Diffusometric Assessment of Food Double Emulsions

  • Gisela Guthausen
Reference work entry


Diffusion phenomena have a larg impact on the physicochemical properties of multiple emulsions, including transient effects. These phenomena can be studied by NMR. PFG-NMR as well as relaxation approaches are known which give detailed insight into microscopic processes. Starting by a short introduction and discussion of the application of NMR to questions in single emulsion research and quality control, diverse reports will be summarized which deal with findings on double emulsions deduced from NMR studies.


PFG-NMR Double emulsions Droplet size distributen Exchange Dispersed phase ratio 



The German Research Foundation (DFG) is acknowledged for financial support of the instrumental facility Pro2NMR and in form of a research grant on emulsion characterization by NMR. Special thanks to Eva Förster for proof reading the manuscript.


  1. 1.
    Stejskal EO, Tanner JE. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys. 1965;42:288–92.CrossRefGoogle Scholar
  2. 2.
    Tanner JE, Stejskal EO. Restricted self-diffusion of protons in colloidal systems by the pulsed-gradient, spin echo method. J Chem Phys. 1968;49:1768–77.CrossRefGoogle Scholar
  3. 3.
    Stejskal EO. Use of spin echoes in a pulsed magnetic-field gradient to study anisotropic restricted diffusion and flow. J Chem Phys. 1965;43:3597–603.CrossRefGoogle Scholar
  4. 4.
    Barbosa LL, Kock FVC, Almeida VMDL, Menezes SMC, Castro EVR. Low-field nuclear magnetic resonance for petroleum distillate characterization. Fuel Process Technol. 2015;138:202–9.CrossRefGoogle Scholar
  5. 5.
    Korb JP, Vorapalawut N, Nicot B, Bryant RG. Relation and correlation between NMR relaxation times, diffusion coefficients, and viscosity of heavy crude oils. J Phys Chem C. 2015;119:24439–46.CrossRefGoogle Scholar
  6. 6.
    de Oliveira Ramos PF, de Toledo IB, Nogueira CM, Novotny EH, Vieira AJM, de Vasconcellos Azeredo RB. Low field 1H NMR relaxometry and multivariate data analysis in crude oil viscosity prediction. Chemometr Intell Lab. 2009;99:121–6.CrossRefGoogle Scholar
  7. 7.
    Murday JS, Cotts RM. Self-diffusion coeffcient of liquid lithium. J Chem Phys. 1968;48:4938–45.CrossRefGoogle Scholar
  8. 8.
    Packer KJ, Tomlinso DJ, Rees C. Studies of diffusion and flow by pulsed NMR techniques. Adv Mol Relax Int Pr. 1972;3:119–31.CrossRefGoogle Scholar
  9. 9.
    Packer KJ, Rees C. Pulsed NMR studies of restricted diffusion. 1. Droplet size distributions in emulsions. J Colloid Interf Sci. 1972;40:206–18.CrossRefGoogle Scholar
  10. 10.
    Veeman WS. Diffusion in a closed sphere. Annu Rep NMR Spectr. 2003;50:201–16.CrossRefGoogle Scholar
  11. 11.
    Callaghan PT. Pulsed-gradient spin-echo NMR for planar, cylindrical, and spherical pores under conditions of wall relaxation. J Magn Reson Ser A. 1995;113:53–9.CrossRefGoogle Scholar
  12. 12.
    Mitra PP, Latour LL, Kleinberg RL, Sotak CH. Pulsed-field-gradient NMR measurements of restricted diffusion and the return-to-the-origin probability. J Magn Reson Ser A. 1995;114:47–58.CrossRefGoogle Scholar
  13. 13.
    Mitra PP, Sen PN, Schwartz LM. Short-time behavior of the diffusion-coefficient as a geometrical probe of porous-media. Phys Rev B. 1993;47:8565–74.CrossRefGoogle Scholar
  14. 14.
