Skip to main content

Long-Range Distance Constraints in Biomacromolecules by a Combined Approach of Site-Directed Spin Labeling and Double Electron–Electron Resonance (DEER) Spectroscopy

  • Reference work entry
  • First Online:
Modern Magnetic Resonance

Abstract

Double electron–electron resonance (DEER) is a technique for measuring nanometer-range distances between dipolar coupled electron spins, which is widely used to obtain structural information on biomacromolecules. The DEER technique is based on electron paramagnetic resonance (EPR) spectroscopy. If there are no native unpaired electrons, spin labels are introduced into the biomacromolecule by site-directed spin labeling (SDSL). DEER yields a characteristic distance distribution between spin labels, which is then translated into structural information about the biomacromolecule. Performance of DEER depends strongly on the experimental design, i.e., (i) the selection of spin labels and ways of their attachment and (ii) the choice of the experimental setup and conditions. Analysis and interpretation of the obtained distance distribution can be performed with dedicated open-source software and with different degrees of sophistication. Current developments in the field of distance measurements by a combination of SDSL and DEER are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,200.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altenbach C, Marti T, Khorana HG, Hubbell WL. Transmembraine protein-structure – spin labeling of bacteriorhodopsin mutants. Science. 1990;248(4959):1088–92.

    Article  CAS  Google Scholar 

  2. Fielding AJ, Concilio MG, Heaven G, Hollas MA. New developments in spin labels for pulsed dipolar EPR. Molecules. 2014;19(10):16998–7025.

    Article  CAS  Google Scholar 

  3. Roser P, Schmidt MJ, Drescher M, Summerer D. Site-directed spin labeling of proteins for distance measurements in vitro and in cells. Org Biomol Chem. 2016;14(24):5468–76.

    Article  CAS  Google Scholar 

  4. Shelke SA, Sigurdsson ST. Site-directed spin labelling of nucleic acids. Eur J Org Chem. 2012;12:2291–301.

    Article  CAS  Google Scholar 

  5. Azarkh M, Okle O, Eyring P, Dietrich DR, Drescher M. Evaluation of spin labels for in-cell EPR by analysis of nitroxide reduction in cell extract of Xenopus laevis oocytes. J Magn Reson. 2011;212(2):450–4.

    Article  CAS  Google Scholar 

  6. Liu Y, Villamena FA, Sun J, Xu Y, Dhimitruka I, Zweier JL. Synthesis and characterization of ester-derivatized tetrathiatriarylmethyl radicals as intracellular oxygen probes. J Org Chem. 2008;73(4):1490–7.

    Article  CAS  Google Scholar 

  7. Feintuch A, Otting G, Goldfarb D. Gd3+ spin labeling for measuring distances in biomacromolecules: why and how? In: Qin PZ, Warncke K, editors. Electron paramagnetic resonance investigations of biological systems by using spin labels, spin probes, and intrinsic metal ions, Pt A, Methods in Enzymology. 563San Diego: Elsevier Academic Press Inc; 2015. p. 415–57.

    Google Scholar 

  8. Martorana A, Bellapadrona G, Feintuch A, Di Gregorio E, Aime S, Goldfarb D. Probing protein conformation in cells by EPR distance measurements using Gd3+ spin labeling. J Am Chem Soc. 2014;136(38):13458–65.

    Article  CAS  Google Scholar 

  9. Qi M, Gross A, Jeschke G, Godt A, Drescher M. Gd(III)-PyMTA label is suitable for in-cell EPR. J Am Chem Soc. 2014;136(43):15366–78.

    Article  CAS  Google Scholar 

  10. Igarashi R, Sakai T, Hara H, Tenno T, Tanaka T, Tochio H, et al. Distance determination in proteins inside Xenopus laevis Oocytes by Double Electron-Electron Resonance Experiments. J Am Chem Soc. 2010;132(24):8228–9.

    Article  CAS  Google Scholar 

  11. Singh V, Azarkh M, Exner TE, Hartig JS, Drescher M. Human telomeric quadruplex conformations studied by pulsed EPR. Angew Chem Int Ed Engl. 2009;48(51):9728–30.

    Article  CAS  Google Scholar 

  12. Shevelev GY, Krumkacheva OA, Lomzov AA, Kuzhelev AA, Rogozhnikova OY, Trukhin DV, et al. Physiological-temperature distance measurement in nucleic acid using triarylmethyl-based spin labels and pulsed dipolar EPR spectroscopy. J Am Chem Soc. 2014;136(28):9874–7.

    Article  CAS  Google Scholar 

  13. Wojciechowski F, Gross A, Holder IT, Knörr L, Drescher M, Hartig JS. Pulsed EPR spectroscopy distance measurements of DNA internally labelled with Gd3+-DOTA. Chem Commun. 2015;51(72):13850–3.

    Article  CAS  Google Scholar 

  14. Martens C, Stein RA, Masureel M, Roth A, Mishra S, Dawaliby R, et al. Lipids modulate the conformational dynamics of a secondary multidrug transporter. Nat Struct Mol Biol. 2016;23(8):744–53.

