Skip to main content

Reporter Genes for Magnetic Resonance

  • Reference work entry
  • First Online:
Modern Magnetic Resonance

Abstract

The ability to image gene expression in whole live animals promises fresh insights on the biological dynamics of development, disease, and experimental therapies. Established methods for optical or nuclear imaging have several advantages, but lack the high 3D spatial resolution necessary to identify complex internal tissue structure which is offered by MRI. This chapter will introduce the concept of gene reporters (genetically-encoded proteins that produce a signal), their potential applications, and the developments made in this field using Magnetic Resonance-based techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,200.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lyons SK, Patrick PS, Brindle KM. Imaging mouse cancer models in vivo using reporter transgenes. Cold Spring Harb Protoc. 2013;2013(8):685–99.

    Article  Google Scholar 

  2. Ahn BC, Parashurama N, Patel M, Ziv K, Bhaumik S, Yaghoubi SS, et al. Noninvasive reporter gene imaging of human Oct4 (pluripotency) dynamics during the differentiation of embryonic stem cells in living subjects. Mol Imaging Biol. 2014;16(6):865–76.

    Article  Google Scholar 

  3. Wen B, Burgman P, Zanzonico P, O'Donoghue J, Cai S, Finn R, et al. A preclinical model for noninvasive imaging of hypoxia-induced gene expression: comparison with an exogenous marker of tumor hypoxia. Eur J Nucl Med Mol Imaging. 2004;31(11):1530–8.

    Article  CAS  Google Scholar 

  4. Ma Y, Brewer JW, Diehl JA, Hendershot LM. Two distinct stress signaling pathways converge upon the CHOP promoter during the mammalian unfolded protein response. J Mol Biol. 2002;318(5):1351–65.

    Article  CAS  Google Scholar 

  5. Hill SJ, Baker JG, Rees S. Reporter-gene systems for the study of G-protein-coupled receptors. Curr Opin Pharmacol. 2001;1(5):526–32.

    Article  CAS  Google Scholar 

  6. Farrar CT, Buhrman JS, Liu G, Kleijn A, Lamfers ML, McMahon MT, et al. Establishing the lysine-rich protein CEST reporter gene as a CEST MR imaging detector for oncolytic virotherapy. Radiology. 2015;275(3):746–54.

    Article  Google Scholar 

  7. Uliczka F, Pisano F, Kochut A, Opitz W, Herbst K, Stolz T, et al. Monitoring of gene expression in bacteria during infections using an adaptable set of bioluminescent, fluorescent and colorigenic fusion vectors. PLoS One. 2011;6(6):e20425.

    Article  CAS  Google Scholar 

  8. Franke-Fayard B, Waters AP, Janse CJ. Real-time in vivo imaging of transgenic bioluminescent blood stages of rodent malaria parasites in mice. Nat Protoc. 2006;1(1):476–85.

    Article  CAS  Google Scholar 

  9. Sekar TV, Foygel K, Willmann JK, Paulmurugan R. Dual-therapeutic reporter genes fusion for enhanced cancer gene therapy and imaging. Gene Ther. 2013;20(5):529–37.

    Article  CAS  Google Scholar 

  10. Emami-Shahri N, Papa S. Dynamic imaging for CAR-T-cell therapy. Biochem Soc Trans. 2016;44(2):386–90.

    Article  CAS  Google Scholar 

  11. Tiscornia G, Singer O, Verma IM. Production and purification of lentiviral vectors. Nat Protoc. 2006;1(1):241–5.

    Article  CAS  Google Scholar 

  12. Bouard D, Alazard-Dany D, Cosset FL. Viral vectors: from virology to transgene expression. Br J Pharmacol. 2009;157(2):153–65.

    Article  CAS  Google Scholar 

  13. Raghavachari N, Fahl WE. Targeted gene delivery to skin cells in vivo: a comparative study of liposomes and polymers as delivery vehicles. J Pharm Sci. 2002;91(3):615–22.