    Mitra PP, Sen PN. Effects of microgeometry and surface relaxation on NMR pulsed-field-gradient experiments – simple pore geometries. Phys Rev B. 1992;45:143–56.CrossRefGoogle Scholar
  15. 15.
    Mitra PP, Sen PN, Schwartz LM, Le Doussal P. Diffusion propagator as a probe of the structure of porous media. Phys Rev Lett. 1992;68:3555.CrossRefGoogle Scholar
  16. 16.
    Buckley C, Hollingsworth KG, Sederman AJ, Holland DJ, Johns ML, Gladden LF. Applications of fast diffusion measurement using Difftrain. J Magn Reson. 2003;161:112–7.CrossRefGoogle Scholar
  17. 17.
    Hollingsworth KG, Johns ML. Rheo-nuclear magnetic resonance of emulsion systems. J Rheol. 2004;48:787–804.CrossRefGoogle Scholar
  18. 18.
    Stamps JP, Ottink B, Visser JM, van Duynhoven JPM, Hulst R. Difftrain: a novel approach to a true spectroscopic single-scan diffusion measurement. J Magn Reson. 2001;151:28–31.CrossRefGoogle Scholar
  19. 19.
    Cotts RM, Hoch MJR, Sun T, Markert JT. Pulsed field gradient stimulated echo methods for improved NMR diffusion measurements in heterogeneous systems. J Magn Reson. 1989;83:252–66.Google Scholar
  20. 20.
    Lönnqvist I, Khan A, Söderman O. Characterization of emulsions by NMR. J Colloid Interface Sci. 1991;144:401–11.CrossRefGoogle Scholar
  21. 21.
    Garasanin T, Cosgrove T, Marteaux L, Kretschmer A, Goodwin A, Zick K. NMR self-diffusion studies on PDMS oil-in-water emulsion. Langmuir. 2002;18:10298–304.CrossRefGoogle Scholar
  22. 22.
    Fieber W, Hafner V, Normand V. Oil droplet size determination in complex flavor delivery systems by diffusion NMR spectroscopy. J Colloid Interface Sci. 2011;356:422–8.CrossRefGoogle Scholar
  23. 23.
    Voda MA, van Duynhoven JPM. Characterization of food emulsions by PFG-NMR. Trends Food Sci Technol. 2009;20:533–43.CrossRefGoogle Scholar
  24. 24.
    Vermeir L, Sabatino P, Balcaen M, Declerck A, Dewettinck K, Martins JC, Van der Meeren P. Effect of molecular exchange on water droplet size analysis in W/O emulsions as determined by diffusion NMR. J Colloid Interface Sci. 2016;463:128–36.CrossRefGoogle Scholar
  25. 25.
    Schönhoff M. NMR studies of sorption and adsorption phenomena in colloidal systems. Curr Opin Colloid In. 2013;18:201–13.CrossRefGoogle Scholar
  26. 26.
    Romoscanu AI, Fenollosa A, Acquistapace S, Gunes D, Martins-Deuchande T, Clausen P, Mezzenga R, Nyden M, Zick K, Hughes E. Structure, diffusion, and permeability of protein-stabilized monodispersed oil in water emulsions and their gels: a self-diffusion NMR study. Langmuir. 2010;26:6184–92.CrossRefGoogle Scholar
  27. 27.
    Mariette F. Investigations of food colloids by NMR and MRI. Curr Opin Colloid In. 2009;14:203–11.CrossRefGoogle Scholar
  28. 28.
    Johns ML. NMR studies of emulsions. Curr Opin Colloid In. 2009;14:178–83.CrossRefGoogle Scholar
  29. 29.
    Johns ML, Hollingsworth KG. Characterisation of emulsion systems using NMR and MRI. Prog Nucl Magn Reson Spectrosc. 2007;50:51–70.CrossRefGoogle Scholar
  30. 30.
