The Application of NMR in Compositional and Quantitative Analysis of Oils and Lipids

  • Peter P. LankhorstEmail author
  • An-Ni Chang
Reference work entry


This chapter reviews the use of NMR for compositional and quantitative analysis of oils and lipids in food. The literature of the past decade on the following topics is reviewed: High-resolution 13C NMR is a powerful method to determine the positional distribution of different classes of fatty acids on the glycerol backbone due to chemical shift differences observed on the carbonyl signal. Oxidation products such as aldehydes, hydroperoxides, and epoxides can be observed and quantified directly in the 1H NMR spectrum of lipids. Results agree very well with classical methods such as determination of anisidine value and peroxide value. The advantage of NMR lies in the additional information obtained and the ease of sample preparation and the speed of the analysis in general. Minor components of oils and lipids such as sterols, polyphenols, and glycerol can be quantified either directly or after derivatization. In addition, conjugated fatty acids and galactolipids are observed. By means of 31P NMR, it is possible to identify and quantify all known phospholipids using various extraction or preconcentration methods. Also, the concentration of diglycerides and monoglycerides in the lipid matrix can be determined in a straightforward way without time-consuming sample pretreatment. High-resolution 1H NMR is also a very useful technique to obtain information on the fatty acid composition of oils, albeit more restricted to classes of fatty acids: saturated, monounsaturated, and polyunsaturated. Such information can also be obtained by means of low-field NMR when combined with chemometric methods. Time-domain NMR, finally, is a fast and cost-effective method to assess total lipid content and water content and to obtain information on the physical state of these components.


Phospholipids qNMR 13C NMR 1H NMR Positional distribution Lipid oxidation Hydroperoxide Triglyceride Diglyceride Monoglyceride Sterol Fatty acid Aldehyde Dairy Milk Cheese Fish oil Polyphenol Conjugated linoleic acid Galactolipid Polyunsaturated fatty acid Time-domain NMR Algal lipid 


  1. 1.
    Holzgrabe U. Quantitative NMR spectroscopy in pharmaceutical applications. Prog Nucl Magn Reson Spectrosc. 2010;57(2):229–40.CrossRefGoogle Scholar
  2. 2.
    van Duynhoven J, van Velzen E, Jacobs DM. Quantification of complex mixtures by NMR. In: Annual reports on NMR spectroscopy. Oxford, UK: Elsevier; 2013. p. 181–236.Google Scholar
  3. 3.
    Simmler C, Napolitano JG, McAlpine JB, Chen S, Pauli GF. Universal quantitative NMR analysis of complex natural samples. Curr Opin Biotechnol. 2014;25:51–9.CrossRefGoogle Scholar
  4. 4.
    Ng S. Analysis of positional distribution of fatty acids in palm oil by13C NMR spectroscopy. Lipids. 1985;20(11):778–82.CrossRefGoogle Scholar
  5. 5.
    Mannina L, Luchinat C, Emanuele MC, Segre A. Acyl positional distribution of glycerol tri-esters in vegetable oils: a 13 C NMR study. Chem Phys Lipids. 1999;103(1):47–55.CrossRefGoogle Scholar
  6. 6.
    Marcel SF, Jie LK, Lam C. 13 C-NMR studies of polyunsaturated triacylglycerols of type AAA and mixed triacylglycerols containing saturated, acetylenic and ethylenic acyl groups. Chem Phys Lipids. 1995;78(1):1–13.CrossRefGoogle Scholar
  7. 7.
    Redden PR, Lin X, Horrobin DF. Comparison of the Grignard deacylation TLC and HPLC methods and high resolution 13 C-NMR for the sn-2 positional analysis of triacylglycerols containing γ-linolenic acid. Chem Phys Lipids. 1996;79(1):9–19.CrossRefGoogle Scholar
  8. 8.
    Tengku-Rozaina TM, Birch EJ. Positional distribution of fatty acids on hoki and tuna oil triglycerides by pancreatic lipase and 13C NMR analysis. Eur J Lipid Sci Technol. 2014;116(3):272–81.CrossRefGoogle Scholar
  9. 9.
    Gouk SW, Cheng SF, Malon M, Ong ASH, Chuah CH. Critical considerations for fast and accurate regiospecific analysis of triacylglycerols using quantitative 13C NMR. Anal Methods. 2013;5(8):2064–73.CrossRefGoogle Scholar
  10. 10.
