Advertisement

Experimental Models of Brain Disease: MRI Contrast Mechanisms for the Assessment of Pathophysiological Status

  • David L. Thomas
  • Karin Shmueli
  • Marilena Rega
  • Francisco Torrealdea
  • Louise van der Weerd
  • Mark F. Lythgoe
  • John S. Thornton
Living reference work entry

Abstract

Magnetic resonance imaging (MRI) enables non-invasive in vivo imaging with excellent contrast between different types of soft tissue. One of the strengths of MRI is the variety of contrasts that it is able to provide. Traditionally, MRI images have been acquired with contrast based on tissue type and macrostructure, allowing detailed depiction of anatomy. More recently, complementary methods have been developed which derive their contrasts from tissue microstructure (at the level of the cells) and physiology (oxygen utilisation and blood perfusion). In this chapter, the most widely-used MR methods for imaging the brain will be described, and the mechanisms responsible for the sensitivity of these methods to pathophysiology in brain disease will be explained.

Keywords

Imaging Relaxation Diffusion Perfusion Susceptibility Magnetization transfer 

Notes

Acknowledgments

The authors would like to thank Romina Aron-Badin, Mankin Choy, Neil Harris, and Rick Dijkhuizen for their contribution of images for the manuscript. We also acknowledge the Wellcome Trust, British Heart Foundation, Wolfson Foundation, MRC, and BBSRC for financial support.

