 63.
    Eggenberger K, Mink C, Wadhwani P, Ulrich AS, Nick P. Using the peptide BP100 as a cell-penetrating tool for the chemical engineering of actin filaments within living plant cells. ChemBioChem. 2011;12:132–7.CrossRefGoogle Scholar
  64. 64.
    Zamora-Carreras H, Strandberg E, Mühlhäuser P, Bürck J, Wadhwani P, Jiménez MÁ, Bruix M, Ulrich AS. Alanine scan and 2H NMR analysis of the membrane-active peptide BP100 point to a distinct carpet mechanism of action. Biochim Biophys Acta. 1858;2016:1328–38.Google Scholar
  65. 65.
    Misiewicz J, Afonin S, Grage SL, van den Berg J, Strandberg E, Wadhwani P, Ulrich AS. Action of the multifunctional peptide BP100 on native biomembranes examined by solid-state NMR. J Biomol NMR. 2015;61:287–98.CrossRefGoogle Scholar
  66. 66.
    Wadhwani P, Strandberg E, van den Berg J, Mink C, Bürck J, Ciriello R, Ulrich AS. Dynamical structure of the short multifunctional peptide BP100 in membranes. Biochim Biophys Acta. 1838;2014:940–9.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Biological Interfaces (IBG-2)Karlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Institute of Organic ChemistryKITKarlsruheGermany

Personalised recommendations