Advertisement

Experimental Cardiovascular MR in Small Animals

CMR in Rodents
Reference work entry

Abstract

Mice and rats are the most prominent animals used in basic cardiovascular research due to their genetic, physiological, and anatomical similarity with humans, combined with short reproduction cycles and low holding costs. Genetic modifications in rodents create transgenic models with cardiac phenotypes ranging from no overt abnormalities to severe anatomical, functional, and/or metabolic derangements. In addition, surgical techniques are utilized to generate conditions found in patients with heart disease. This large variety of rodent models require a comprehensive characterization from a molecular and cellular level up to the whole heart. Magnetic resonance imaging (MRI) and spectroscopy (MRS) are arguably the most sophisticated phenotyping techniques capable of covering this wide range. This chapter describes technical requirements underlying the successful application of this versatile and noninvasive tool and gives both routine and cutting-edge examples for cardiovascular MR-phenotyping in small animal models.

Keywords

Magnetic resonance imaging Magnetic resonance spectroscopy Mouse Rat Animal models of cardiovascular disease Cardiac function Heart failure Atherosclerosis 

Notes

Acknowledgments

Our work was funded by Project/Programme Grants and Fellowships from the British Heart Foundation (BHF). We would like to acknowledge the important contributions from our colleagues and collaborators Profs. Kieran Clarke, Robin Choudhury, Craig Lygate, Matthew Robson, Damian Tyler, Drs Paul Cassidy, Dana Dawson, Martina McAteer, and Ms. Karen Hulbert.

References

  1. 1.
    Franz WM, Mueller OJ, Hartong R, Frey N, Katus HA. Transgenic animal models: new avenues in cardiovascular physiology. J Mol Med. 1997;75(2):115–29.CrossRefGoogle Scholar
  2. 2.
    Schmidt A, Marescau B, Boehm EA, Renema WK, Peco R, Das A, Steinfeld R, Chan S, Wallis J, Davidoff M, Ullrich K, Waldschutz R, Heerschap A, De Deyn PP, Neubauer S, Isbrandt D. Severely altered guanidino compound levels, disturbed body weight homeostasis, and impaired fertility in a mouse model of guanidinoacetate N-methyltransferase (GAMT) deficiency. Hum Mol Genet. 2004;13(9):905–21.CrossRefGoogle Scholar
  3. 3.
    Maddatu TP, Garvey SM, Shroeder DG, Hampton TG, Cox GA. Transgenic rescue of neurogenic atrophy in the nmd mouse reveals a role for Ighmbp2 in dilated cardiomyopathy. Hum Mol Genet. 2004;13(11):1105–15.CrossRefGoogle Scholar
  4. 4.
    Christoffels VM, Hoogaars WM, Tessari A, Clout DE, Moorman AF, Campione M. T-box transcription factor Tbx2 represses differentiation and formation of the cardiac chambers. Dev Dyn. 2004;229(4):763–70.CrossRefGoogle Scholar
  5. 5.
    Chien KR. Genes and physiology: molecular physiology in genetically engineered animals. J Clin Invest. 1996;97(4):901–9.CrossRefGoogle Scholar
  6. 6.
    Rockman HA, Ross RS, Harris AN, Knowlton KU, Steinhelper ME, Field LJ, Ross Jr J, Chien KR. Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy. Proc Natl Acad Sci USA. 1991;88(18):8277–81.CrossRefGoogle Scholar
  7. 7.
    Liao Y, Ishikura F, Beppu S, Asakura M, Takashima S, Asanuma H, Sanada S, Kim J, Ogita H, Kuzuya T, Node K, Kitakaze M, Hori M. Echocardiographic assessment of LV hypertrophy and function in aortic-banded mice: necropsy validation. Am J Physiol Heart Circ Physiol. 2002;282(5):H1703–8.CrossRefGoogle Scholar
  8. 8.
    Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation. 1990;81(4):1161–72.CrossRefGoogle Scholar
  9. 9.
    Lygate CA, Neubauer S. Surgically induced chronic heart failure. In: Xu Q, editor. A handbook of mouse models of cardiovascular disease. Chichester, West Sussex: Wiley; 2006. p. 333–248.Google Scholar
  10. 10.
    van den Bos EJ, Mees BM, de Waard MC, de Crom R, Duncker DJ. A novel model of cryoinjury-induced myocardial infarction in the mouse: a comparison with coronary artery ligation. Am J Physiol Heart Circ Physiol. 2005;289(3):H1291–300.CrossRefGoogle Scholar
  11. 11.
    Hayes CE, Edelstein WA, Schenck JF, Mueller OM, Eash M. An efficient, highly homogeneous radio-frequency coil for whole-body NMR imaging at 1.5 T. J Magn Reson. 1985;63:622–8.Google Scholar
  12. 12.
    Chen CN, Hoult DI, Sank VJ. Quadrature detection coils – A further 2 improvement in sensitivity. J Magn Reson. 1983;54:324–7.Google Scholar
  13. 13.
    Lanz T, Muller M, Barnes H, Neubauer S, Schneider JE. A high-throughput eight-channel probe head for murine MRI at 9.4 T. Magn Reson Med. 2010;64(1):80–7.CrossRefGoogle Scholar
  14. 14.
    Schmitt M, Potthast A, Sosnovik DE, Polimeni JR, Wiggins GC, Triantafyllou C, Wald LL. A 128-channel receive-only cardiac coil for highly accelerated cardiac MRI at 3 Tesla. Magn Reson Med. 2008;59(6):1431–9.CrossRefGoogle Scholar
  15. 15.
    Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med. 1999;42(5):952–62.CrossRefGoogle Scholar
  16. 16.
    Pruessmann KP, Weiger M, Boesiger P. Sensitivity encoded cardiac MRI. J Cardiovasc Magn Reson. 2001;3(1):1–9.CrossRefGoogle Scholar
  17. 17.
    Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med. 2002;47(6):1202–10.CrossRefGoogle Scholar
  18. 18.
    Schneider JE, Lanz T, Barnes H, Stork LA, Bohl S, Lygate CA, Ordidge RJ, Neubauer S. Accelerated cardiac magnetic resonance imaging in the mouse using an eight-channel array at 9.4 Tesla. Magn Reson Med. 2011;65(1):60–70.CrossRefGoogle Scholar
  19. 19.