    Balinov B, Marini D, Söderman O. NMR studies of emulsions with particular emphasis on food emulsions. In: Friberg SE, Larsson K, Sjoblom J, editors. Food emulsions. New York: Marcel Dekker.Google Scholar
  31. 31.
    Lee H-Y, McCarthy MJ, Dungan SR. Experimental characterization of emulsion formation and coalescence by nuclear magnetic resonance restricted diffusion techniques. J Am Oil Chem Soc. 1998;75:463–75.CrossRefGoogle Scholar
  32. 32.
    Lee YS, Lowe JP, Gilby E, Perera S, Rigby SP. The initial release of cisplatin from poly(lactide-co-glycolide) microspheres. Int J Pharm. 2010;383:244–54.CrossRefGoogle Scholar
  33. 33.
    Balinov B, Jonsson B, Linse P, Söderman O. The NMR self-diffusion method applied to restricted diffusion – simulation of echo attenuation from molecules in spheres and between planes. J Magn Reson Ser A. 1993;104:17–25.CrossRefGoogle Scholar
  34. 34.
    Denkova PS, Tcholakova S, Denkov ND, Danov KD, Campbell B, Shawl C, Kim D. Evaluation of the precision of drop-size determination in oil-water emulsions by low-resolution NMR spectroscopy. Langmuir. 2004;20:11402–13.CrossRefGoogle Scholar
  35. 35.
    Goudappel GJW, van Duynhoven JPM, Mooren MMW. Measurement of oil droplet size distributions in food oil water emulsions by time domain pulsed field gradient NMR. J Colloid Interface Sci. 2001;239:535–42.CrossRefGoogle Scholar
  36. 36.
    van Duynhoven JPM, Goudappel GJW, van Dalen G, van Bruggen PC, Blonk JCG, Eukelenboom APAM. Scope of droplet size measurements in food emulsions by pulsed field gradient NMR at low field. Magn Reson Chem. 2002;40:S51–9.CrossRefGoogle Scholar
  37. 37.
    van Duynhoven JPM, Maillet B, Schell J, Tronquet M, Goudappel GJW, Trezza E, Bulbarello A, van Dusschoten D. A rapid benchtop NMR method for determination of droplet size distributions in food emulsions. Eur J Lipid Sci Technol. 2007;109:1095–103.CrossRefGoogle Scholar
  38. 38.
    Guthausen G, Todt H, Burk W, Schmalbein D, Kamlowski A. Time-domain NMR in quality control: more advanced methods, in: modern magnetic resonance, part 1: applications in chemistry, biological and marine sciences. Dordrecht: Springer; 2006/2008. p. 1735–8.Google Scholar
  39. 39.
    Sommerling JH, Simon AJ, Haber A, Johns ML, Guthausen G, Nirschl H. Interpretation of NMR diffusometry data regarding droplet size distributions in micro- and nanoemulsions. In: van Duynhoven J, Guthausen G, editors. Proceedings of the XIII international conference on the applications of magnetic resonance in food science. Charlton: IM Publications; 2016. p. 67–71.CrossRefGoogle Scholar
  40. 40.
    Lingwood IA, Chandrasekera TC, Kolz J, Fridjonsson EO, Johns ML. Emulsion droplet sizing using low-field NMR with chemical shift resolution and the block gradient pulse method. J Magn Reson. 2012;214:281–8.CrossRefGoogle Scholar
  41. 41.
    Hollingsworth KG, Johns ML. Measurement of emulsion droplet sizes using PFG NMR and regularization methods. J Colloid Interface Sci. 2003;258:383–9.CrossRefGoogle Scholar
  42. 42.
    Hollingsworth KG, Johns ML. Droplet migration in emulsion systems measured using MR methods. J Colloid Interface Sci. 2006;296:700–9.CrossRefGoogle Scholar
  43. 43.
    Gabriele D, Migliori M, Di Sanzo R, Rossi CO, Ruffolo SA, de Cindio B. Characterisation of dairy emulsions by NMR and rheological techniques. Food Hydrocoll. 2009;23:619–28.CrossRefGoogle Scholar
  44. 44.