    Lopes TIB, Ribeiro MDMM, Ming CC, Grimaldi R, Gonçalves LAG, Marsaioli AJ. Comparison of the regiospecific distribution from triacylglycerols after chemical and enzymatic interesterification of high oleic sunflower oil and fully hydrogenated high oleic sunflower oil blend by carbon-13 nuclear magnetic resonance. Food Chem. 2016;212:641–7.CrossRefGoogle Scholar
  11. 11.
    Nagachinta S, Akoh CC. Synthesis of structured lipid enriched with omega fatty acids and sn-2 palmitic acid by enzymatic esterification and its incorporation in powdered infant formula. J Agric Food Chem. 2013;61(18):4455–63.CrossRefGoogle Scholar
  12. 12.
    Standal IB, Axelson DE, Aursand M. Differentiation of fish oils according to species by 13C-NMR regiospecific analyses of triacyglycerols. J Am Oil Chem Soc. 2009;86(5):401–7.CrossRefGoogle Scholar
  13. 13.
    Aursand M, Standal IB, Praël A, McEvoy L, Irvine J, Axelson DE. 13C NMR pattern recognition techniques for the classification of Atlantic salmon (Salmo salar L.) according to their wild, farmed, and geographical origin. J Agric Food Chem. 2009;57(9):3444–51.CrossRefGoogle Scholar
  14. 14.
    Aursand M, Standal IB, Axelson DE. High-resolution 13C nuclear magnetic resonance spectroscopy pattern recognition of fish oil capsules. J Agric Food Chem. 2007;55(1):38–47.CrossRefGoogle Scholar
  15. 15.
    Claxson AW, Hawkes GE, Richardson DP, Naughton DP, Haywood RM, Chander CL, et al. Generation of lipid peroxidation products in culinary oils and fats during episodes of thermal stressing: a high field 1H NMR study. FEBS Lett. 1994;355(1):81–90.CrossRefGoogle Scholar
  16. 16.
    Guillén MD, Ruiz A. Monitoring of heat-induced degradation of edible oils by proton NMR. Eur J Lipid Sci Technol. 2008;110(1):52–60.CrossRefGoogle Scholar
  17. 17.
    Skiera C, Steliopoulos P, Kuballa T, Holzgrabe U, Diehl B. 1H-NMR spectroscopy as a new tool in the assessment of the oxidative state in edible oils. J Am Oil Chem Soc. 2012;89(8):1383–91.Google Scholar
  18. 18.
    Sacchi R, Falcigno L, Paduano A, Ambrosino M, Savarese M, De Giulio B, et al. Quantitative evaluation of the aldehydes formed in heated vegetable oils using high resolution proton-NMR spectroscopy. Riv Ital Sostanze Grasse. 2006;83(6):257.Google Scholar
  19. 19.
    Dugo G, Rotondo A, Mallamace D, Cicero N, Salvo A, Rotondo E, et al. Enhanced detection of aldehydes in extra-virgin olive oil by means of band selective NMR spectroscopy. Physica A Stat Mech Appl. 2015;420:258–64.CrossRefGoogle Scholar
  20. 20.
    Skiera C, Steliopoulos P, Kuballa T, Holzgrabe U, Diehl B. 1H NMR approach as an alternative to the classical p-anisidine value method. Eur Food Res Technol. 2012;235(6):1101–5.CrossRefGoogle Scholar
  21. 21.
    Aerts HA, Jacobs PA. Epoxide yield determination of oils and fatty acid methyl esters using 1H NMR. J Am Oil Chem Soc. 2004;81(9):841–6.CrossRefGoogle Scholar
  22. 22.
    Goicoechea E, Guillen MD. Analysis of hydroperoxides, aldehydes and epoxides by 1H nuclear magnetic resonance in sunflower oil oxidized at 70 and 100 C. J Agric Food Chem. 2010;58(10):6234–45.CrossRefGoogle Scholar
  23. 23.
    Xia W, Budge SM, Lumsden MD. New 1H NMR-based technique to determine epoxide concentrations in oxidized oil. J Agric Food Chem. 2015;63(24):5780–6.CrossRefGoogle Scholar
  24. 24.
    Hatzakis E, Dagounakis G, Agiomyrgianaki A, Dais P. A facile NMR method for the quantification of total, free and esterified sterols in virgin olive oil. Food Chem. 2010;122(1):346–52.CrossRefGoogle Scholar
  25. 25.
    Dayrit FM, Buenafe OEM, Chainani ET, De Vera IM. Analysis of monoglycerides, diglycerides, sterols, and free fatty acids in coconut (Cocos nucifera L.) oil by 31P NMR spectroscopy. J Agric Food Chem. 2008;56(14):5765–9.CrossRefGoogle Scholar
  26. 26.