    Rusy BF, Komai H. Anesthetic depression of myocardial contractility: a review of possible mechanisms. Anesthesiology. 1987;67(5):745–66.CrossRefGoogle Scholar
  20. 20.
    Roth DM, Swaney JS, Dalton ND, Gilpin EA, Ross Jr J. Impact of anesthesia on cardiac function during echocardiography in mice. Am J Physiol Heart Circ Physiol. 2002;282(6):H2134–40.CrossRefGoogle Scholar
  21. 21.
    Kober F, Iltis I, Cozzone PJ, Bernard M. Myocardial blood flow mapping in mice using high-resolution spin labeling magnetic resonance imaging: influence of ketamine/xylazine and isoflurane anesthesia. Magn Reson Med. 2005;53(3):601–6.CrossRefGoogle Scholar
  22. 22.
    Wood ML, Henkelman RM. The magnetic field dependence of the breathing artifact. Magn Reson Imaging. 1986;4(5):387–92.CrossRefGoogle Scholar
  23. 23.
    Cassidy PJ, Schneider JE, Grieve SM, Lygate C, Neubauer S, Clarke K. Assessment of motion gating strategies for mouse magnetic resonance at high magnetic fields. J Magn Reson Imaging. 2004;19(2):229–37.CrossRefGoogle Scholar
  24. 24.
    de Kerviler E, Leroy-Willig A, Clement O, Frija J. Fat suppression techniques in MRI: an update. Biomed Pharmacother. 1998;52:69–75.CrossRefGoogle Scholar
  25. 25.
    Schneider JE, Cassidy PJ, Lygate C, Tyler DJ, Wiesmann F, Grieve SM, Hulbert K, Clarke K, Neubauer S. Fast, high-resolution in vivo cine magnetic resonance imaging in normal and failing mouse hearts on a vertical 11.7 T system. J Magn Reson Imaging. 2003;18(6):691–701.CrossRefGoogle Scholar
  26. 26.
    Heijman E, de Graaf W, Niessen P, Nauerth A, van Eys G, de Graaf L, Nicolay K, Strijkers GJ. Comparison between prospective and retrospective triggering for mouse cardiac MRI. NMR Biomed. 2007;20(4):439–47.CrossRefGoogle Scholar
  27. 27.
    Hiba B, Richard N, Janier M, Croisille P. Cardiac and respiratory double self-gated cine MRI in the mouse at 7 T. Magn Reson Med. 2006;55(3):506–13.CrossRefGoogle Scholar
  28. 28.
    Coolen BF, Abdurrachim D, Motaal AG, Nicolay K, Prompers JJ, Strijkers GJ. High frame rate retrospectively triggered Cine MRI for assessment of murine diastolic function. Magn Reson Med. 2013;69(3):648–56.CrossRefGoogle Scholar
  29. 29.
    Finn JP, Edelman RR. Black-blood and segmented k-space magnetic resonance angiography. Magn Reson Imaging Clin N Am. 1993;1(2):349–57.Google Scholar
  30. 30.
    Song HK, Wright AC, Wolf RL, Wehrli FW. Multislice double inversion pulse sequence for efficient black-blood MRI. Magn Reson Med. 2002;47(3):616–20.CrossRefGoogle Scholar
  31. 31.
    Manning WJ, Wei JY, Katz SE, Litwin SE, Douglas PS. In vivo assessment of LV mass in mice using high-frequency cardiac ultrasound: necropsy validation. Am J Physiol. 1994;266:H1672–5.Google Scholar
  32. 32.
    Ruff J, Wiesmann F, Hiller KH, Voll S, von Kienlin M, Bauer WR, Rommel E, Neubauer S, Haase A. Magnetic resonance microimaging for noninvasive quantification of myocardial function and mass in the mouse. Magn Reson Med. 1998;40:43–8.CrossRefGoogle Scholar
  33. 33.
    Wiesmann F, Ruff J, Haase A. High-resolution MR imaging in mice. MAGMA. 1998;6:186–8.CrossRefGoogle Scholar
  34. 34.
    Zhou R, Pickup S, Glickson JD, Scott CH, Ferrari VA. Assessment of global and regional myocardial function in the mouse using cine and tagged MRI. Magn Reson Med. 2003;49(4):760–4.CrossRefGoogle Scholar
  35. 35.
    Wiesmann F, Frydrychowicz A, Rautenberg J, Illinger R, Rommel E, Haase A, Neubauer S. Analysis of right ventricular function in healthy mice and a murine model of heart failure by in vivo MRI. Am J Physiol Heart Circ Physiol. 2002;283(3):H1065–71.CrossRefGoogle Scholar
  36. 36.
    Nahrendorf M, Wiesmann F, Hiller KH, Hu K, Waller C, Ruff J, Lanz TE, Neubauer S, Haase A, Ertl G, Bauer WR. Serial cine-magnetic resonance imaging of left ventricular remodeling after myocardial infarction in rats. J Magn Reson Imaging. 2001;14(5):547–55.CrossRefGoogle Scholar
  37. 37.
    Tyler DJ, Cassidy P, Lygate C, Schneider J, Neubauer S, Clarke K. Assessment of cardiac function in the rat using an 11.75 T system with a vertical bore. Proc. ISMRM: Kyoto; 2004. p 1801.Google Scholar
  38. 38.
    Wiesmann F, Ruff J, Hiller K-H, Rommel E, Haase A, Neubauer S. Developmental changes of cardiac function and mass assessed with MRI in neonatal, juvenile, and adult mice. Am J Physiol Heart Circ Physiol. 2000;278:H652–7.CrossRefGoogle Scholar
  39. 39.
    Franco F, Dubois SK, Peshock RM, Shohet RV. Magnetic resonance imaging accurately estimates LV mass in a transgenic mouse model of cardiac hypertrophy. Am J Physiol. 1998;274(2 Pt 2):H679–83.Google Scholar
  40. 40.
    Franco F, Thomas GD, Giroir B, Bryant D, Bullock MC, Chwialkowski MC, Victor RG, Peshock RM. Magnetic resonance imaging and invasive evaluation of development of heart failure in transgenic mice with myocardial expression of tumor necrosis factor-alpha. Circulation. 1999;99(3):448–54.CrossRefGoogle Scholar
  41. 41.