References

  1. 1.
    Hajnal JV, Baudouin CJ, Oatridge A, Young IR, Bydder GM. Design and implementation of magnetization transfer pulse sequences for clinical use. J Comput Assist Tomogr. 1992;16:7–18.CrossRefGoogle Scholar
  2. 2.
    Frahm J, Merboldt K-D, Hanicke W. Direct FLASH MR imaging of magnetic field inhomogeneities by gradient compensation. Magn Reson Med. 1988;6:474–80.CrossRefGoogle Scholar
  3. 3.
    Ordidge RJ, Knight RA, Helpern JA, Hugg JW. A low flip angle spin echo technique for producing diffusion-weighted MR images. Magn Reson Imaging. 1994;12:727–31.CrossRefGoogle Scholar
  4. 4.
    Gilani I, Sepponen R. Quantitative rotating frame relaxometry methods in MRI. NMR Biomed. 2016;29:841–61.CrossRefGoogle Scholar
  5. 5.
    Grohn OHJ, Kettunen MI, Penttonen M, Oja JME, van Zijl PCM, Kauppinen RA. Graded reduction of cerebral blood flow in rat as detected by the nuclear magnetic relaxation time T2: a theoretical and experimental approach. J Cereb Blood Flow Metab. 2000;20:316–26.CrossRefGoogle Scholar
  6. 6.
    Aronen HJ, Ramadan UA, Peltonen TK, Markkola AT, Tanttu JI, Jaaskelainen J, Hakkinen AM, Sepponen R. 3D spin-lock imaging of human gliomas. Magn Reson Imaging. 1999;17:1001–10.CrossRefGoogle Scholar
  7. 7.
    Duvvuri U, Goldberg AD, Kranz JK, Hoang L, Reddy R, Wehrli FW, Wand AJ, Englander SW, Leigh JS. Water magnetic relaxation dispersion in biological systems: the contribution of proton exchange and implications for the noninvasive detection of cartilage degradation. Proc Natl Acad Sci U S A. 2001;98:12479–84.CrossRefGoogle Scholar
  8. 8.
    Schenk JF. The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys. 1996;23:815–50.CrossRefGoogle Scholar
  9. 9.
    Marques JP, Bowtell R. Application of a fourier-based method for rapid calculation of field inhomogeneity due to spatial variation of magnetic susceptibility. Concepts Magn Reson Part B Magn Reson Eng. 2005;25B:65–78.CrossRefGoogle Scholar
  10. 10.
    Salomir R, De Senneville BD, Moonen CTW. A fast calculation method for magnetic field inhomogeneity due to an arbitrary distribution of bulk susceptibility. Concepts Magn Reson Part B Magn Reson Eng. 2003;19B:26–34.CrossRefGoogle Scholar
  11. 11.
    Wang Y, Liu T. Quantitative susceptibility mapping (QSM): decoding MRI data for a tissue magnetic biomarker. Magn Reson Med. 2015;73:82–101.CrossRefGoogle Scholar
  12. 12.
    Liu C, Li W, Tong KA, Yeom KW, Kuzminski S. Susceptibility-weighted imaging and quantitative susceptibility mapping in the brain. J Magn Reson Imaging. 2015;42:23–41.CrossRefGoogle Scholar
  13. 13.
    Haacke EM, Liu S, Buch S, Zheng W, Wu D, Ye Y. Quantitative susceptibility mapping: current status and future directions. Magn Reson Imaging. 2015;33:1–25.CrossRefGoogle Scholar
  14. 14.
    Deistung A, Schweser F, Reichenbach JR. Overview of quantitative susceptibility mapping. NMR Biomed. 2016, (In Press) doi:10.1002/nbm.3569.
  15. 15.
    Shmueli K, van Gelderen P, Yao B, de Zwart JA, Fukunaga M, Duyn JH. The dependence of tissue phase contrast on orientation can be overcome by quantitative susceptibility mapping. In: Proceedings of 17th meeting of ISMRM 466, 2009.Google Scholar
  16. 16.
    Haacke EM, Xu Y, Cheng YC, Reichenbach JR. Susceptibility weighted imaging (SWI). Magn Reson Med. 2004;52:612–8.CrossRefGoogle Scholar
  17. 17.
    Duyn JH, Schenck J. Contributions to magnetic susceptibility of brain tissue. NMR Biomed. 2016, (In Press) doi:10.1002/nbm3563.
  18. 18.
    Lee J, Shmueli K, Fukunaga M, van Gelderen P, Merkle H, Silva AC, Duyn JH. Sensitivity of MRI resonance frequency to the orientation of brain tissue microstructure. Proc Natl Acad Sci U S A. 2010;107:5130–5.CrossRefGoogle Scholar
  19. 19.
    Li W, Liu C, Duong TQ, van Zijl PC, Li X. Susceptibility tensor imaging (STI) of the brain. NMR Biomed. 2016, (In Press) doi:10.1002/nbm3540.
  20. 20.
    Li W, Wu B, Avram AV, Liu C. Magnetic susceptibility anisotropy of human brain in vivo and its molecular underpinnings. Neuroimage. 2012;59:2088–97.CrossRefGoogle Scholar
  21. 21.
    Lee J, Shmueli K, Kang BT, Yao B, Fukunaga M, van Gelderen P, Palumbo S, Bosetti F, Silva AC, Duyn JH. The contribution of myelin to magnetic susceptibility-weighted contrasts in high-field MRI of the brain. Neuroimage. 2012;59:3967–75.CrossRefGoogle Scholar
  22. 22.
    Liu C, Li W, Johnson GA, Wu B. High-field (9.4 T) MRI of brain dysmyelination by quantitative mapping of magnetic susceptibility. Neuroimage. 2011;56:930–8.CrossRefGoogle Scholar
  23. 23.
    O’Callaghan, JM, Holmes, HE, Powell, N, Wells, JA, Ismail O, Harrison IF, Siow B, O’Neill MJ, Collins CM, Shmueli K, Lythgoe MF. Does tau pathology play a role in abnormal iron deposition in Alzheimer’s disease? A quantitative susceptibility mapping study in the RTg4510 mouse model of tauopathy. In: Proceedings of the 24th meeting of ISMRM 3380. Concord, CA, USA; 2016.Google Scholar
  24. 24.
    Klohs J, Politano IW, Deistung A, Grandjean J, Drewek A, Dominietto M, Keist R, Schweser F, Reichenbach JR, Nitsch RM, Knuesel I, Rudin M. Longitudinal assessment of amyloid pathology in transgenic ArcAbeta mice using multi-parametric magnetic resonance imaging. PLoS One. 2013;8:e66097.CrossRefGoogle Scholar
  25. 25.