    Fridjonsson EO, Chandrasekera TC, Sederman AJ, Johns ML, Zhao CX, Middelberg APJ. Imaging the effects of peptide bio-surfactants on droplet deformation in a Taylor-Couette shear cell. Soft Matter. 2011;7:2961–7.CrossRefGoogle Scholar
  45. 45.
    d'Avila MA, Powell RL, Phillips RJ, Shapley NC, Walton JH, Dungan SR. Magnetic resonance imaging (MRI): a technique to study flow and microstructure of concentrated emulsions. Braz J Chem Eng. 2005;22:49–60.CrossRefGoogle Scholar
  46. 46.
    Johns ML, Gladden LF. Sizing of emulsion droplets under flow using flow-compensating NMR-PFG techniques. J Magn Reson. 2002;154:142–5.CrossRefGoogle Scholar
  47. 47.
    Lobato-Calleros C, Sosa-Perez A, Rodriguez-Tafoya J, Sandoval-Castilla O, Perez-Alonso C, Vemon-Carter EJ. Structural and textural characteristics of reduced-fat cheese-like products made from W-1/O/W-2 emulsions and skim milk. Lwt-Food Sci Technol. 2008;41:1847–56.CrossRefGoogle Scholar
  48. 48.
    Bernewitz R, Guthausen G, Schuchmann HP. Imaging of double emulsions. In: Sozer N, editor. Imaging technologies and data processing for food engineers. Heidelberg/New York/Dordrecht/London: Springer Cham; 2016. p. 69–98.CrossRefGoogle Scholar
  49. 49.
    Bernewitz R, Dalitz F, Köhler K, Schuchmann HP, Guthausen G. Characterisation of multiple emulsions by NMR spectroscopy and diffusometry. Microporous Mesoporous Mater. 2013;178:69–73.CrossRefGoogle Scholar
  50. 50.
    Bernewitz R, Guthausen G, Schuchmann HP. NMR on emulsions: characterisation of liquid dispersed systems. Magn Reson Chem. 2011;49:S93–S104.CrossRefGoogle Scholar
  51. 51.
    Guan XZ, Hailu K, Guthausen G, Wolf F, Bernewitz R, Schuchmann HP. PFG-NMR on W1/O/W2-emulsions: evidence for molecular exchange between water phases. Eur J Lipid Sci Technol. 2010;112:828–37.CrossRefGoogle Scholar
  52. 52.
    Bernewitz R, Schmidt US, Schuchmann HP, Guthausen G. Structure of and diffusion in O/W/O double emulsions by CLSM and NMR – comparison with W/O/W. J Colloids Surf A Physicochem Eng Asp. 2014;458:10–8.CrossRefGoogle Scholar
  53. 53.
    Mezzenga R, Folmer BM, Hughes E. Design of double emulsions by osmotic pressure tailoring. Langmuir. 2004;20:3574–82.CrossRefGoogle Scholar
  54. 54.
    Lönnqvist I, Haakansson B, Balinov B, Söderman O. NMR self-diffusion studies of the water and the oil components in a WOW emulsion. J Colloid Interface Sci. 1997;192:66–73.CrossRefGoogle Scholar
  55. 55.
    Wolf F, Hecht L, Schuchmann HP, Hardy EH, Guthausen G. Preparation of W1/O/W2 emulsions and droplet size distribution measurements by pulsed-field gradient nuclear magnetic resonance (PFG-NMR) technique. Eur J Lipid Sci Technol. 2009;111:723–9.CrossRefGoogle Scholar
  56. 56.
    Hughes E, Maan AA, Acquistapace S, Burbidge A, Johns ML, Gunes DZ, Clausen P, Syrbe A, Hugo J, Schroen K, Miralles V, Atkins T, Gray R, Homewood P, Zick K. Microfluidic preparation and self diffusion PFG-NMR analysis of monodisperse water-in-oil-in-water double emulsions. J Colloid Interface Sci. 2013;389:147–56.CrossRefGoogle Scholar
  57. 57.