    Kubota T, McTiernan CF, Frye CS, Slawson SE, Lemster BH, Koretsky AP, Demetris AJ, Feldman AM. Dilated cardiomyopathy in transgenic mice with cardiac-specific overexpression of tumor necrosis factor-alpha. Circ Res. 1997;81(4):627–35.CrossRefGoogle Scholar
  42. 42.
    Wallis J, Lygate CA, Fischer A, ten Hove M, Schneider JE, Sebag-Montefiore L, Dawson D, Hulbert K, Zhang W, Zhang MH, Watkins H, Clarke K, Neubauer S. Supranormal myocardial creatine and phosphocreatine concentrations lead to cardiac hypertrophy and heart failure: insights from creatine transporter-overexpressing transgenic mice. Circulation. 2005;112(20):3131–9.CrossRefGoogle Scholar
  43. 43.
    Phillips D, Ten Hove M, Schneider JE, Wu CO, Sebag-Montefiore L, Aponte AM, Lygate CA, Wallis J, Clarke K, Watkins H, Balaban RS, Neubauer S. Mice over-expressing the myocardial creatine transporter develop progressive heart failure and show decreased glycolytic capacity. J Mol Cell Cardiol. 2010;48(4):582–90.CrossRefGoogle Scholar
  44. 44.
    Williams SP, Gerber HP, Giordano FJ, Peale Jr FV, Bernstein LJ, Bunting S, Chien KR, Ferrara N, van Bruggen N. Dobutamine stress cine-MRI of cardiac function in the hearts of adult cardiomyocyte-specific VEGF knockout mice. J Magn Reson Imaging. 2001;14:374–82.CrossRefGoogle Scholar
  45. 45.
    Schneider JE, Stork LA, Bell JT, Hove MT, Isbrandt D, Clarke K, Watkins H, Lygate CA, Neubauer S. Cardiac structure and function during ageing in energetically compromised Guanidinoacetate N-methyltransferase (GAMT)-knockout mice – a one year longitudinal MRI study. J Cardiovasc Magn Reson. 2008;10(1):9.CrossRefGoogle Scholar
  46. 46.
    Loeppky JA. Cardiorespiratory responses to orthostasis and the effects of propranolol. Aviat Space Environ Med. 1975;46(9):1164–9.Google Scholar
  47. 47.
    Schneider JE, Hulbert K, Lygate CA, Ten Hove M, Cassidy PJ, Clarke K, Neubauer S. Long-term stability of cardiac function in normal and chronically failing mouse hearts in a vertical-bore MR-system. MAGMA. 2004;17:162–9.CrossRefGoogle Scholar
  48. 48.
    Wiesmann F, Ruff J, Engelhardt S, Hein L, Dienesch C, Leupold A, Illinger R, Frydrychowicz A, Hiller KH, Rommel E, Haase A, Lohse MJ, Neubauer S. Dobutamine-stress magnetic resonance microimaging in mice: acute changes of cardiac geometry and function in normal and failing murine hearts. Circ Res. 2001;88:563–59.CrossRefGoogle Scholar
  49. 49.
    Ross AJ, Yang Z, Berr SS, Gilson WD, Petersen WC, Oshinski JN, French BA. Serial MRI evaluation of cardiac structure and function in mice after reperfused myocardial infarction. Magn Reson Med. 2002;47(6):1158–68.CrossRefGoogle Scholar
  50. 50.
    Yang Z, Bove CM, French BA, Epstein FH, Berr SS, DiMaria JM, Gibson JJ, Carey RM, Kramer CM. Angiotensin II type 2 receptor overexpression preserves left ventricular function after myocardial infarction. Circulation. 2002;106(1):106–11.CrossRefGoogle Scholar
  51. 51.
    Yang Z, French BA, Gilson WD, Ross AJ, Oshinski JN, Berr SS. Cine magnetic resonance imaging of myocardial ischemia and reperfusion in mice. Circulation. 2001;103(15):E84.CrossRefGoogle Scholar
  52. 52.
    Schneider JE, Lygate CA, Hulbert K, Cassidy PJ, Clarke K, Neubauer S. Quantitative in vivo characterization of aortic banding in the mouse using high-resolution MRI. Proc. ISMRM: Kyoto; 2004. p 1850.Google Scholar
  53. 53.
    Schneider JE, Lanz T, Barnes H, Medway D, Stork LA, Lygate CA, Smart S, Griswold MA, Neubauer S. Ultra-fast and accurate assessment of cardiac function in rats using accelerated MRI at 9.4 Tesla. Magn Reson Med. 2008;59(3):636–41.CrossRefGoogle Scholar
  54. 54.
    Zerhouni EA, Parish DM, Rogers WJ, Yang A, Shapiro EP. Human heart: tagging with MR imaging-a method for noninvasive assessment of myocardial motion. Radiology. 1988;169(1):59–63.CrossRefGoogle Scholar
  55. 55.
    Axel L, Dougherty L. MR imaging of motion with spatial modulation of magnetization. Radiology. 1989;171(3):841–5.CrossRefGoogle Scholar
  56. 56.
    Axel L, Goncalves RC, Bloomgarden D. Regional heart wall motion: two-dimensional analysis and functional imaging with MR imaging. Radiology. 1992;183(3):745–50.CrossRefGoogle Scholar
  57. 57.
    Young AA, Imai H, Chang CN, Axel L. Two-dimensional left ventricular deformation during systole using magnetic resonance imaging with spatial modulation of magnetization. Circulation. 1994;89(2):740–52.CrossRefGoogle Scholar
  58. 58.
    Henson RE, Song SK, Pastorek JS, Ackerman JJ, Lorenz CH. Left ventricular torsion is equal in mice and humans. Am J Physiol Heart Circ Physiol. 2000;278(4):H1117–23.CrossRefGoogle Scholar
  59. 59.
    Epstein FH, Yang Z, Gilson WD, Berr SS, Kramer CM, French BA. MR tagging early after myocardial infarction in mice demonstrates contractile dysfunction in adjacent and remote regions. Magn Reson Med. 2002;48(2):399–403.CrossRefGoogle Scholar
  60. 60.
    van Dijk P. Direct cardiac NMR imaging of heart wall and blood flow velocity. J Comput Assist Tomogr. 1984;8(3):429–36.CrossRefGoogle Scholar
  61. 61.