    Alonso-Salces R, Héberger K, Holland M, Moreno-Rojas J, Mariani C, Bellan G, et al. Multivariate analysis of NMR fingerprint of the unsaponifiable fraction of virgin olive oils for authentication purposes. Food Chem. 2010;118(4):956–65.CrossRefGoogle Scholar
  27. 27.
    Sopelana P, Arizabaleta I, Ibargoitia ML, Guillén MD. Characterisation of the lipidic components of margarines by 1 H nuclear magnetic resonance. Food Chem. 2013;141(4):3357–64.CrossRefGoogle Scholar
  28. 28.
    D’Amelio N, De Angelis E, Navarini L, Schievano E, Mammi S. Green coffee oil analysis by high-resolution nuclear magnetic resonance spectroscopy. Talanta. 2013;110:118–27.CrossRefGoogle Scholar
  29. 29.
    Christophoridou S, Dais P. Novel Approach to the detection and quantification of phenolic compounds in olive oil based on 31P nuclear magnetic resonance spectroscopy. J Agric Food Chem. 2006;54(3):656–64.CrossRefGoogle Scholar
  30. 30.
    Hatzakis E, Agiomyrgianaki A, Dais P. Detection and quantification of free glycerol in virgin olive oil by 31P-NMR spectroscopy. J Am Oil Chem Soc. 2010;87(1):29–34.CrossRefGoogle Scholar
  31. 31.
    Christophoridou S, Dais P. Detection and quantification of phenolic compounds in olive oil by high resolution 1 H nuclear magnetic resonance spectroscopy. Anal Chim Acta. 2009;633(2):283–92.CrossRefGoogle Scholar
  32. 32.
    Schripsema J. Comprehensive analysis of polar and apolar constituents of butter and margarine by nuclear magnetic resonance, reflecting quality and production processes. J Agric Food Chem. 2008;56(8):2547–52.CrossRefGoogle Scholar
  33. 33.
    Tsiafoulis CG, Skarlas T, Tzamaloukas O, Miltiadou D, Gerothanassis IP. Direct nuclear magnetic resonance identification and quantification of geometric isomers of conjugated linoleic acid in milk lipid fraction without derivatization steps: overcoming sensitivity and resolution barriers. Anal Chim Acta. 2014;821:62–71.CrossRefGoogle Scholar
  34. 34.
    Papaemmanouil C, Tsiafoulis CG, Alivertis D, Tzamaloukas O, Miltiadou D, Tzakos AG, et al. Selective one-dimensional total correlation spectroscopy nuclear magnetic resonance experiments for a rapid identification of minor components in the lipid fraction of milk and dairy products: toward spin chromatography? J Agric Food Chem. 2015;63(22):5381–7.CrossRefGoogle Scholar
  35. 35.
    Scano P, Rosa A, Marincola FC, Locci E, Melis M, Dessì M, et al. 13 C NMR, GC and HPLC characterization of lipid components of the salted and dried mullet (Mugil cephalus) roe “bottarga”. Chem Phys Lipids. 2008;151(2):69–76.CrossRefGoogle Scholar
  36. 36.
    Nuzzo G, Gallo C, d’Ippolito G, Cutignano A, Sardo A, Fontana A. Composition and quantitation of microalgal lipids by ERETIC 1H NMR method. Mar Drugs. 2013;11(10):3742–53.CrossRefGoogle Scholar
  37. 37.
    Meneses P, Glonek T. High resolution 31P NMR of extracted phospholipids. J Lipid Res. 1988 May;29(5):679–89.Google Scholar
  38. 38.
    Estrada R, Stolowich N, Yappert MC. Influence of temperature on 31 P NMR chemical shifts of phospholipids and their metabolites I. In chloroform–methanol–water. Anal Biochem. 2008;380(1):41–50.CrossRefGoogle Scholar
  39. 39.
    Lutz NW, Cozzone PJ. Multiparametric optimization of 31P NMR spectroscopic analysis of phospholipids in crude tissue extracts. 1. Chemical shift and signal separation. Anal Chem. 2010;82(13):5433–40.CrossRefGoogle Scholar
  40. 40.
    Balsgart NM, Mulbjerg M, Guo Z, Bertelsen K, Vosegaard T. High throughput identification and quantification of phospholipids in complex mixtures. Anal Chem. 2016;88(4):2170–6.CrossRefGoogle Scholar
  41. 41.