    Schmidt US, Bernewitz R, Guthausen G, Schuchmann HP. Investigation and application of measurement techniques for the determination of the encapsulation efficiency of O/W/O multipleemulsions stabilized by hydrocolloid gelation. Colloids Surf A Physicochem Eng Asp. 2015;475:55–61.CrossRefGoogle Scholar
  58. 58.
    Aslund I, Nowacka A, Nilsson M, Topgaard D. Filter-exchange PGSE NMR determination of cell membrane permeability. J Magn Reson. 2009;200:291–5.CrossRefGoogle Scholar
  59. 59.
    Callaghan PT. Translational dynamics and magnetic resonance: principle of pulsed gradient spin echo NMR. Oxford: Oxford University Press; 2011.CrossRefGoogle Scholar
  60. 60.
    Callaghan PT. Principles of nuclear magnetic resonance microscopy. New York: Oxford University Press; 1991.Google Scholar
  61. 61.
    Pfeuffer J, Flögel U, Leibfritz D. Monitoring of cell volume and water exchange time in perfused cells by diffusion-weighted 1H NMR spectroscopy. NMR Biomed. 1998;11:11–8.CrossRefGoogle Scholar
  62. 62.
    Pfeuffer J, Flögel U, Dreher W, Leibfritz D. Restricted diffusion and exchange of intracellular water: theoretical modelling and diffusion time dependence of 1H NMR measurements on perfused glial cells. NMR Biomed. 1998;11:19–31.CrossRefGoogle Scholar
  63. 63.
    Schoberth SM, Bär N-K, Krämer R, Kärger J. Pulsed high-field gradient in vivo NMR spectroscopy to measure diffusional water permeability in corynebacterium glutamicum. Anal Biochem. 2000;279:100–5.CrossRefGoogle Scholar
  64. 64.
    Price WS, Barzykin AV, Hayamizu K, Tachiya M. A model for diffusive transport through a spherical interface probed by pulsed-field gradient NMR. Biophys J. 1998;74:2259–71.CrossRefGoogle Scholar
  65. 65.
    Malmborg C, Topgaard D, Söderman O. NMR diffusometry and the short gradient pulse limit approximation. J Magn Reson. 2004;169:85–91.CrossRefGoogle Scholar
  66. 66.
    Balinov B, Linse P, Söderman O. Diffusion of the dispersed phase in a highly concentrated emulsion: emulsion structure and film permeation. J Colloid Interface Sci. 1996;182:539–48.CrossRefGoogle Scholar
  67. 67.
    Lasic S, Aaslund I, Topgaard D. Spectral characterization of diffusion with chemical shift resolution: highly concentrated water-in-oil emulsion. J Magn Reson. 2009;199:166–72.CrossRefGoogle Scholar
  68. 68.
    Vermeir L, Sabatino P, Balcaen M, Declerck A, Dewettinck K, Martins JC, Guthausen G, Van der Meeren P. Effect of molecular exchange on water droplet size analysis as determined by diffusion NMR: the W/O/W double emulsion case. J Colloid Interface Sci. 2016;475:57–65.CrossRefGoogle Scholar
  69. 69.
    Hindmarsh JP, Su J, Flanagan J, Singh H. PFG-NMR analysis of intercompartment exchange and inner droplet size distribution of WOW emulsions. Langmuir. 2005;21:9076–84.CrossRefGoogle Scholar
  70. 70.
    Conlon T, Outhred R. Water diffusion permeability of erythrocytes using an NMR technique. Biochim Biophys Acta. 1972;288:354–61.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Mechanical Process Engineering and Mechanics, Process Machines, and Engler-Bunte Institute, Water Chemistry and Technology, Karlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations