Advertisement

Overview of NMR in Drug Design

  • David J. Craik
  • Hayden Peacock
Reference work entry

Abstract

NMR spectroscopy is an extremely valuable tool in the pharmaceutical sciences. This chapter gives an overview of the use of this tool in drug design. It sets the scene for the specialist chapters that are included in this Handbook of Modern Magnetic Resonance.

Keywords

Drug design Screening NMR spectroscopy Natural products Metabolomics 

Abbreviations

COSY

Correlation spectroscopy

Da

Dalton

FBS

Fragment-based screening

HMBC

Heteronuclear multiple-bond correlation

HMQC

Heteronuclear multiple quantum coherence

HSQC

Heteronuclear single quantum coherence

HTS

High-throughput screening

MHz

Megahertz

MS

Mass spectrometry

NOE

Nuclear Overhauser effect

NOESY

Nuclear Overhauser effect spectroscopy

SPR

Surface plasmon resonance

STD

Saturation transfer difference spectroscopy

TROSY

Transverse relaxation-optimized spectroscopy

WaterLOGSY

Water-ligand observed gradient spectroscopy

References

  1. 1.
    Erlanson DA, Fesik SW, Hubbard RE, Jahnke W, Jhoti H. Twenty years on: the impact of fragments on drug discovery. Nat Rev Drug Discov. 2016;15:605–19.CrossRefGoogle Scholar
  2. 2.
    Gossert AD, Jahnke W. NMR in drug discovery: a practical guide to identification and validation of ligands interacting with biological macromolecules. Prog Nucl Magn Reson Spectrosc. 2016;97:82–125.CrossRefGoogle Scholar
  3. 3.
    Aldrich C, Bertozzi C, Georg GI, Kiessling L, Lindsley C, Liotta D, et al. The ecstasy and agony of assay interference compounds. ACS Cent Sci. 2017;3:143–7.CrossRefGoogle Scholar
  4. 4.
    Renaud JP, Chung CW, Danielson UH, Egner U, Hennig M, Hubbard RE, et al. Biophysics in drug discovery: impact, challenges and opportunities. Nat Rev Drug Discov. 2016;15:679–98.CrossRefGoogle Scholar
  5. 5.
    Schirra JH, Craik DJ. Overview of NMR in the pharmaceutical sciences. In: Webb GA, editor. Modern magnetic resonance. 2 Dordrecht: Springer; 2006. p. 1177–84.Google Scholar
  6. 6.
    Everett JR. Drug discovery and development: the role of NMR. eMagRes. 2015;4:137–50.CrossRefGoogle Scholar
  7. 7.
    Dias DM, Ciulli A. NMR approaches in structure-based lead discovery: recent developments and new frontiers for targeting multi-protein complexes. Prog Biophys Mol Biol. 2014;116:101–12.CrossRefGoogle Scholar
  8. 8.
    Shuker SB, Hajduk PJ, Meadows RP, Fesik SW. Discovering high-affinity ligands for proteins: SAR by NMR. Science. 1996;274:1531–4.CrossRefGoogle Scholar
  9. 9.
    Burke JP, Bian ZG, Shaw S, Zhao B, Goodwin CM, Belmar J, et al. Discovery of tricyclic indoles that potently inhibit Mcl-1 using fragment-based methods and structure-based design. J Med Chem. 2015;58:3794–805.CrossRefGoogle Scholar
  10. 10.
    Elipe MVS, Milburn RR. Monitoring chemical reactions by low-field benchtop NMR at 45MHz: pros and cons. Magn Reson Chem. 2016;54:437–43.CrossRefGoogle Scholar
  11. 11.
    Gomez MV, de la Hoz A. NMR reaction monitoring in flow synthesis. Beilstein J Org Chem. 2017;13:285–300.CrossRefGoogle Scholar
  12. 12.
    Ahmed-Omer B, Sliwinski E, Cerroti JP, Ley SV. Continuous processing and efficient in situ reaction monitoring of a hypervalent iodine(III) mediated cyclopropanation using benchtop NMR spectroscopy. Org Process Res Dev. 2016;20:1603–14.CrossRefGoogle Scholar
  13. 13.
    Koehn FE, Carter GT. The evolving role of natural products in drug discovery. Nat Rev Drug Discov. 2005;4:206–20.CrossRefGoogle Scholar
  14. 14.
    Breton RC, Reynolds WF. Using NMR to identify and characterize natural products. Nat Prod Rep. 2013;30:501–24.CrossRefGoogle Scholar
  15. 15.
    Gaudencio SP, Pereira F. Dereplication: racing to speed up the natural products discovery process. Nat Prod Rep. 2015;32:779–810.CrossRefGoogle Scholar
  16. 16.
    Pauli GF, Chen SN, Lankin DC, Bisson J, Case RJ, Chadwick LR, et al. Essential parameters for structural analysis and dereplication by H-1 NMR spectroscopy. J Nat Prod. 2014;77:1473–87.CrossRefGoogle Scholar
  17. 17.
    Lisi GP, Loria JP. Solution NMR spectroscopy for the study of enzyme allostery. Chem Rev. 2016;116:6323.CrossRefGoogle Scholar
  18. 18.
    Chen L, Wilder PT, Drennen B, Tran J, Roth BM, Chesko K, et al. Structure-based design of 3-carboxy-substituted 1,2,3,4-tetrahydroquinolines as inhibitors of myeloid cell leukemia-1 (Mcl-1). Org Biomol Chem. 2016;14:5505–10.CrossRefGoogle Scholar
  19. 19.
    Venters RA, Thompson R, Cavanagh J. Current approaches for the study of large proteins by NMR. J Mol Struct. 2002;602:275–92.CrossRefGoogle Scholar
  20. 20.
    Ruschak AM, Kay LE. Methyl groups as probes of supra-molecular structure, dynamics and function. J Biomol NMR. 2010;46:75–87.CrossRefGoogle Scholar
  21. 21.
    Grzesiek S, Anglister J, Ren H, Bax A. C-13 line narrowing by H-2 decoupling in H-2/C-13/N-15-enriched proteins – application to triple-resonance 4D J-connectivity of sequential amides. J Am Chem Soc. 1993;115:4369–70.CrossRefGoogle Scholar
  22. 22.
    Orts J, Walti MA, Marsh M, Vera L, Gossert AD, Guntert P, et al. NMR-based determination of the 3D structure of the ligand-protein interaction site without protein resonance assignment. J Am Chem Soc. 2016;138:4393–400.CrossRefGoogle Scholar
  23. 23.
    Hajduk PJ, Mack JC, Olejniczak ET, Park C, Dandliker PJ, Beutel BA. SOS-NMR: a saturation transfer NMR-based method for determining the structures of protein-ligand complexes. J Am Chem Soc. 2004;126:2390–8.CrossRefGoogle Scholar
  24. 24.
    Guan JY, Keizers PHJ, Liu WM, Lohr F, Skinner SP, Heeneman EA, et al. Small-molecule binding sites on proteins established by paramagnetic NMR spectroscopy. J Am Chem Soc. 2013;135:5859–68.CrossRefGoogle Scholar
  25. 25.
    Emwas AHM, Salek RM, Griffin JL, Merzaban J. NMR-based metabolomics in human disease diagnosis: applications, limitations, and recommendations. Metabolomics. 2013;9:1048–72.CrossRefGoogle Scholar
  26. 26.
    Nicholson JK, Oflynn MP, Sadler PJ, Macleod AF, Juul SM, Sonksen PH. Proton-nuclear-magnetic-resonance studies of serum, plasma and urine from fasting normal and diabetic subjects. Biochem J. 1984;217:365–75.CrossRefGoogle Scholar
  27. 27.
    Reily MD, Tymiak AA. Metabolomics in the pharmaceutical industry. Drug Discov Today Technol. 2015;13:25.CrossRefGoogle Scholar
  28. 28.
    Gonzalez FJ, Fang ZZ, Ma XC. Transgenic mice and metabolomics for study of hepatic xenobiotic metabolism and toxicity. Expert Opin Drug Metab Toxicol. 2015;11:869–81.CrossRefGoogle Scholar
  29. 29.
    Beyoglu D, Idle JR. Metabolomics and its potential in drug development. Biochem Pharmacol. 2013;85:12–20.CrossRefGoogle Scholar
  30. 30.
    Nicholson JK, Holmes E, Kinross JM, Darzi AW, Takats Z, Lindon JC. Metabolic phenotyping in clinical and surgical environments. Nature. 2012;491:384–92.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Molecular BioscienceThe University of QueenslandBrisbaneAustralia

Personalised recommendations