    Article  CAS  Google Scholar 

  15. Akhmetzyanov D, Schops P, Marko A, Kunjir NC, Sigurdsson ST, Prisner TF. Pulsed EPR dipolar spectroscopy at Q- and G-band on a trityl biradical. Phys Chem Chem Phys. 2015;17(37):24446–51.

    Article  CAS  Google Scholar 

  16. Garbuio L, Zimmermann K, Haussinger D, Yulikov M. Gd(III) complexes for electron-electron dipolar spectroscopy: effects of deuteration, pH and zero field splitting. J Magn Reson. 2015;259:163–73.

    Article  CAS  Google Scholar 

  17. Ding P, Wunnicke D, Steinhoff HJ, Seela F. Site-directed spin-labeling of DNA by the azide-alkyne 'click' reaction: nanometer distance measurements on 7-Deaza-2 '-deoxyadenosine and 2 '-deoxyuridine nitroxide conjugates spatially separated or linked to a 'dA-dT' base pair. Chemistry. 2010;16(48):14385–96.

    Article  CAS  Google Scholar 

  18. Schweiger A, Jeschke G. Principles of pulse electron paramagnetic resonance. New York: Oxford University Press; 2001.

    Google Scholar 

  19. Milov AD, Ponomarev AB, Tsvetkov YD. Electron electron double-resonance in electron-spin echo – model biradical systems and the sensitized photolysis of decalin. Chem Phys Lett. 1984;110(1):67–72.

    Article  CAS  Google Scholar 

  20. Jeschke G, Polyhach Y. Distance measurements on spin-labelled biomacromolecules by pulsed electron paramagnetic resonance. Phys Chem Chem Phys. 2007;9(16):1895–910.

    Article  CAS  Google Scholar 

  21. Jeschke G. Distance measurements in the nanometer range by pulse EPR. ChemPhysChem. 2002;3(11):927–32.

    Article  CAS  Google Scholar 

  22. Jeschke G, Chechik V, Ionita P, Godt A, Zimmermann H, Banham J, et al. DeerAnalysis2006 – a comprehensive software package for analyzing pulsed ELDOR data. Appl Magn Reson. 2006;30(3–4):473–98.

    Article  CAS  Google Scholar 

  23. Tikhonov AN, Arsinin VY. Solutions of ill-posed problems. Winston: University of Michigan; 1977.

    Google Scholar 

  24. Edwards TH, Stoll S. A Bayesian approach to quantifying uncertainty from experimental noise in DEER spectroscopy. J Magn Reson. 2016;270:87–97.

    Article  CAS  Google Scholar 

  25. Schmidt MJ, Fedoseev A, Bucker D, Borbas J, Peter C, Drescher M, et al. EPR distance measurements in native proteins with genetically encoded spin labels. ACS Chem Biol. 2015;10(12):2764–71.

    Article  CAS  Google Scholar 

  26. Piton N, Mu YG, Stock G, Prisner TF, Schiemann O, Engels JW. Base-specific spin-labeling of RNA for structure determination. Nucleic Acids Res. 2007;35(9):3128–43.

    Article  CAS  Google Scholar 

  27. Georgieva ER, Roy AS, Grigoryants VM, Borbat PP, Earle KA, Scholes CP, et al. Effect of freezing conditions on distances and their distributions derived from Double Electron Electron Resonance (DEER): A study of doubly-spin-labeled T4 lysozyme. J Magn Reson. 2012;216:69–77.

    Article  CAS  Google Scholar 

  28. Jeschke G, Sajid M, Schulte M, Ramezanian N, Volkov A, Zimmermann H, et al. Flexibility of shape-persistent molecular building blocks bomposed of p-Phenylene and ethynylene units. J Am Chem Soc. 2010;132(29):10107–17.

    Article  CAS  Google Scholar 

  29. Ward R, Keeble DJ, El-Mkami H, Norman DG. Distance determination in heterogeneous DNA model systems by pulsed EPR. Chembiochem. 2007;8(16):1957–64.

    Article  CAS  Google Scholar 

  30. Baber JL, Louis JM, Clore GM. Dependence of distance distributions derived from double electron-electron resonance pulsed EPR spectroscopy on pulse-sequence time. Angew Chem Int Ed Engl. 2015;54(18):5336–9.

    Article  CAS  Google Scholar 

  31. Tkach I, Halbmair K, Hobartner C, Bennati M. High-frequency 263 GHz PELDOR. Appl Magn Reson. 2014;45(10):969–79.

    Article  Google Scholar 

  32. Reginsson GW, Hunter RI, Cruickshank PAS, Bolton DR, Sigurdsson ST, Smith GM, et al. W-band PELDOR with 1 kW microwave power: molecular geometry, flexibility and exchange coupling. J Magn Reson. 2012;216:175–82.

    Article  CAS  Google Scholar 

  33. Polyhach Y, Bordignon E, Tschaggelar R, Gandra S, Godt A, Jeschke G. High sensitivity and versatility of the DEER experiment on nitroxide radical pairs at Q-band frequencies. Phys Chem Chem Phys. 2012;14(30):10762–73.

    Article  CAS  Google Scholar 

  34. Spindler PE, Zhang Y, Endeward B, Gershernzon N, Skinner TE, Glaser SJ, et al. Shaped optimal control pulses for increased excitation bandwidth in EPR. J Magn Reson. 2012;218:49–58.

    Article  CAS  Google Scholar 

  35. Schops P, Plackmeyer J, Marko A. Separation of intra- and intermolecular contributions to the PELDOR signal. J Magn Reson. 2016;269:70–7.

    Article  CAS  Google Scholar 

  36. Doll A, Qi MA, Pribitzer S, Wili N, Yulikov M, Godt A, et al. Sensitivity enhancement by population transfer in Gd(III) spin labels. Phys Chem Chem Phys. 2015;17(11):7334–44.

    Article  CAS  Google Scholar 

  37. Fischer AW, Bordignon E, Bleicken S, Garcia-Saez AJ, Jeschke G, Meiler J. Pushing the size limit of de novo structure ensemble prediction guided by sparse SDSL-EPR restraints to 200 residues: the monomeric and homodimeric forms of BAX. J Struct Biol. 2016;195(1):62–71.

    Article  CAS  Google Scholar 

  38. Alexander NS, Stein RA, Koteiche HA, Kaufmann KW, McHaourab HS, Meiler J. RosettaEPR: rotamer library for spin label structure and dynamics. PLoS One. 2013;8(9):1–14.

    Article  CAS  Google Scholar 

  39. Robotta M, Gerding HR, Vogel A, Hauser K, Schildknecht S, Karreman C, et al. Alpha-synuclein binds to the inner membrane of mitochondria in an alpha-helical conformation. Chembiochem. 2014;15(17):2499–502.

    Article  CAS  Google Scholar 

  40. Azarkh M, Singh V, Oklre O, Seemann IT, Dietrich DR, Hartig JS, et al. Site-directed spin-labeling of nucleotides and the use of in-cell EPR to determine long-range distances in a biologically relevant environment. Nat Protoc. 2013;8(1):131–47.

    Article  CAS  Google Scholar 

  41. Schmidt MJ, Fedoseev A, Summerer D, Drescher M. Genetically Encoded Spin Labels for In Vitro and In-Cell EPR Studies of Native Proteins. In: Qin PZ, Warncke K, editors. Electron paramagnetic resonance investigations of biological systems by using spin labels, spin probes, and intrinsic metal ions, Pt A, Methods in Enzymology. 563San Diego: Elsevier Academic Press Inc; 2015. p. 483–502.

    Google Scholar 

  42. Mascali CF, Ching HYV, Rasia RM, Un S, Tabares LC. Unsing genetically encodable self-assembling GdIII spin labels to make in-cell nanometric distance measurements. Angew Chem Int Edit. 2016;55:11041–3.

    Article  CAS  Google Scholar 

  43. Joseph B, Sikora A, Bordignon E, Jeschke G, Cafiso DS, Prisner TF. Distance measurement on an endogenous membrane transporter in E-coli cells and native membranes using EPR spectroscopy. Angew Chem Int Edit. 2015;54(21):6196–9.

    Article  CAS  Google Scholar 

  44. Meyer V, Swanson MA, Clouston LJ, Boratynski PJ, Stein RA, McHaourab HS, et al. Room-temperature distance measurements of immobilized spin-labeled protein by DEER/PELDOR. Biophys J. 2015;108(5):1213–9.

    Article  CAS  Google Scholar 

  45. Lovett JE, Lovett BW, Harmer J. DEER-stitch: combining three- and four-pulse DEER measurements for high sensitivity, deadtime free data. J Magn Reson. 2012;223:98–106.

    Article  CAS  Google Scholar 

  46. Borbat PP, Georgieva ER, Freed JH. Improved sensitivity for long-distance measurements in biomolecules: five-pulse double electron-electron resonance. J Phys Chem Lett. 2013;4(1):170–5.

    Article  CAS  Google Scholar 

  47. Yulikov M. Spectroscopically orthogonal spin labels and distance measurements in biomolecules. In: Gilbert BC, Chechik V, Murphy DM, editors. Electron paramagnetic resonance. 24 Cambridge: Royal Society of Chemistry; 2015. p. 1–31.

    Google Scholar 

  48. Di Valentin M, Albertini M, Zurlo E, Gobbo M, Carbonera D. Porphyrin triplet state as a potential spin label for nanometer distance measurements by PELDOR spectroscopy. J Am Chem Soc. 2014;136(18):6582–5.

    Article  CAS  Google Scholar 

  49. Hintze C, Bucker D, Köhler SD, Jeschke G, Drescher M. Laser-induced magnetic dipole spectroscopy. J Phys Chem Lett. 2016;7(12):2204–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malte Drescher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Azarkh, M., Drescher, M. (2018). Long-Range Distance Constraints in Biomacromolecules by a Combined Approach of Site-Directed Spin Labeling and Double Electron–Electron Resonance (DEER) Spectroscopy. In: Webb, G. (eds) Modern Magnetic Resonance. Springer, Cham. https://doi.org/10.1007/978-3-319-28388-3_109

Download citation

Publish with us

Policies and ethics