    Bryant DJ, Payne JA, Firmin DN, Longmore DB. Measurement of flow with NMR imaging using a gradient pulse and phase difference technique. J Comput Assist Tomogr. 1984;8(4):588–93.CrossRefGoogle Scholar
  62. 62.
    Firmin DN, Nayler GL, Klipstein RH, Underwood SR, Rees RS, Longmore DB. In vivo validation of MR velocity imaging. J Comput Assist Tomogr. 1987;11(5):751–6.CrossRefGoogle Scholar
  63. 63.
    Pelc LR, Pelc NJ, Rayhill SC, Castro LJ, Glover GH, Herfkens RJ, Miller DC, Jeffrey RB. Arterial and venous blood flow: noninvasive quantitation with MR imaging. Radiology. 1992;185(3):809–12.CrossRefGoogle Scholar
  64. 64.
    Wedding KL, Draney MT, Herfkens RJ, Zarins CK, Taylor CA, Pelc NJ. Measurement of vessel wall strain using cine phase contrast MRI. J Magn Reson Imaging. 2002;15(4):418–28.CrossRefGoogle Scholar
  65. 65.
    Axel L, Morton D. MR flow imaging by velocity-compensated/uncompensated difference images. J Comput Assist Tomogr. 1987;11(1):31–4.CrossRefGoogle Scholar
  66. 66.
    Markl M, Schneider B, Hennig J, Peschl S, Winterer J, Krause T, Laubenberger J. Cardiac phase contrast gradient echo MRI: measurement of myocardial wall motion in healthy volunteers and patients. Int J Card Imaging. 1999;15:441–52.CrossRefGoogle Scholar
  67. 67.
    Streif JU, Herold V, Szimtenings M, Lanz TE, Nahrendorf M, Wiesmann F, Rommel E, Haase A. In vivo time-resolved quantitative motion mapping of the murine myocardium with phase contrast MRI. Magn Reson Med. 2003;49(2):315–21.CrossRefGoogle Scholar
  68. 68.
    Jung B, Odening KE, Dall'Armellina E, Foll D, Menza M, Markl M, Schneider JE. A quantitative comparison of regional myocardial motion in mice, rabbits and humans using in-vivo phase contrast CMR. J Cardiovasc Magn Reson. 2012;14:87.CrossRefGoogle Scholar
  69. 69.
    Aletras AH, Balaban RS, Wen H. High-resolution strain analysis of the human heart with fast-DENSE. J Magn Reson. 1999;140(1):41–57.CrossRefGoogle Scholar
  70. 70.
    Aletras AH, Ding S, Balaban RS, Wen H. DENSE: displacement encoding with stimulated echoes in cardiac functional MRI. J Magn Reson. 1999;137(1):247–52.CrossRefGoogle Scholar
  71. 71.
    Aletras AH, Wen H. Mixed echo train acquisition displacement encoding with stimulated echoes: an optimized DENSE method for in vivo functional imaging of the human heart. Magn Reson Med. 2001;46(3):523–34.CrossRefGoogle Scholar
  72. 72.
    Sureau FC, Gilson WD, Yang Z, French BA, Epstein FH. Comprehensive assessment of systolic function in the mouse heart using volumetric DENSE MRI. Proc. ISMRM: Kyoto; 2004. p 1786.Google Scholar
  73. 73.
    Gilson WD, Yang Z, French BA, Epstein FH. Complementary displacement-encoded MRI for contrast-enhanced infarct detection and quantification of myocardial function in mice. Magn Reson Med. 2004;51(4):744–52.CrossRefGoogle Scholar
  74. 74.
    Gilson WD, Yang Z, Sureau FC, French BA, Epstein FH. Multi-slice DENSE with three dimensional displacement encoding: Development and application in a mouse model of myocardial infarction. Proc. ISMRM: Kyoto; 2004. p 1789.Google Scholar
  75. 75.
    Zhu Y, Drangova M, Pelc NJ. Estimation of deformation gradient and strain from cine-PC velocity data. IEEE Trans Med Imaging. 1997;16(6):840–51.CrossRefGoogle Scholar
  76. 76.
    Kim D, Gilson WD, Kramer CM, Epstein FH. Myocardial tissue tracking with two-dimensional cine displacement-encoded MR imaging: development and initial evaluation. Radiology. 2004;230(3):862–71.CrossRefGoogle Scholar
  77. 77.
    Zhong X, Gibberman LB, Spottiswoode BS, Gilliam AD, Meyer CH, French BA, Epstein FH. Comprehensive cardiovascular magnetic resonance of myocardial mechanics in mice using three-dimensional cine DENSE. J Cardiovasc Magn Reson. 2011;13:83.CrossRefGoogle Scholar
  78. 78.
    Ugurbil K, Petein M, Maidan R, Michursky S, Cohn JN, From AH. High resolution proton NMR studies of perfused rat hearts. FEBS Lett. 1984;167(1):73–8.CrossRefGoogle Scholar
  79. 79.
    Unitt JF, Schrader J, Brunotte F, Radda GK, Seymour AM. Determination of free creatine and phosphocreatine concentrations in the isolated perfused rat heart by 1H- and 31P-NMR. Biochim Biophys Acta. 1992;1133:115–20.CrossRefGoogle Scholar
  80. 80.
    Wolfe CL, Gilbert HF, Brindle KM, Radda GK. Determination of buffering capacity of rat myocardium during ischemia. Biochim Biophys Acta. 1988;971:9–20.Google Scholar
  81. 81.
    Ingwall JS, Bittl JA. Regulation of heart creatine kinase. Basic Res Cardiol. 1987;82(Suppl 2):93–101.Google Scholar
  82. 82.
    Bottomley PA, Weiss RG. Noninvasive localized MR quantification of creatine kinase metabolites in normal and infarcted canine myocardium. Radiology. 2001;219(2):411–8.CrossRefGoogle Scholar
  83. 83.
    Loffler R, Sauter R, Kolem H, Haase A, von Kienlin M. Localized spectroscopy from anatomically matched compartments: improved sensitivity and localization for cardiac 31P MRS in humans. J Magn Reson. 1998;134(2):287–99.CrossRefGoogle Scholar
  84. 84.
    Meininger M, Landschutz W, Beer M, Seyfarth T, Horn M, Pabst T, Haase A, Hahn D, Neubauer S, von Kienlin M. Concentrations of human cardiac phosphorus metabolites determined by SLOOP 31P NMR spectroscopy. Magn Reson Med. 1999;41(4):657–63.CrossRefGoogle Scholar
  85. 85.
    Pohmann R, von Kienlin M. Accurate phosphorus metabolite images of the human heart by 3D acquisition-weighted CSI. Magn Reson Med. 2001;45:817–26.CrossRefGoogle Scholar
  86. 86.
    Bottomley PA, Weiss RG. Non-invasive magnetic-resonance detection of creatine depletion in non- viable infarcted myocardium. Lancet. 1998;351:714–8.CrossRefGoogle Scholar
  87. 87.
    Felblinger J, Jung B, Slotboom J, Boesch C, Kreis R. Methods and reproducibility of cardiac/respiratory double-triggered (1)H-MR spectroscopy of the human heart. Magn Reson Med. 1999;42:903–10.CrossRefGoogle Scholar
  88. 88.
    Kozerke S, Schar M, Lamb HJ, Boesiger P. Volume tracking cardiac 31P spectroscopy. Magn Reson Med. 2002;48(2):380–4.CrossRefGoogle Scholar
  89. 89.
    Neubauer S, Horn M, Cramer M, Harre K, Newell JB, Peters W, Pabst T, Ertl G, Hahn D, Ingwall JS, Kochsiek K. Myocardial phosphocreatine-to-ATP ratio is a predictor of mortality in patients with dilated cardiomyopathy. Circulation. 1997;96(7):2190–6.CrossRefGoogle Scholar
  90. 90.
    Kass DA, Hare JM, Georgakopoulos D. Murine cardiac function: a cautionary tail. Circ Res. 1998;82(4):519–22.CrossRefGoogle Scholar
  91. 91.
    den Hollander JA, Evanochko WT, Pohost GM. Observation of cardiac lipids in humans by localized 1H magnetic resonance spectroscopic imaging. Magn Reson Med. 1994;32:175–80.CrossRefGoogle Scholar
  92. 92.
    Kreis R, Felblinger J, Jung B, Boesch C. In vivo 1H-MR spectroscopy of the human heart. MAGMA. 1998;6:164–7.Google Scholar
  93. 93.
    Nakae I, Mitsunami K, Omura T, Yabe T, Tsutamoto T, Matsuo S, Takahashi M, Morikawa S, Inubushi T, Nakamura Y, Kinoshita M, Horie M. Proton magnetic resonance spectroscopy can detect creatine depletion associated with the progression of heart failure in cardiomyopathy. J Am Coll Cardiol. 2003;42(9):1587–93.CrossRefGoogle Scholar
  94. 94.
    Bache RJ, Zhang J, Murakami Y, Zhang Y, Cho YK, Merkle H, Gong G, From AH, Ugurbil K. Myocardial oxygenation at high workstates in hearts with left ventricular hypertrophy. Cardiovasc Res. 1999;42(3):616–26.CrossRefGoogle Scholar
  95. 95.
    Schneider JE, Tyler DJ, Ten Hove M, Sang AE, Cassidy PJ, Fischer A, Wallis J, Sebag-Montefiore LM, Watkins H, Isbrandt D, Clarke K, Neubauer S. In Vivo Cardiac 1H-MRS in the Mouse. Magn Reson Med. 2004;52:1029–35.CrossRefGoogle Scholar
  96. 96.
    Ordidge RJ, Bendall MR, Gordon RE, Connelly A. Volume selection for in-vivo biological spectroscopy. In: Govil G, Khetrapal CL, Saran A, editors. Magnetic resonance in biology and medicine. New Dehli: Tata McGraw-Hill; 1985. p. 387–97.Google Scholar
  97. 97.
    Bottomley PA. Spatial localization in NMR spectroscopy in vivo. Ann N Y Acad Sci. 1987;508:333–48.CrossRefGoogle Scholar
  98. 98.
    Lygate CA, Bohl S, Ten Hove M, Faller KM, Ostrowski PJ, Zervou S, Medway DJ, Aksentijevic D, Sebag-Montefiore L, Wallis J, Clarke K, Watkins H, Schneider JE, Neubauer S. Moderate elevation of intracellular creatine by targeting the creatine transporter protects mice from acute myocardial infarction. Cardiovasc Res. 2012;96:466–75.CrossRefGoogle Scholar
  99. 99.
    Hankiewicz JH, Banke NH, Farjah M, Lewandowski ED. Early impairment of transmural principal strains in the left ventricular wall after short-term, high-fat feeding of mice predisposed to cardiac steatosis. Circ Cardiovasc Imaging. 2010;3(6):710–7.CrossRefGoogle Scholar
  100. 100.
    Bakermans AJ, Geraedts TR, van Weeghel M, Denis S, Joao Ferraz M, Aerts JM, Aten J, Nicolay K, Houten SM, Prompers JJ. Fasting-induced myocardial lipid accumulation in long-chain acyl-CoA dehydrogenase knockout mice is accompanied by impaired left ventricular function. Circ Cardiovasc Imaging. 2011;4(5):558–65.CrossRefGoogle Scholar
  101. 101.
    Kammermeier H, Schmidt P, Jungling E. Free energy change of ATP-hydrolysis: a causal factor of early hypoxic failure of the myocardium? J Mol Cell Cardiol. 1982;14(5):267–77.CrossRefGoogle Scholar
  102. 102.
    Gibbs C. The cytoplasmic phosphorylation potential. Its possible role in the control of myocardial respiration and cardiac contractility. J Mol Cell Cardiol. 1985;17(8):727–31.CrossRefGoogle Scholar
  103. 103.
    Schneider J, Fekete E, Weisser A, Neubauer S, von Kienlin M. Reduced (1)H-NMR visibility of creatine in isolated rat hearts. Magn Reson Med. 2000;43:497–502.CrossRefGoogle Scholar
  104. 104.
    Ordidge RJ, Connelly A, Lohman JAB. Image-selected in vivo spectroscopy (ISIS). A new technique for spatially selective NMR spectroscopy. J Magn Reson. 1986;66:283–94.Google Scholar
  105. 105.
    Omerovic E, Basetti M, Bollano E, Bohlooly M, Tornell J, Isgaard J, Hjalmarson A, Soussi B, Waagstein F. In vivo metabolic imaging of cardiac bioenergetics in transgenic mice. Biochem Biophys Res Commun. 2000;271(1):222–8.CrossRefGoogle Scholar
  106. 106.
    Bakermans AJ, Abdurrachim D, van Nierop BJ, Koeman A, van der Kroon I, Baartscheer A, Schumacher CA, Strijkers GJ, Houten SM, Zuurbier CJ, Nicolay K, Prompers JJ. In vivo mouse myocardial (31)P MRS using three-dimensional image-selected in vivo spectroscopy (3D ISIS): technical considerations and biochemical validations. NMR Biomed. 2015;28(10):1218–27.CrossRefGoogle Scholar
  107. 107.
    Chacko VP, Aresta F, Chacko SM, Weiss RG. MRI/MRS assessment of in vivo murine cardiac metabolism, morphology, and function at physiological heart rates. Am J Physiol Heart Circ Physiol. 2000;279:H2218–24.CrossRefGoogle Scholar
  108. 108.
    Naumova AV, Weiss RG, Chacko VP. Regulation of murine myocardial energy metabolism during adrenergic stress studied by in vivo 31P NMR spectroscopy. Am J Physiol Heart Circ Physiol. 2003;285(5):H1976–9.CrossRefGoogle Scholar
  109. 109.
    Weiss RG, Chatham JC, Georgakopolous D, Charron MJ, Wallimann T, Kay L, Walzel B, Wang Y, Kass DA, Gerstenblith G, Chacko VP. An increase in the myocardial PCr/ATP ratio in GLUT4 null mice. FASEB J. 2002;16(6):613–5.CrossRefGoogle Scholar
  110. 110.
    Spindler M, Saupe KW, Christe ME, Sweeney HL, Seidman CE, Seidman JG, Ingwall JS. Diastolic dysfunction and altered energetics in the alphaMHC403/+ mouse model of familial hypertrophic cardiomyopathy. J Clin Invest. 1998;101(8):1775–83.CrossRefGoogle Scholar
  111. 111.
    Saupe KW, Spindler M, Tian R, Ingwall JS. Impaired cardiac energetics in mice lacking muscle-specific isoenzymes of creatine kinase. Circ Res. 1998;82(8):898–907.CrossRefGoogle Scholar
  112. 112.
    Katz EB, Stenbit AE, Hatton K, DePinho R, Charron MJ. Cardiac and adipose tissue abnormalities but not diabetes in mice deficient in GLUT4. Nature. 1995;377(6545):151–5.CrossRefGoogle Scholar
  113. 113.
    Maslov MY, Chacko VP, Stuber M, Moens AL, Kass DA, Champion HC, Weiss RG. Altered high-energy phosphate metabolism predicts contractile dysfunction and subsequent ventricular remodeling in pressure-overload hypertrophy mice. Am J Physiol Heart Circ Physiol. 2007;292(1):H387–91.CrossRefGoogle Scholar
  114. 114.
    Gupta A, Akki A, Wang Y, Leppo MK, Chacko VP, Foster DB, Caceres V, Shi S, Kirk JA, Su J, Lai S, Paolocci N, Steenbergen C, Gerstenblith G, Weiss RG. Creatine kinase-mediated improvement of function in failing mouse hearts provides causal evidence the failing heart is energy starved. J Clin Invest. 2012;122(1):291–302.CrossRefGoogle Scholar
  115. 115.
    Beer M, Seyfarth T, Sandstede J, Landschutz W, Lipke C, Kostler H, von Kienlin M, Harre K, Hahn D, Neubauer S. Absolute concentrations of high-energy phosphate metabolites in normal, hypertrophied, and failing human myocardium measured noninvasively with (31)P-SLOOP magnetic resonance spectroscopy. J Am Coll Cardiol. 2002;40(7):1267.CrossRefGoogle Scholar
  116. 116.
    Horn M, Weidensteiner C, Scheffer H, Meininger M, de Groot M, Remkes H, Dienesch C, Przyklenk K, von Kienlin M, Neubauer S. Detection of myocardial viability based on measurement of sodium content: a (23)Na-NMR study. Magn Reson Med. 2001;45:756–64.CrossRefGoogle Scholar
  117. 117.
    Weidensteiner C, Horn M, Fekete E, Neubauer S, von Kienlin M. Imaging of intracellular sodium with shift reagent aided (23)Na CSI in isolated rat hearts. Magn Reson Med. 2002;48(1):89–96.CrossRefGoogle Scholar
  118. 118.
    Kim RJ, Lima JA, Chen EL, Reeder SB, Klocke FJ, Zerhouni EA, Judd RM. Fast 23Na magnetic resonance imaging of acute reperfused myocardial infarction. Potential to assess myocardial viability. Circulation. 1997;95(7):1877–85.CrossRefGoogle Scholar
  119. 119.
    Kim RJ, Judd RM, Chen EL, Fieno DS, Parrish TB, Lima JA. Relationship of elevated 23Na magnetic resonance image intensity to infarct size after acute reperfused myocardial infarction. Circulation. 1999;100:185–92.CrossRefGoogle Scholar
  120. 120.
    Constantinides CD, Kraitchman DL, O'Brien KO, Boada FE, Gillen J, Bottomley PA. Noninvasive quantification of total sodium concentrations in acute reperfused myocardial infarction using 23Na MRI. Magn Reson Med. 2001;46(6):1144–51.CrossRefGoogle Scholar
  121. 121.
    Lee RF, Giaquinto R, Constantinides C, Souza S, Weiss RG, Bottomley PA. A broadband phased-array system for direct phosphorus and sodium metabolic MRI on a clinical scanner. Magn Reson Med. 2000;43:269–77.CrossRefGoogle Scholar
  122. 122.
    Pabst T, Sandstede J, Beer M, Kenn W, Greiser A, von Kienlin M, Neubauer S, Hahn D. Optimization of ECG-triggered 3D (23)Na MRI of the human heart. Magn Reson Med. 2001;45:164–6.CrossRefGoogle Scholar
  123. 123.
    Greiser A, Von Kienlin M. Efficient k-space sampling by density-weighted phase-encoding. Magn Reson Med. 2003;50(6):1266–75.CrossRefGoogle Scholar
  124. 124.
    Neuberger T, Greiser A, Nahrendorf M, Jakob PM, Faber C, Webb AG. 23Na microscopy in the mouse heart in vivo using density weighted chemical shift imaging. MAGMA. 2004;17:196–200.CrossRefGoogle Scholar
  125. 125.
    Maguire ML, Geethanath S, Lygate CA, Kodibagkar VD, Schneider JE. Compressed sensing to accelerate magnetic resonance spectroscopic imaging: evaluation and application to 23Na-imaging of mouse hearts. J Cardiovasc Magn Reson. 2015;17:45.CrossRefGoogle Scholar
  126. 126.
    Plump AS, Smith JD, Hayek T, Aalto-Setala K, Walsh A, Verstuyft JG, Rubin EM, Breslow JL. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell. 1992;71(2):343–53.CrossRefGoogle Scholar
  127. 127.
    Ishibashi S, Brown MS, Goldstein JL, Gerard RD, Hammer RE, Herz J. Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J Clin Invest. 1993;92(2):883–93.CrossRefGoogle Scholar
  128. 128.
    Palinski W, Tangirala RK, Miller E, Young SG, Witztum JL. Increased autoantibody titers against epitopes of oxidized LDL in LDL receptor-deficient mice with increased atherosclerosis. Arterioscler Thromb Vasc Biol. 1995;15(10):1569–76.CrossRefGoogle Scholar
  129. 129.
    Paigen B, Morrow A, Holmes PA, Mitchell D, Williams RA. Quantitative assessment of atherosclerotic lesions in mice. Atherosclerosis. 1987;68(3):231–40.CrossRefGoogle Scholar
  130. 130.
    Rosenfeld ME, Polinsky P, Virmani R, Kauser K, Rubanyi G, Schwartz SM. Advanced atherosclerotic lesions in the innominate artery of the ApoE knockout mouse. Arterioscler Thromb Vasc Biol. 2000;20(12):2587–92.CrossRefGoogle Scholar
  131. 131.
    Williams H, Johnson JL, Carson KGS, Jackson CL. Characteristics of intact and ruptured atherosclerotic plaques in brachiocephalic arteries of apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol. 2002;22(5):788–92.CrossRefGoogle Scholar
  132. 132.
    Nakashima Y, Plump AS, Raines EW, Breslow JL, Ross R. ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb. 1994;14(1):133–40.CrossRefGoogle Scholar
  133. 133.
    Rong JX, Li J, Reis ED, Choudhury RP, Dansky HM, Elmalem VI, Fallon JT, Breslow JL, Fisher EA. Elevating high-density lipoprotein cholesterol in apolipoprotein e-deficient mice remodels advanced atherosclerotic lesions by decreasing macrophage and increasing smooth muscle cell content. Circulation. 2001;104(20):2447–52.CrossRefGoogle Scholar
  134. 134.
    Shah PK, Yano J, Reyes O, Chyu KY, Kaul S, Bisgaier CL, Drake S, Cercek B. High-dose recombinant apolipoprotein a-i(milano) mobilizes tissue cholesterol and rapidly reduces plaque lipid and macrophage content in apolipoprotein e-deficient mice : potential implications for acute plaque stabilization. Circulation. 2001;103(25):3047–50.CrossRefGoogle Scholar
  135. 135.
    Fayad ZA, Fallon JT, Shinnar M, Wehrli S, Dansky HM, Poon M, Badimon JJ, Charlton SA, Fisher EA, Breslow JL, Fuster V. Noninvasive In vivo high-resolution magnetic resonance imaging of atherosclerotic lesions in genetically engineered mice. Circulation. 1998;98:1541–7.CrossRefGoogle Scholar
  136. 136.
    Choudhury RP, Aguinaldo JG, Rong JX, Kulak JL, Kulak AR, Reis ED, Fallon JT, Fuster V, Fisher EA, Fayad ZA. Atherosclerotic lesions in genetically modified mice quantified in vivo by non-invasive high-resolution magnetic resonance microscopy. Atherosclerosis. 2002;162(2):315–21.CrossRefGoogle Scholar
  137. 137.
    Itskovich VV, Choudhury RP, Aguinaldo JG, Fallon JT, Omerhodzic S, Fisher EA, Fayad ZA. Characterization of aortic root atherosclerosis in ApoE knockout mice: High-resolution in vivo and ex vivo MRM with histological correlation. Magn Reson Med. 2003;49(2):381–5.CrossRefGoogle Scholar
  138. 138.
    Wiesmann F, Szimtenings M, Frydrychowicz A, Illinger R, Hunecke A, Rommel E, Neubauer S, Haase A. High-resolution MRI with cardiac and respiratory gating allows for accurate in vivo atherosclerotic plaque visualization in the murine aortic arch. Magn Reson Med. 2003;50(1):69–74.CrossRefGoogle Scholar
  139. 139.
    Hockings PD, Roberts T, Galloway GJ, Reid DG, Harris DA, Vidgeon-Hart M, Groot PH, Suckling KE, Benson GM. Repeated three-dimensional magnetic resonance imaging of atherosclerosis development in innominate arteries of low-density lipoprotein receptor-knockout mice. Circulation. 2002;106(13):1716–21.CrossRefGoogle Scholar
  140. 140.
    Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2000;20(5):1262–75.CrossRefGoogle Scholar
  141. 141.
    Skinner MP, Yuan C, Mitsumori L, Hayes CE, Raines EW, Nelson JA, Ross R. Serial magnetic resonance imaging of experimental atherosclerosis detects lesion fine structure, progression and complications in vivo. Nat Med. 1995;1(1):69–73.CrossRefGoogle Scholar
  142. 142.
    Helft G, Worthley SG, Fuster V, Zaman AG, Schechter C, Osende JI, Rodriguez OJ, Fayad ZA, Fallon JT, Badimon JJ. Atherosclerotic aortic component quantification by noninvasive magnetic resonance imaging: an in vivo study in rabbits. J Am Coll Cardiol. 2001;37(4):1149–54.CrossRefGoogle Scholar
  143. 143.
    Toussaint JF, Southern JF, Fuster V, Kantor HL. T2-weighted contrast for NMR characterization of human atherosclerosis. Arterioscler Thromb Vasc Biol. 1995;15(10):1533–42.Google Scholar
  144. 144.
    Toussaint JF, LaMuraglia GM, Southern JF, Fuster V, Kantor HL. Magnetic resonance images lipid, fibrous, calcified, hemorrhagic, and thrombotic components of human atherosclerosis in vivo. Circulation. 1996;94(5):932–8.CrossRefGoogle Scholar
  145. 145.
    Shinnar M, Fallon JT, Wehrli S, Levin M, Dalmacy D, Fayad ZA, Badimon JJ, Harrington M, Harrington E, Fuster V. The diagnostic accuracy of ex vivo MRI for human atherosclerotic plaque characterization. Arterioscler Thromb Vasc Biol. 1999;19(11):2756–61.CrossRefGoogle Scholar
  146. 146.
    Hatsukami TS, Ross R, Polissar NL, Yuan C. Visualization of fibrous cap thickness and rupture in human atherosclerotic carotid plaque in vivo with high-resolution magnetic resonance imaging. Circulation. 2000;102(9):959–64.CrossRefGoogle Scholar
  147. 147.
    Fayad ZA, Nahar T, Fallon JT, Goldman M, Aguinaldo JG, Badimon JJ, Shinnar M, Chesebro JH, Fuster V. In vivo magnetic resonance evaluation of atherosclerotic plaques in the human thoracic aorta: a comparison with transesophageal echocardiography. Circulation. 2000;101(21):2503–9.CrossRefGoogle Scholar
  148. 148.
    Schneider JE, McAteer MA, Tyler DJ, Clarke K, Channon KM, Choudhury RP, Neubauer S. High-resolution, multi-contrast 3D-MRI characterizes atherosclerotic plaque composition in ApoE-/- mice ex vivo. J Magn Reson Imaging. 2004;20(6):981–9.CrossRefGoogle Scholar
  149. 149.
    Sirol M, Itskovich VV, Mani V, Aguinaldo JG, Fallon JT, Misselwitz B, Weinmann HJ, Fuster V, Toussaint JF, Fayad ZA. Lipid-rich atherosclerotic plaques detected by gadofluorine-enhanced in vivo magnetic resonance imaging. Circulation. 2004;109(23):2890–6.CrossRefGoogle Scholar
  150. 150.
    McAteer MA, Mankia K, Ruparelia N, Jefferson A, Nugent HB, Stork LA, Channon KM, Schneider JE, Choudhury RP. A leukocyte-mimetic magnetic resonance imaging contrast agent homes rapidly to activated endothelium and tracks with atherosclerotic lesion macrophage content. Arterioscler Thromb Vasc Biol. 2012;32(6):1427–35.CrossRefGoogle Scholar
  151. 151.
    Phinikaridou A, Andia ME, Protti A, Indermuehle A, Shah A, Smith A, Warley A, Botnar RM. Noninvasive magnetic resonance imaging evaluation of endothelial permeability in murine atherosclerosis using an albumin-binding contrast agent. Circulation. 2012;126(6):707–19.CrossRefGoogle Scholar
  152. 152.
    Kober F, Iltis I, Izquierdo M, Desrois M, Ibarrola D, Cozzone PJ, Bernard M. High-resolution myocardial perfusion mapping in small animals in vivo by spin-labeling gradient-echo imaging. Magn Reson Med. 2004;51(1):62–7.CrossRefGoogle Scholar
  153. 153.
    Coolen BF, Moonen RP, Paulis LE, Geelen T, Nicolay K, Strijkers GJ. Mouse myocardial first-pass perfusion MR imaging. Magn Reson Med. 2010;64(6):1658–63.CrossRefGoogle Scholar
  154. 154.
    Makowski M, Jansen C, Webb I, Chiribiri A, Nagel E, Botnar R, Kozerke S, Plein S. First-pass contrast-enhanced myocardial perfusion MRI in mice on a 3-T clinical MR scanner. Magn Reson Med. 2010;64(6):1592–8.CrossRefGoogle Scholar
  155. 155.
    Waller C, Hiller KH, Albrecht M, Hu K, Nahrendorf M, Gattenlohner S, Haase A, Ertl G, Bauer WR. Microvascular adaptation to coronary stenosis in the rat heart in vivo: a serial magnetic resonance imaging study. Microvasc Res. 2003;66(3):173–82.CrossRefGoogle Scholar
  156. 156.
    Waller C, Kahler E, Hiller KH, Hu K, Nahrendorf M, Voll S, Haase A, Ertl G, Bauer WR. Myocardial perfusion and intracapillary blood volume in rats at rest and with coronary dilatation: MR imaging in vivo with use of a spin-labeling technique. Radiology. 2000;215(1):189–97.CrossRefGoogle Scholar
  157. 157.
    Bohl S, Lygate CA, Barnes H, Medway D, Stork LA, Schulz-Menger J, Neubauer S, Schneider JE. Advanced methods for quantification of infarct size in mice using three-dimensional high-field late gadolinium enhancement MRI. Am J Physiol Heart Circ Physiol. 2009;296(4):H1200–8.CrossRefGoogle Scholar
  158. 158.
    Protti A, Sirker A, Shah AM, Botnar R. Late gadolinium enhancement of acute myocardial infarction in mice at 7 T: cine-FLASH versus inversion recovery. J Magn Reson Imaging. 2010;32(4):878–86.CrossRefGoogle Scholar
  159. 159.
    Beyers RJ, Smith RS, Xu Y, Piras BA, Salerno M, Berr SS, Meyer CH, Kramer CM, French BA, Epstein FH. T(2) -weighted MRI of post-infarct myocardial edema in mice. Magn Reson Med. 2012;67(1):201–9.CrossRefGoogle Scholar
  160. 160.
    Coolen BF, Simonis FF, Geelen T, Moonen RP, Arslan F, Paulis LE, Nicolay K, Strijkers GJ. Quantitative T2 mapping of the mouse heart by segmented MLEV phase-cycled T2 preparation. Magn Reson Med. 2014;72(2):409–17.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Radcliffe Department of Medicine, Division of Cardiovascular MedicineUniversity of Oxford, John Radcliffe HospitalOxfordUK

Personalised recommendations