    Burri L, Hoem N, Monakhova YB, Diehl BW. Fingerprinting Krill Oil by 31P, 1H and 13C NMR spectroscopies. J Am Oil Chem Soc. 2016;93(8):1037–49.CrossRefGoogle Scholar
  42. 42.
    Dennis EA, Plückthun A. Phosphorus-31 NMR of phospholipids in micelles. In: Phosphorus-31 NMR, Principles and Applications. New York: Academic Press Inc; 1984. p. 423–77.Google Scholar
  43. 43.
    Lehnhardt F, Röhn G, Ernestus R, Grüne M, Hoehn M. 1H-and 31P-MR spectroscopy of primary and recurrent human brain tumors in vitro: malignancy-characteristic profiles of water soluble and lipophilic spectral components. NMR Biomed. 2001;14(5):307–17.CrossRefGoogle Scholar
  44. 44.
    MacKenzie A, Vyssotski M, Nekrasov E. Quantitative analysis of dairy phospholipids by 31P NMR. J Am Oil Chem Soc. 2009;86(8):757–63.CrossRefGoogle Scholar
  45. 45.
    Monakhova YB, Betzgen M, Diehl BW. 1 H NMR as a release methodology for the analysis of phospholipids and other constituents in infant nutrition. Anal Methods. 2016;8(41):7493–9.CrossRefGoogle Scholar
  46. 46.
    Satyarthi JK, Srinivas D, Ratnasamy P. Estimation of free fatty acid content in oils, fats, and biodiesel by 1H NMR spectroscopy. Energy Fuel. 2009;23(4):2273–7.CrossRefGoogle Scholar
  47. 47.
    Skiera C, Steliopoulos P, Kuballa T, Holzgrabe U, Diehl B. Determination of free fatty acids in edible oils by 1H NMR spectroscopy. Lipid Technol. 2012;24(12):279–81.CrossRefGoogle Scholar
  48. 48.
    Skiera C, Steliopoulos P, Kuballa T, Diehl B, Holzgrabe U. Determination of free fatty acids in pharmaceutical lipids by 1 H NMR and comparison with the classical acid value. J Pharm Biomed Anal. 2014;93:43–50.CrossRefGoogle Scholar
  49. 49.
    Kumar R, Bansal V, Tiwari A, Sharma M, Puri S, Patel M, et al. Estimation of glycerides and free fatty acid in oils extracted from various seeds from the Indian region by NMR spectroscopy. J Am Oil Chem Soc. 2011;88(11):1675–85.CrossRefGoogle Scholar
  50. 50.
    Nieva-Echevarría B, Goicoechea E, Manzanos MJ, Guillén MD. A method based on 1 H NMR spectral data useful to evaluate the hydrolysis level in complex lipid mixtures. Food Res Int. 2014;66:379–87.CrossRefGoogle Scholar
  51. 51.
    Nieva-Echevarría B, Goicoechea E, Manzanos MJ, Guillén MD. Usefulness of 1 H NMR in assessing the extent of lipid digestion. Food Chem. 2015;179:182–90.CrossRefGoogle Scholar
  52. 52.
    Medina I, Sacchi R, Aubourg S. 13C nuclear magnetic resonance monitoring of free fatty acid release after fish thermal processing. J Am Oil Chem Soc. 1994;71(5):479–82.CrossRefGoogle Scholar
  53. 53.
    Firestone D (Ed). AOCS recommended practice Cd 11c-93. 5th ed. Champaign: AOCS; 1998.Google Scholar
  54. 54.
    Nieva-Echevarría B, Goicoechea E, Manzanos MJ, Guillén MD. The influence of frying technique, cooking oil and fish species on the changes occurring in fish lipids and oil during shallow-frying, studied by 1 H NMR. Food Res Int. 2016;84:150–9.CrossRefGoogle Scholar
  55. 55.
    Guillén M, Uriarte P. Study by 1 H NMR spectroscopy of the evolution of extra virgin olive oil composition submitted to frying temperature in an industrial fryer for a prolonged period of time. Food Chem. 2012;134(1):162–72.CrossRefGoogle Scholar
  56. 56.
    Martínez-Yusta A, Guillén MD. Monitoring compositional changes in sunflower oil-derived deep-frying media by 1H nuclear magnetic resonance. Eur J Lipid Sci Technol. 2015;118(7):984–96.CrossRefGoogle Scholar
  57. 57.
    Sacchi R, Patumi M, Fontanazza G, Barone P, Fiordiponti P, Mannina L, et al. A high-field1H nuclear magnetic resonance study of the minor components in virgin olive oils. J Am Oil Chem Soc. 1996;73(6):747–58.CrossRefGoogle Scholar
  58. 58.
    Sacchi R, Addeo F, Paolillo L. 1H and 13C NMR of virgin olive oil. An overview. Magn Reson Chem. 1997;35(13):S133–45.CrossRefGoogle Scholar
  59. 59.
    Ng S. Quantitative analysis of partial acylglycerols and free fatty acids in palm oil by 13C nuclear magnetic resonance spectroscopy. J Am Oil Chem Soc. 2000;77(7):749–55.CrossRefGoogle Scholar
  60. 60.
    Sacchi R, Medina I, Aubourg SP, Giudicianni I, Paolillo L, Addeo F. Quantitative high-resolution carbon-13 NMR analysis of lipids extracted from the white muscle of Atlantic tuna (Thunnus alalunga). J Agric Food Chem. 1993;41(8):1247–53.CrossRefGoogle Scholar
  61. 61.
    Davey PT, Hiscox WC, Lucker BF, O’Fallon JV, Chen S, Helms GL. Rapid triacylglyceride detection and quantification in live micro-algal cultures via liquid state 1 H NMR. Algal Res. 2012;1(2):166–75.CrossRefGoogle Scholar
  62. 62.
    Miyake Y, Yokomizo K, Matsuzaki N. Rapid determination of iodine value by 1H nuclear magnetic resonance spectroscopy. J Am Oil Chem Soc. 1998;75(1):15–9.CrossRefGoogle Scholar
  63. 63.
    Knothe G, Kenar JA. Determination of the fatty acid profile by 1H-NMR spectroscopy. Eur J Lipid Sci Technol. 2004;106(2):88–96.CrossRefGoogle Scholar
  64. 64.
    Guillén MD, Ruiz A. Rapid simultaneous determination by proton NMR of unsaturation and composition of acyl groups in vegetable oils. Eur J Lipid Sci Technol. 2003;105(11):688–96.CrossRefGoogle Scholar
  65. 65.
    Johnson L, Shoolery JN. Determination of unsaturation and average molecular weight of natural fats by nuclear magnetic resonance. Anal Chem. 1962;34(9):1136–9.CrossRefGoogle Scholar
  66. 66.
    Barison A, da Silva P, Werner C, Campos FR, Simonelli F, Lenz CA, Ferreira AG. A simple methodology for the determination of fatty acid composition in edible oils through 1H NMR spectroscopy. Magn Reson Chem. 2010;48(8):642–50.Google Scholar
  67. 67.
    Castejón D, Mateos-Aparicio I, Molero MD, Cambero MI, Herrera A. Evaluation and optimization of the analysis of fatty acid types in edible oils by 1H-NMR. Food Anal Methods. 2014;7(6):1285–97.CrossRefGoogle Scholar
  68. 68.
    Castejón D, Fricke P, Cambero MI, Herrera A. Automatic 1H-NMR screening of fatty acid composition in edible oils. Nutrients. 2016;8(2):93.CrossRefGoogle Scholar
  69. 69.
    Chira NA, Nicolescu A, Stan R, Rosca S. Fatty acid composition of vegetable oils determined from 13C-NMR spectra. Rev Chim. 2016;67(7):1257–63.Google Scholar
  70. 70.
    Merchak N, Silvestre V, Loquet D, Rizk T, Akoka S, Bejjani J. A strategy for simultaneous determination of fatty acid composition, fatty acid position, and position-specific isotope contents in triacylglycerol matrices by 13C-NMR. Anal Bioanal Chem. 2016;1–9.Google Scholar
  71. 71.
    Schievano E, Pasini G, Cozzi G, Mammi S. Identification of the production chain of Asiago d’Allevo cheese by nuclear magnetic resonance spectroscopy and principal component analysis. J Agric Food Chem. 2008;56(16):7208–14.CrossRefGoogle Scholar
  72. 72.
    Kirby CW, McCallum JL, Fofana B. A 1H NMR study of the fatty acid distribution in developing flax bolls before and after a cooking treatment. Can J Chem. 2011;89(9):1138–42.CrossRefGoogle Scholar
  73. 73.
    Stefanova R, Toshkov S, Vasilev NV, Vassilev NG, Marekov IN. Effect of gamma-ray irradiation on the fatty acid profile of irradiated beef meat. Food Chem. 2011;127(2):461–6.CrossRefGoogle Scholar
  74. 74.
    Siciliano C, Belsito E, De Marco R, Di Gioia ML, Leggio A, Liguori A. Quantitative determination of fatty acid chain composition in pork meat products by high resolution 1 H NMR spectroscopy. Food Chem. 2013;136(2):546–54.CrossRefGoogle Scholar
  75. 75.
    Prema D, Jensen J, Pilfold JL, Turner TD, Donkor KK, Cinel B, et al. Rapid determination of n-6 and n-3 fatty acid ratios in cereal grains and forages by 1 H NMR spectroscopy. Can J Plant Sci. 2016;96(5):730–3.CrossRefGoogle Scholar
  76. 76.
    Bratu A, Mihalache M, Hanganu A, Chira N, Todaşcă M, Roşca S. Quantitative determination of fatty acids from fish oils using GC-MS method and1H-NMR spectroscopy. UPB Sci Bull Ser B: Chem Mater Sci. 75(2):23–32.Google Scholar
  77. 77.
    Nestor G, Bankefors J, Schlechtriem C, Brännäs E, Pickova J, Sandström C. High-resolution 1H magic angle spinning NMR spectroscopy of intact Arctic char (Salvelinus alpinus) muscle. Quantitative analysis of n−3 fatty acids, EPA and DHA. J Agric Food Chem. 2010;58(20):10799–803.CrossRefGoogle Scholar
  78. 78.
    Bankefors J, Kaszowska M, Schlechtriem C, Pickova J, Brännäs E, Edebo L, et al. A comparison of the metabolic profile on intact tissue and extracts of muscle and liver of juvenile Atlantic salmon (Salmo salar L.)–Application to a short feeding study. Food Chem. 2011;129(4):1397–405.CrossRefGoogle Scholar
  79. 79.
    Gerdova A, Defernez M, Jakes W, Limer E, McCallum C, Nott K, et al. 60 MHz 1H NMR spectroscopy of triglyceride mixtures. In: Magnetic resonance in food science: defining food by magnetic resonance. Cambridge: Royal Socitey of Chemistry; 2015. p. 17–30.CrossRefGoogle Scholar
  80. 80.
    Parker T, Limer E, Watson A, Defernez M, Williamson D, Kemsley EK. 60MHz 1 H NMR spectroscopy for the analysis of edible oils. TrAC Trends Anal Chem. 2014;57:147–58.CrossRefGoogle Scholar
  81. 81.
    Hahn EL. Spin echoes. Phys Rev. 1950;80(4):580.CrossRefGoogle Scholar
  82. 82.
    Carr HY, Purcell EM. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev. 1954;94(3):630.CrossRefGoogle Scholar
  83. 83.
    Gao C, Xiong W, Zhang Y, Yuan W, Wu Q. Rapid quantitation of lipid in microalgae by time-domain nuclear magnetic resonance. J Microbiol Methods. 2008;75(3):437–40.CrossRefGoogle Scholar
  84. 84.
    Han Y, Wen Q, Chen Z, Li P. Review of methods used for microalgal lipid-content analysis. Energy Procedia. 2011;12:944–50.CrossRefGoogle Scholar
  85. 85.
    Hickey H, MacMillan B, Newling B, Ramesh M, Van Eijck P, Balcom B. Magnetic resonance relaxation measurements to determine oil and water content in fried foods. Food Res Int. 2006;39(5):612–8.CrossRefGoogle Scholar
  86. 86.
    Pereira FMV, Pflanzer SB, Gomig T, Gomes CL, de Felicio PE, Colnago LA. Fast determination of beef quality parameters with time-domain nuclear magnetic resonance spectroscopy and chemometrics. Talanta. 2013;108:88–91.CrossRefGoogle Scholar
  87. 87.
    Moreira LFPP, Ferrari AC, Moraes TB, Reis RA, Colnago LA, FMV P. Prediction of beef color using time-domain nuclear magnetic resonance (TD-NMR) relaxometry data and multivariate analyses. Magn Reson Chem. 2016;54:800–4.CrossRefGoogle Scholar
  88. 88.
    AOCS. Official method Ce 1b–89. Fatty acid composition by GLC, marine oils. AOCS: Champaign; 1998.Google Scholar
  89. 89.
    Chang A. Rapid determination of fat content in microbial fermentation by time domain NMR. PANIC conference, Houston; 2016.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.DSM Biotechnology CenterDelftNetherlands
  2. 2.DSM Nutritional ProductsColumbiaUSA

Personalised recommendations