    Article  CAS  Google Scholar 

  14. Bartelle BB, Szulc KU, Suero-Abreu GA, Rodriguez JJ, Turnbull DH. Divalent metal transporter, DMT1: a novel MRI reporter protein. Magn Reson Med. 2013;70(3):842–50.

    Article  CAS  Google Scholar 

  15. Jin S, Leach JC, Ye K. Nanoparticle-mediated gene delivery. Methods Mol Biol. 2009;544:547–57.

    Article  CAS  Google Scholar 

  16. Tay FC, Tan WK, Goh SL, Ramachandra CJ, Lau CH, Zhu H, et al. Targeted transgene insertion into the AAVS1 locus driven by baculoviral vector-mediated zinc finger nuclease expression in human-induced pluripotent stem cells. J Gene Med. 2013;15(10):384–95.

    Article  CAS  Google Scholar 

  17. Zhu H, Lau CH, Goh SL, Liang Q, Chen C, Du S, et al. Baculoviral transduction facilitates TALEN-mediated targeted transgene integration and Cre/LoxP cassette exchange in human-induced pluripotent stem cells. Nucleic Acids Res. 2013;41(19):e180.

    Article  CAS  Google Scholar 

  18. Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell. 2013;154(6):1370–9.

    Article  CAS  Google Scholar 

  19. Rajagopal N, Srinivasan S, Kooshesh K, Guo Y, Edwards MD, Banerjee B, et al. High-throughput mapping of regulatory DNA. Nat Biotechnol. 2016;34(2):167–74.

    Article  CAS  Google Scholar 

  20. Symmons O, Spitz F. From remote enhancers to gene regulation: charting the genome's regulatory landscapes. Philos Trans R Soc Lon B Biol Sci. 2013;368(1620):20120358.

    Article  CAS  Google Scholar 

  21. Wilkie GS, Dickson KS, Gray NK. Regulation of mRNA translation by 5'- and 3'-UTR-binding factors. Trends Biochem Sci. 2003;28(4):182–8.

    Article  CAS  Google Scholar 

  22. Tsien RY. The green fluorescent protein. Annu Rev Biochem. 1998;67:509–44.

    Article  CAS  Google Scholar 

  23. James ML, Gambhir SS. A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev. 2012;92(2):897–965.

    Article  CAS  Google Scholar 

  24. Koretsky AP, Brosnan MJ, Chen LH, Chen JD, Van Dyke T. NMR detection of creatine kinase expressed in liver of transgenic mice: determination of free ADP levels. Proc Natl Acad Sci USA. 1990;87(8):3112–6.

    Article  CAS  Google Scholar 

  25. Auricchio A, Zhou R, Wilson JM, Glickson JD. In vivo detection of gene expression in liver by 31P nuclear magnetic resonance spectroscopy employing creatine kinase as a marker gene. Proc Natl Acad Sci U S A. 2001;98(9):5205–10.

    Article  CAS  Google Scholar 

  26. Walter G, Barton ER, Sweeney HL. Noninvasive measurement of gene expression in skeletal muscle. Proc Natl Acad Sci USA. 2000;97(10):5151–5.

    Article  CAS  Google Scholar 

  27. Stegman LD, Rehemtulla A, Beattie B, Kievit E, Lawrence TS, Blasberg RG, et al. Noninvasive quantitation of cytosine deaminase transgene expression in human tumor xenografts with in vivo magnetic resonance spectroscopy. Proc Natl Acad Sci U S A. 1999;96(17):9821–6.

    Article  CAS  Google Scholar 

  28. Kodibagkar VD, Yu J, Liu L, Hetherington HP, Mason RP. Imaging beta-galactosidase activity using 19F chemical shift imaging of LacZ gene-reporter molecule 2-fluoro-4-nitrophenol-beta-D-galactopyranoside. Magn Reson Imaging. 2006;24(7):959–62.

    Article  CAS  Google Scholar 

  29. Ardenkjaer-Larsen JH, Fridlund B, Gram A, Hansson G, Hansson L, Lerche MH, et al. Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR. Proc Natl Acad Sci USA. 2003;100(18):10158–63.

    Article  CAS  Google Scholar 

  30. Jamin Y, Gabellieri C, Smyth L, Reynolds S, Robinson SP, Springer CJ, et al. Hyperpolarized (13)C magnetic resonance detection of carboxypeptidase G2 activity. Magn Reson Med. 2009;62(5):1300–4.

    Article  CAS  Google Scholar 

  31. Chen AP, Hurd RE, Gu YP, Wilson DM, Cunningham CH. (13)C MR reporter probe system using dynamic nuclear polarization. NMR Biomed. 2011;24(5):514–20.

    Article  CAS  Google Scholar 

  32. Nishihara T, Nonaka H, Naganuma T, Ichikawa K, Sando S. Mouse lactate dehydrogenase X: a promising magnetic resonance reporter protein using hyperpolarized pyruvic acid derivative Y. Chem Sci. 2012;3(3):800–6.

    Article  CAS  Google Scholar 

  33. Patrick PS, Kettunen MI, Tee SS, Rodrigues TB, Serrao E, Timm KN, et al. Detection of transgene expression using hyperpolarized C-13 urea and diffusion-weighted magnetic resonance spectroscopy. Magn Reson Med. 2015;73(4):1401–6.

    Article  CAS  Google Scholar 

  34. Dzien P, Tee SS, Kettunen MI, Lyons SK, Larkin TJ, Timm KN, et al. 13C magnetic resonance spectroscopy measurements with hyperpolarized [1- C] pyruvate can be used to detect the expression of transgenic pyruvate decarboxylase activity in vivo. Magn Reson Med 2016;76(2):391–401.

    Article  CAS  Google Scholar 

  35. Dzien P, Kettunen MI, Marco-Rius I, Serrao EM, Rodrigues TB, Larkin TJ, et al. (13) C magnetic resonance spectroscopic imaging of hyperpolarized [1-(13) C, U-(2) H5 ] ethanol oxidation can be used to assess aldehyde dehydrogenase activity in vivo. Magn Reson Med. 2015;73(5):1733–40.

    Article  CAS  Google Scholar 

  36. Iordanova B, Ahrens ET. In vivo magnetic resonance imaging of ferritin-based reporter visualizes native neuroblast migration. NeuroImage. 2012;59(2):1004–12.

    Article  CAS  Google Scholar 

  37. Cohen B, Dafni H, Meir G, Harmelin A, Neeman M. Ferritin as an endogenous MRI reporter for noninvasive imaging of gene expression in C6 glioma tumors. Neoplasia. 2005;7(2):109–17.

    Article  CAS  Google Scholar 

  38. Genove G, DeMarco U, Xu HY, Goins WF, Ahrens ET. A new transgene reporter for in vivo magnetic resonance imaging. Nat Med. 2005;11(4):450–4.

    Article  CAS  Google Scholar 

  39. Hill PJ, Stritzker J, Scadeng M, Geissinger U, Haddad D, Basse-Lusebrink TC, et al. Magnetic resonance imaging of tumors colonized with bacterial ferritin-expressing Escherichia coli. PLoS One. 2011;6(10):e25409.

    Article  CAS  Google Scholar 

  40. Vandsburger MH, Radoul M, Addadi Y, Mpofu S, Cohen B, Eilam R, et al. Ovarian carcinoma: quantitative biexponential MR imaging relaxometry reveals the dynamic recruitment of ferritin-expressing fibroblasts to the angiogenic rim of tumors. Radiology. 2013;268(3):790–801.

    Article  Google Scholar 

  41. Naumova AV, Reinecke H, Yarnykh V, Deem J, Yuan C, Murry CE. Ferritin overexpression for noninvasive magnetic resonance imaging-based tracking of stem cells transplanted into the heart. Mol Imaging. 2010;9(4):201–10.

    Article  CAS  Google Scholar 

  42. Campan M, Lionetti V, Aquaro GD, Forini F, Matteucci M, Vannucci L, et al. Ferritin as a reporter gene for in vivo tracking of stem cells by 1.5-T cardiac MRI in a rat model of myocardial infarction. Am J Physiol Heart Circ Physiol. 2011;300(6):H2238–50.

    Article  CAS  Google Scholar 

  43. Vande Velde G, Rangarajan JR, Toelen J, Dresselaers T, Ibrahimi A, Krylychkina O, et al. Evaluation of the specificity and sensitivity of ferritin as an MRI reporter gene in the mouse brain using lentiviral and adeno-associated viral vectors. Gene Ther. 2011;18(6):594–605.

    Article  CAS  Google Scholar 

  44. Iordanova B, Hitchens TK, Robison CS, Ahrens ET. Engineered mitochondrial ferritin as a magnetic resonance imaging reporter in mouse olfactory epithelium. PLoS One. 2013;8(8):e72720.

    Article  CAS  Google Scholar 

  45. Deans AE, Wadghiri YZ, Bernas LM, Yu X, Rutt BK, Turnbull DH. Cellular MRI contrast via coexpression of transferrin receptor and ferritin. Magn Reson Med. 2006;56(1):51–9.

    Article  CAS  Google Scholar 

  46. Patrick PS, Rodrigues TB, Kettunen MI, Lyons SK, Neves AA, Brindle KM. Development of Timd2 as a reporter gene for MRI. Magn Reson Med. 2016;75(4):1697–707.

    Article  CAS  Google Scholar 

  47. Moore A, Josephson L, Bhorade RM, Basilion JP, Weissleder R. Human transferrin receptor gene as a marker gene for MR imaging. Radiology. 2001;221(1):244–50.

    Article  CAS  Google Scholar 

  48. Pereira SM, Herrmann A, Moss D, Poptani H, Williams SR, Murray P, et al. Evaluating the effectiveness of transferrin receptor-1 (TfR1) as a magnetic resonance reporter gene. Contrast Media Mol Imaging. 2016;11(3):236–44.

    Article  CAS  Google Scholar 

  49. Pereira SM, Moss D, Williams SR, Murray P, Taylor A. Overexpression of the MRI reporter genes ferritin and transferrin receptor affect iron homeostasis and produce limited contrast in mesenchymal stem cells. Int J Mol Sci. 2015;16(7):15481–96.

    Article  CAS  Google Scholar 

  50. Zurkiya O, Chan AW, Hu X. MagA is sufficient for producing magnetic nanoparticles in mammalian cells, making it an MRI reporter. Magn Reson Med. 2008;59(6):1225–31.

    Article  CAS  Google Scholar 

  51. Rohani R, Figueredo R, Bureau Y, Koropatnick J, Foster P, Thompson RT, et al. Imaging tumor growth non-invasively using expression of MagA or modified ferritin subunits to augment intracellular contrast for repetitive MRI. Mol Imaging Biol. 2014;16(1):63–73.

    Article  Google Scholar 

  52. Cho IK, Moran SP, Paudyal R, Piotrowska-Nitsche K, Cheng PH, Zhang X, et al. Longitudinal monitoring of stem cell grafts in vivo using magnetic resonance imaging with inducible maga as a genetic reporter. Theranostics. 2014;4(10):972–89.

    Article  CAS  Google Scholar 

  53. Pereira SM, Williams SR, Murray P, Taylor A. MS-1 magA: revisiting its efficacy as a reporter gene for MRI. Mol Imaging. 2016;15.

    Article  CAS  Google Scholar 

  54. Cui W, Liu L, Kodibagkar VD, Mason RP. S-Gal, a novel 1H MRI reporter for beta-galactosidase. Magn Reson Med. 2010;64(1):65–71.

    Article  CAS  Google Scholar 

  55. Weissleder R, Simonova M, Bogdanova A, Bredow S, Enochs WS, Bogdanov Jr A. MR imaging and scintigraphy of gene expression through melanin induction. Radiology. 1997;204(2):425–9.

    Article  CAS  Google Scholar 

  56. Paproski RJ, Forbrich AE, Wachowicz K, Hitt MM, Zemp RJ. Tyrosinase as a dual reporter gene for both photoacoustic and magnetic resonance imaging. Biomed Opt Express. 2011;2(4):771–80.

    Article  CAS  Google Scholar 

  57. Jathoul AP, Laufer J, Ogunlade O, Treeby B, Cox B, Zhang E, et al. Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter. Nat Photonics. 2015;9(4):239–46.

    Article  CAS  Google Scholar 

  58. Qin C, Cheng K, Chen K, Hu X, Liu Y, Lan X, et al. Tyrosinase as a multifunctional reporter gene for photoacoustic/MRI/PET triple modality molecular imaging. Sci Rep. 2013;3:1490.

    Article  CAS  Google Scholar 

  59. Gilad AA, Winnard Jr PT, van Zijl PC, Bulte JW. Developing MR reporter genes: promises and pitfalls. NMR Biomed. 2007;20(3):275–90.

    Article  CAS  Google Scholar 

  60. Urabe K, Aroca P, Tsukamoto K, Mascagna D, Palumbo A, Prota G, et al. The inherent cytotoxicity of melanin precursors: a revision. Biochim Biophys Acta. 1994;1221(3):272–8.

    Article  CAS  Google Scholar 

  61. Alfke H, Stoppler H, Nocken F, Heverhagen JT, Kleb B, Czubayko F, et al. In vitro MR imaging of regulated gene expression. Radiology. 2003;228(2):488–92.

    Article  Google Scholar 

  62. Stritzker J, Kirscher L, Scadeng M, Deliolanis NC, Morscher S, Symvoulidis P, et al. Vaccinia virus-mediated melanin production allows MR and optoacoustic deep tissue imaging and laser-induced thermotherapy of cancer. Proc Natl Acad Sci U S A. 2013;110(9):3316–20.

    Article  Google Scholar 

  63. Louie AY, Huber MM, Ahrens ET, Rothbacher U, Moats R, Jacobs RE, et al. In vivo visualization of gene expression using magnetic resonance imaging. Nat Biotechnol. 2000;18(3):321–5.

    Article  CAS  Google Scholar 

  64. Major JL, Meade TJ. Bioresponsive, cell-penetrating, and multimeric MR contrast agents. Acc Chem Res. 2009;42(7):893–903.

    Article  CAS  Google Scholar 

  65. Bartelle BB, Mana MD, Suero-Abreu GA, Rodriguez JJ, Turnbull DH. Engineering an effective Mn-binding MRI reporter protein by subcellular targeting. Magn Reson Med. 2015;74(6):1750–7.

    Article  CAS  Google Scholar 

  66. Lewis CM, Graves SA, Hernandez R, Valdovinos HF, Barnhart TE, Cai W, et al. (5)(2)Mn production for PET/MRI tracking of human stem cells expressing divalent metal transporter 1 (DMT1). Theranostics. 2015;5(3):227–39.

    Article  CAS  Google Scholar 

  67. Settivari R, LeVora J, Nass R. The divalent metal transporter homologues SMF-1/2 mediate dopamine neuron sensitivity in Caenorhabditis elegans models of manganism and parkinson disease. J Biol Chem. 2009;284(51):35758–68.

    Article  CAS  Google Scholar 

  68. Patrick PS, Hammersley J, Loizou L, Kettunen MI, Rodrigues TB, Hu DE, et al. Dual-modality gene reporter for in vivo imaging. Proc Natl Acad Sci U S A. 2014;111:415–20.

    Article  CAS  Google Scholar 

  69. Pan D, Caruthers SD, Senpan A, Schmieder AH, Wickline SA, Lanza GM. Revisiting an old friend: manganese-based MRI contrast agents. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2011;3(2):162–73.

    Article  CAS  Google Scholar 

  70. Patrick PS, Lyons SK, Rodrigues TB, Brindle KM. Oatp1 enhances bioluminescence by acting as a plasma membrane transporter for D-luciferin. Mol Imaging Biol. 2014;16(5):626–34.

    Article  Google Scholar 

  71. Westmeyer GG, Emer Y, Lintelmann J, Jasanoff A. MRI-based detection of alkaline phosphatase gene reporter activity using a porphyrin solubility switch. Chem Biol. 2014;21(3):422–9.

    Article  CAS  Google Scholar 

  72. Liu GS, Song XL, Chan KWY, McMahon MT. Nuts and bolts of chemical exchange saturation transfer MRI. NMR Biomed. 2013;26(7):810–28.

    Article  CAS  Google Scholar 

  73. Gilad AA, McMahon MT, Walczak P, Winnard Jr PT, Raman V, van Laarhoven HW, et al. Artificial reporter gene providing MRI contrast based on proton exchange. Nat Biotechnol. 2007;25(2):217–9.

    Article  CAS  Google Scholar 

  74. Bar-Shir A, Liang YJ, Chan KWY, Gilad AA, Bulte JWM. Supercharged green fluorescent proteins as bimodal reporter genes for CEST MRI and optical imaging. Chem Commun. 2015;51(23):4869–71.

    Article  CAS  Google Scholar 

  75. Bar-Shir A, Liu GS, Chan KWY, Oskolkov N, Song XL, Yadav NN, et al. Human protamine-1 as an MRI reporter gene based on chemical exchange. ACS Chem Biol. 2014;9(1):134–8.

    Article  CAS  Google Scholar 

  76. Airan RD, Bar-Shir A, Liu GS, Pelled G, McMahon MT, van Zijl PCM, et al. MRI biosensor for protein kinase A encoded by a single synthetic gene. Magn Reson Med. 2012;68(6):1919–23.

    Article  CAS  Google Scholar 

  77. Shapiro MG, Ramirez RM, Sperling LJ, Sun G, Sun J, Pines A, et al. Genetically encoded reporters for hyperpolarized xenon magnetic resonance imaging. Nat Chem. 2014;6(7):629–34.

    Article  CAS  Google Scholar 

  78. Mukherjee A, Wu D, Davis HC, Shapiro MG. Non-invasive imaging using reporter genes altering cellular water permeability. Nat Commun. 2016;7:13891.

    Article  CAS  Google Scholar 

  79. Tannous BA, Grimm J, Perry KF, Chen JW, Weissleder R, Breakefield XO. Metabolic biotinylation of cell surface receptors for in vivo imaging. Nat Methods. 2006;3(5):391–6.

    Article  CAS  Google Scholar 

  80. Niers JM, Chen JW, Lewandrowski G, Kerami M, Garanger E, Wojtkiewicz G, et al. Single reporter for targeted multimodal in vivo imaging. J Am Chem Soc. 2012;134(11):5149–56.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

PS Patrick is funded by the UK Regenerative Medicine Platform (MRC: MR/K026739/1). TL Kalber is funded by an EPSRC Early Career Fellowship (EP/L006472/1)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Stephen Patrick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Patrick, P.S., Kalber, T.L. (2018). Reporter Genes for Magnetic Resonance. In: Webb, G. (eds) Modern Magnetic Resonance. Springer, Cham. https://doi.org/10.1007/978-3-319-28388-3_102

Download citation

Publish with us

Policies and ethics