Skip to main content

Solid-State NMR for Studying Peptide Structures and Peptide-Lipid Interactions in Membranes

  • Reference work entry
  • First Online:
Modern Magnetic Resonance

Abstract

Peptide-lipid interactions can be conveniently studied using solid-state NMR (SSNMR), as various approaches have been developed to resolve the structures of membrane-bound peptides under quasi-native conditions. By labeling peptides with NMR-active nuclei, it is possible to characterize their conformation, orientation, and dynamics within a lipid bilayer and to obtain information about their self-assembly and aggregation behavior. This review is focused on peptides that are labeled with 2H or 15N and describe results primarily from two important classes of helical peptides: (i) hydrophobic transmembrane model peptides and (ii) amphipathic antimicrobial peptides. It can be concluded from these SSNMR studies that both types of peptides exhibit specific effects under conditions of hydrophobic mismatch, i.e., when the (hydrophobic) length of the peptide differs from the hydrophobic thickness of the bilayer. In particular, when the peptide is too long, it compensates this mismatch by tilting in the membrane, thereby providing an effective (hydrophobic) length to match the membrane thickness. It was also observed that peptides can more easily insert into membranes when the bilayer is composed of lipids with a large positive spontaneous curvature, such as lysolipids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,200.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bechinger B, Gierasch LM, Montal M, Zasloff M, Opella SJ. Orientations of helical peptides in membrane bilayers by solid state NMR spectroscopy. Solid State Nucl Magn Reson. 1996;7:185–91.

    Article  CAS  Google Scholar 

  2. Ramamoorthy A, Wei YF, Lee DK. PISEMA solid-state NMR spectroscopy. Ann Rep Nucl Magn Reson Spect. 2004;52:1–52.

    Google Scholar 

  3. Wang J, Denny J, Tian C, Kim S, Mo Y, Kovacs F, Song Z, Nishimura K, Gan Z, Fu R, Quine JR, Cross TA. Imaging membrane protein helical wheels. J Magn Reson. 2000;144:162–7.

    Article  CAS  Google Scholar 

  4. Marassi FM, Opella SJ. A solid-state NMR index of helical membrane protein structure and topology. J Magn Reson. 2000;144:150–5.

    Article  CAS  Google Scholar 

  5. Walther TH, Grage SL, Roth N, Ulrich AS. Membrane alignment of the pore-forming component TatAd of the twin-arginine translocase from Bacillus subtilis resolved by solid-state NMR spectroscopy. J Am Chem Soc. 2010;132:15945–56.

    Article  CAS  Google Scholar 

  6. Strandberg E, Özdirekcan S, Rijkers DTS, Van der Wel PCA, Koeppe II RE, Liskamp RMJ, Killian JA. Tilt angles of transmembrane model peptides in oriented and non-oriented lipid bilayers as determined by 2H solid state NMR. Biophys J. 2004;86:3709–21.

    Article  CAS  Google Scholar 

  7. Van der Wel PCA, Strandberg E, Killian JA, Koeppe II RE. Geometry and intrinsic tilt of a tryptophan-anchored transmembrane α-helix determined by 2H NMR. Biophys J. 2002;83:1479–88.

    Article  CAS  Google Scholar 

  8. Naito A. Structure elucidation of membrane-associated peptides and proteins in oriented bilayers by solid-state NMR spectroscopy. Solid State Nucl Magn Reson. 2009;36:67–76.

    Article  CAS  Google Scholar 

  9. Naito A, Nagao T, Norisada K, Mizuno T, Tuzi S, Saito H. Conformation and dynamics of melittin bound to magnetically oriented lipid bilayers by solid-state 31P and 13C NMR spectroscopy. Biophys J. 2000;78:2405–17.

    Article  CAS  Google Scholar 

  10. Smith R, Separovic F, Milne TJ, Whittaker A, Bennett FM, Cornell BA, Makriyannis A. Structure and orientation of the pore-forming peptide, melittin, in lipid bilayers. J Mol Biol. 1994;241:456–66.

    Article  CAS  Google Scholar 

  11. Ieronimo M, Afonin S, Koch K, Berditsch M, Wadhwani P, Ulrich AS. 19F NMR analysis of the antimicrobial peptide PGLa bound to native cell membranes from bacterial protoplasts and human erythrocytes. J Am Chem Soc. 2010;132:8822–4.

    Article  CAS  Google Scholar 

  12. Koch K, Afonin S, Ieronimo M, Berditsch M, Ulrich AS. Solid-state 19F-NMR of peptides in native membranes. Top Curr Chem. 2012;306:89–118.

    Article  CAS  Google Scholar 

  13. Strandberg E, Ulrich AS. AMPs and OMPs: is the folding and bilayer insertion of β-stranded outer membrane proteins governed by the same biophysical principles as for α-helical antimicrobial peptides? Biochim Biophys Acta. 1848;2015:1944–54.

    Google Scholar 

  14. Strandberg E, Ulrich AS. NMR methods for studying membrane-active antimicrobial peptides. Concepts Magn Reson A. 2004;23A:89–120.

    Article  CAS  Google Scholar 

  15. Kara S, Afonin S, Babii O, Tkachenko AN, Ulrich AS. Diphytanoyl lipids as sturdy model systems for studying membrane-active peptides. Submitted. 2017.

    Google Scholar 

  16. Nolandt OV, Walther TH, Grage SL, Ulrich AS. Magnetically oriented dodecylphosphocholine bicelles for solid-state NMR structure analysis. Biochim Biophys Acta. 1818;2012:1142–7.

    Google Scholar 

  17. Sanders CR, Prosser RS. Bicelles: a model membrane system for all seasons? Structure. 1998;6:1227–34.

    Article  CAS  Google Scholar 

  18. Prosser RS, Hunt SA, DiNatale JA, Vold RR. Magnetically aligned membrane model systems with positive order parameter: switching the sign of Szz with paramagnetic ions. J Am Chem Soc. 1996;118:269–70.

    Article  CAS  Google Scholar 

  19. Glaser RW, Sachse C, Dürr UHN, Wadhwani P, Ulrich AS. Orientation of the antimicrobial peptide PGLa in lipid membranes determined from 19F-NMR dipolar couplings of 4-CF3-phenylglycine labels. J Magn Reson. 2004;168:153–63.

    Article  CAS  Google Scholar 

  20. Moll III F, Cross TA. Optimizing and characterizing alignment of oriented lipid bilayers containing gramicidin D. Biophys J. 1990;57:351–62.

    Article  CAS  Google Scholar 

  21. Ramamoorthy A, Marassi FM, Zasloff M, Opella SJ. Three-dimensional solid-state NMR spectroscopy of a peptide oriented in membrane bilayers. J Biomol NMR. 1995;6:329–34.

    Article  CAS  Google Scholar 

  22. Strandberg E, Wadhwani P, Tremouilhac P, Dürr UHN, Ulrich AS. Solid-state NMR analysis of the PGLa peptide orientation in DMPC bilayers: structural fidelity of 2H-labels versus high sensitivity of 19F-NMR. Biophys J. 2006;90:1676–86.

    Article  CAS  Google Scholar 

  23. Tremouilhac P, Strandberg E, Wadhwani P, Ulrich AS. Conditions affecting the re-alignment of the antimicrobial peptide PGLa in membranes as monitored by solid state 2H-NMR. Biochim Biophys Acta. 1758;2006:1330–42.

    Google Scholar 

  24. Killian JA, Salemink I, de Planque MR, Lindblom G, Koeppe II RE, Greathouse DV. Induction of nonbilayer structures in diacylphosphatidylcholine model membranes by transmembrane α-helical peptides: importance of hydrophobic mismatch and proposed role of tryptophans. Biochemistry. 1996;35:1037–45.

    Article  CAS  Google Scholar 

  25. Morein S, Koeppe II RE, Lindblom G, de Kruijff B, Killian JA. The effect of peptide/lipid hydrophobic mismatch on the phase behavior of model membranes mimicking the lipid composition in Escherichia coli membranes. Biophys J. 2000;78:2475–85.

    Article  CAS  Google Scholar 

  26. Van der Wel PC, Pott T, Morein S, Greathouse DV, Koeppe II RE, Killian JA. Tryptophan-anchored transmembrane peptides promote formation of nonlamellar phases in phosphatidylethanolamine model membranes in a mismatch-dependent manner. Biochemistry. 2000;39:3124–33.

    Article  CAS  Google Scholar 

  27. Strandberg E, Morein S, Rijkers DTS, Liskamp RMJ, Van der Wel PCA, Killian JA. Lipid dependence of membrane anchoring properties and snorkeling behavior of aromatic and charged residues in transmembrane peptides. Biochemistry. 2002;41:7190–8.

    Article  CAS  Google Scholar 

  28. de Planque MR, Boots JW, Rijkers DT, Liskamp RM, Greathouse DV, Killian JA. The effects of hydrophobic mismatch between phosphatidylcholine bilayers and transmembrane α-helical peptides depend on the nature of interfacially exposed aromatic and charged residues. Biochemistry. 2002;41:8396–404.

    Article  CAS  Google Scholar 

  29. Strandberg E, Esteban-Martín S, Ulrich AS, Salgado J. Hydrophobic mismatch of mobile transmembrane helices: merging theory and experiments. Biochim Biophys Acta. 1818;2012:1242–9.

    Google Scholar 

  30. Strandberg E, Esteban-Martín S, Salgado J, Ulrich AS. Orientation and dynamics of peptides in membranes calculated from 2H-NMR data. Biophys J. 2009;96:3223–32.

    Article  CAS  Google Scholar 

  31. Esteban-Martín S, Strandberg E, Fuertes G, Ulrich AS, Salgado J. Influence of whole-body dynamics on 15N PISEMA NMR spectra of membrane peptides: a theoretical analysis. Biophys J. 2009;96:3233–41.

    Article  CAS  Google Scholar 

  32. Park SH, Opella SJ. Tilt angle of a trans-membrane helix is determined by hydrophobic mismatch. J Mol Biol. 2005;350:310–8.

    Article  CAS  Google Scholar 

  33. Grage SL, Strandberg E, Wadhwani P, Esteban-Martin S, Salgado J, Ulrich AS. Comparative analysis of the orientation of transmembrane peptides using solid-state 2H- and 15N-NMR: mobility matters. Eur Biophys J. 2012;41:475–82.

    Article  CAS  Google Scholar 

  34. Esteban-Martín S, Strandberg E, Salgado J, Ulrich AS. Solid state NMR analysis of peptides in membranes: influence of dynamics and labeling scheme. Biochim Biophys Acta. 1798;2010:252–7.

    Google Scholar 

  35. Windisch D, Ziegler C, Grage SL, Burck J, Zeitler M, Gor’kov PL, Ulrich AS. Hydrophobic mismatch drives the interaction of E5 with the transmembrane segment of PDGF receptor. Biophys J. 2015;109:737–49.

    Article  CAS  Google Scholar 

  36. Windisch D, Ziegler C, Burck J, Ulrich AS. Structural characterization of a C-terminally truncated E5 oncoprotein from papillomavirus in lipid bilayers. Biol Chem. 2014;395:1443–52.

    Article  CAS  Google Scholar 

  37. Muhle-Goll C, Hoffmann S, Afonin S, Grage SL, Polyansky AA, Windisch D, Zeitler M, Bürck J, Ulrich AS. Hydrophobic matching controls the tilt and stability of the dimeric platelet-derived growth factor receptor (PDGFR) β transmembrane segment. J Biol Chem. 2012;287:26178–86.

    Article  Google Scholar 

  38. Vostrikov VV, Grant CV, Daily AE, Opella SJ, Koeppe II RE. Comparison of “Polarization Inversion with Spin Exchange at Magic Angle” and “Geometric Analysis of Labeled Alanines” methods for transmembrane helix alignment. J Am Chem Soc. 2008;130:12584–5.

    Article  CAS  Google Scholar 

  39. Vostrikov VV, Daily AE, Greathouse DV, Koeppe II RE. Charged or aromatic anchor residue dependence of transmembrane peptide tilt. J Biol Chem. 2010;285:31723–30.

    Article  CAS  Google Scholar 

  40. Rankenberg JM, Vostrikov VV, DuVall CD, Greathouse DV, Koeppe II RE, Grant CV, Opella SJ. Proline kink angle distributions for GWALP23 in lipid bilayers of different thicknesses. Biochemistry. 2012;51:3554–64.

    Article  CAS  Google Scholar 

  41. Gleason NJ, Vostrikov VV, Greathouse DV, Grant CV, Opella SJ, Koeppe II RE. Tyrosine replacing tryptophan as an anchor in GWALP peptides. Biochemistry. 2012;51:2044–53.

    Article  CAS  Google Scholar 

  42. Gu H, Lum K, Kim JH, Greathouse DV, Andersen OS, Koeppe II RE. The membrane interface dictates different anchor roles for “inner pair” and “outer pair” tryptophan indole rings in gramicidin A channels. Biochemistry. 2011;50:4855–66.

    Article  CAS  Google Scholar 

  43. Gleason NJ, Vostrikov VV, Greathouse DV, Koeppe II RE. Buried lysine, but not arginine, titrates and alters transmembrane helix tilt. Proc Natl Acad Sci U S A. 2013;110:1692–5.

    Article  Google Scholar 

  44. Vostrikov VV, Hall BA, Greathouse DV, Koeppe II RE, Sansom MS. Changes in transmembrane helix alignment by arginine residues revealed by solid-state NMR experiments and coarse-grained MD simulations. J Am Chem Soc. 2010;132:5803–11.

    Article  CAS  Google Scholar 

  45. Thomas R, Vostrikov VV, Greathouse DV, Koeppe II RE. Influence of proline upon the folding and geometry of the WALP19 transmembrane peptide. Biochemistry. 2009;48:11883–91.

    Article  CAS  Google Scholar 

  46. Bechinger B, Zasloff M, Opella SJ. Structure and dynamics of the antibiotic peptide PGLa in membranes by solution and solid-state nuclear magnetic resonance spectroscopy. Biophys J. 1998;74:981–7.

    Article  CAS  Google Scholar 

  47. Strandberg E, Zerweck J, Horn D, Pritz G, Wadhwani P, Berditsch M, Bürck J, Ulrich AS. Influence of hydrophobic residues on the activity of the antimicrobial peptide magainin 2 and its synergy with PGLa. J Pept Sci. 2015;21:436–45.

    Article  CAS  Google Scholar 

  48. Afonin S, Grage SL, Ieronimo M, Wadhwani P, Ulrich AS. Temperature-dependent transmembrane insertion of the amphiphilic peptide PGLa in lipid bilayers observed by solid state 19F-NMR spectroscopy. J Am Chem Soc. 2008;130:16512–4.

    Article  CAS  Google Scholar 

  49. Marassi FM, Ma C, Gesell JJ, Opella SJ. Three-dimensional solid-state NMR spectroscopy is essential for resolution of resonances from in-plane residues in uniformly 15N-labeled helical membrane proteins in oriented lipid bilayers. J Magn Reson. 2000;144:156–61.

    Article  CAS  Google Scholar 

  50. Strandberg E, Horn D, Reißer S, Zerweck J, Wadhwani P, Ulrich AS. 2H-NMR and MD simulations reveal membrane-bound conformation of magainin 2 and its synergy with PGLa. Biophys J. 2016;111:2149–61.

    Article  CAS  Google Scholar 

  51. Strandberg E, Tremouilhac P, Wadhwani P, Ulrich AS. Synergistic transmembrane insertion of the heterodimeric PGLa/magainin 2 complex studied by solid-state NMR. Biochim Biophys Acta. 1788;2009:1667–79.

    Google Scholar 

  52. Tremouilhac P, Strandberg E, Wadhwani P, Ulrich AS. Synergistic transmembrane alignment of the antimicrobial heterodimer PGLa/magainin. J Biol Chem. 2006;281:32089–94.

    Article  CAS  Google Scholar 

  53. Strandberg E, Zerweck J, Wadhwani P, Ulrich AS. Synergistic insertion of antimicrobial magainin-family peptides in membranes depends on the lipid spontaneous curvature. Biophys J. 2013;104:L9–11.

    Article  CAS  Google Scholar 

  54. Salnikov ES, Bechinger B. Lipid-controlled peptide topology and interactions in bilayers: structural insights into the synergistic enhancement of the antimicrobial activities of PGLa and magainin 2. Biophys J. 2011;100:1473–80.

    Article  CAS  Google Scholar 

  55. Zerweck J, Strandberg E, Bürck J, Reichert J, Wadhwani P, Kukharenko O, Ulrich AS. Homo- and heteromeric interaction strengths of the synergistic antimicrobial peptides PGLa and magainin 2 in membranes. Eur Biophys J. 2016;45:535–47.

    Article  CAS  Google Scholar 

  56. Maloy WL, Kari UP. Structure-activity studies on magainins and other host-defense peptides. Biopolymers. 1995;37:105–22.

    Article  CAS  Google Scholar 

  57. Strandberg E, Kanithasen N, Bürck J, Wadhwani P, Tiltak D, Zwernemann O, Ulrich AS. Solid state NMR analysis comparing the designer-made antibiotic MSI-103 with its parent peptide PGLa in lipid bilayers. Biochemistry. 2008;47:2601–16.

    Article  CAS  Google Scholar 

  58. Strandberg E, Tiltak D, Ehni S, Wadhwani P, Ulrich AS. Lipid shape is a key factor for membrane interactions of amphipathic helical peptides. Biochim Biophys Acta. 1818;2012:1764–76.

    Google Scholar 

  59. Afonin S, Glaser RW, Sachse C, Salgado J, Wadhwani P, Ulrich AS. 19F NMR screening of unrelated antimicrobial peptides shows that membrane interactions are largely governed by lipids. Biochim Biophys Acta. 1838;2014:2260–8.

    Google Scholar 

  60. Grau-Campistany A, Strandberg E, Wadhwani P, Reichert J, Bürck J, Rabanal F, Ulrich AS. Hydrophobic mismatch demonstrated for membranolytic peptides, and their use as molecular rulers to measure bilayer thickness in native cells. Sci Rep. 2015;5:9388.

    Article  CAS  Google Scholar 

  61. Grau-Campistany A, Strandberg E, Wadhwani P, Rabanal F, Ulrich AS. Extending the hydrophobic mismatch concept to amphiphilic membranolytic peptides. J Phys Chem Lett. 2016;7:1116–20.

    Article  CAS  Google Scholar 

  62. Badosa E, Ferre R, Planas M, Feliu L, Besalu E, Cabrefiga J, Bardaji E, Montesinos E. A library of linear undecapeptides with bactericidal activity against phytopathogenic bacteria. Peptides. 2007;28:2276–85.

    Article  CAS  Google Scholar 

  63. Eggenberger K, Mink C, Wadhwani P, Ulrich AS, Nick P. Using the peptide BP100 as a cell-penetrating tool for the chemical engineering of actin filaments within living plant cells. ChemBioChem. 2011;12:132–7.

    Article  CAS  Google Scholar 

  64. Zamora-Carreras H, Strandberg E, Mühlhäuser P, Bürck J, Wadhwani P, Jiménez MÁ, Bruix M, Ulrich AS. Alanine scan and 2H NMR analysis of the membrane-active peptide BP100 point to a distinct carpet mechanism of action. Biochim Biophys Acta. 1858;2016:1328–38.

    Google Scholar 

  65. Misiewicz J, Afonin S, Grage SL, van den Berg J, Strandberg E, Wadhwani P, Ulrich AS. Action of the multifunctional peptide BP100 on native biomembranes examined by solid-state NMR. J Biomol NMR. 2015;61:287–98.

    Article  CAS  Google Scholar 

  66. Wadhwani P, Strandberg E, van den Berg J, Mink C, Bürck J, Ciriello R, Ulrich AS. Dynamical structure of the short multifunctional peptide BP100 in membranes. Biochim Biophys Acta. 1838;2014:940–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Strandberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Strandberg, E., Ulrich, A.S. (2018). Solid-State NMR for Studying Peptide Structures and Peptide-Lipid Interactions in Membranes. In: Webb, G. (eds) Modern Magnetic Resonance. Springer, Cham. https://doi.org/10.1007/978-3-319-28388-3_114

Download citation

Publish with us

Policies and ethics