    Cao W, Li W, Han H, O’Leary-Moore SK, Sulik KK, Allan JG, Liu C. Prenatal alcohol exposure reduces magnetic susceptibility contrast and anisotropy in the white matter of mouse brains. Neuroimage. 2014;102(Pt 2):748–55.CrossRefGoogle Scholar
  26. 26.
    Argyridis I, Li W, Johnson GA, Liu C. Quantitative magnetic susceptibility of the developing mouse brain reveals microstructural changes in the white matter. Neuroimage. 2014;88:134–42.CrossRefGoogle Scholar
  27. 27.
    Wei H, Xie L, Dibb R, Li W, Decker K, Zhang Y, Johnson GA, Liu C. Imaging whole-brain cytoarchitecture of mouse with MRI-based quantitative susceptibility mapping. Neuroimage. 2016;137:107–15.CrossRefGoogle Scholar
  28. 28.
    Xie L, Sparks MA, Li W, Qi Y, Liu C, Coffman TM, Johnson GA. Quantitative susceptibility mapping of kidney inflammation and fibrosis in type 1 angiotensin receptor-deficient mice. NMR Biomed. 2013;26:1853–63.CrossRefGoogle Scholar
  29. 29.
    Hsieh MC, Tsai CY, Liao MC, Yang JL, Su CH, Chen JH. Quantitative susceptibility mapping-based microscopy of magnetic resonance venography (QSM-mMRV) for in vivo morphologically and functionally assessing cerebromicrovasculature in rat stroke model. PLoS One. 2016;11:e0149602.CrossRefGoogle Scholar
  30. 30.
    Hsieh MC, Kuo LW, Huang YA, Chen JH. Investigating hyperoxic effects in the rat brain using quantitative susceptibility mapping based on MRI phase. Magn Reson Med. 2017;77:592–602.CrossRefGoogle Scholar
  31. 31.
    Ogawa S, Lee TM, Nayak AS, Glynn P. Oxygenation sensitive contrast in magnetic resonance images of rodent brain at high magnetic fields. Magn Reson Med. 1990;14:68–78.CrossRefGoogle Scholar
  32. 32.
    Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A. 1990;87:9868–72.CrossRefGoogle Scholar
  33. 33.
    Ugurbil K, Hu X, Chen W, Zhu X-H, Kim SG, Georgopolous A. Functional mapping in the human brain using high magnetic fields. Philos Trans R Soc Lond B. 1999;354:1195–213.CrossRefGoogle Scholar
  34. 34.
    Buxton RB. Introduction to functional magnetic resonance imaging. Cambridge: Cambridge University Press; 2002.CrossRefGoogle Scholar
  35. 35.
    Anonymous. Functional magnetic resonance imaging – an introduction to methods. New York: Oxford University Press; 2003.Google Scholar
  36. 36.
    Hoehn M. Biomedical imaging in experimental neuroscience, eds. van Bruggen N, Roberts T. Boca Raton, Florida, USA: CRC Press; 2003. p. 93.Google Scholar
  37. 37.
    Graves MJ. Magnetic resonance angiography. Br J Radiol. 1997;70:6–28.CrossRefGoogle Scholar
  38. 38.
    Ruggieri PM, Laub GA, Masaryk TJ, Modic MT. Intracranial circulation: pulse-sequence considerations in three-dimensional (volume) MR angiography. Radiology. 1989;171:785–91.CrossRefGoogle Scholar
  39. 39.
    Mellin AF, Cofer GP, Smith BR, Suddarth SA, Hedlund LW, Johnson GA. Three dimensional magnetic resonance microangiography of rat neurovasculature. Magn Reson Med. 1994;32:199–205.CrossRefGoogle Scholar
  40. 40.
    Reese TG, Weisskoff, RM. Echo planar NMR imaging at 4.7T using sinusoidal or trapezoidal readout gradients and regridding. In: Proceedings of the 12th meeting of the Society of Magnetic Resonance 1232. Concord, CA, USA; 1993.Google Scholar
  41. 41.
    Besselmann M, Liu M, Diedenhofen M, Franke C, Hoehn M. MR angiography investigation of transient focal ischemia in rat. NMR Biomed. 2001;14:289–96.CrossRefGoogle Scholar
  42. 42.
    Hilger T, Niessen F, Diedenhofen M, Hossmann KA, Hoehn M. Magnetic resonance angiography of thromboembolic stroke in rats: indicator of recanalization probability and tissue survival after recombinant tissue plasminogen activator treatment. J Cereb Blood Flow Metab. 2002;22:652–62.CrossRefGoogle Scholar
  43. 43.
    Beckmann N, Stirnimann R, Bochelen D. High-resolution magnetic resonance angiography of the mouse brain: application to murine focal cerebral ischemia models. J Magn Reson. 1999;140:442–50.CrossRefGoogle Scholar
  44. 44.
    Beckmann N. High resolution magnetic resonance angiography non-invasively reveals mouse strain differences in the cerebrovascular anatomy in vivo. Magn Reson Med. 2000;44:252–8.CrossRefGoogle Scholar
  45. 45.
    Krucker T, Schuler A, Meyer EP, Staufenbiel M, Beckmann N. Magnetic resonance angiography and vascular corrosion casting as tools in biomedical research: application to transgenic mice modeling Alzheimer’s disease. Neurol Res. 2004;26:507–16.CrossRefGoogle Scholar
  46. 46.
    Weinmann HJ, Brasch RC, Press WR, Wesbey GE. Characteristics of gadolinium-DTPA complex – a potential NMR contrast agent. Am J Roentgenol. 1984;142:619–24.CrossRefGoogle Scholar
  47. 47.
    Lunsford LD, Martinez AJ, Latchaw RE. Magnetic resonance imaging does not define tumor boundaries. Acta Radiol Suppl. 1986;369:154–6.Google Scholar
  48. 48.
    Earnest F, Kelly PJ, Scheithauer BW, Kall BA, Cascino TL, Ehman RL, Forbes GS, Axley PL. Cerebral astrocytomas: histopathologic correlation of MR and CT contrast enhancement with stereotactic biopsy. Radiology. 1988;166:823–7.CrossRefGoogle Scholar
  49. 49.
    Parker GJM, Padhani AR. T1-w DCE-MRI: T1-weighted Dynamic Contrast-enhanced MRI. In: Tofts PS, editor. Quantitative MRI of the brain. Measuring changes caused by disease. Chichester UK: John Wiley & Sons Ltd; 2003. p. 341.Google Scholar
  50. 50.
    Kermode AG, Thompson AJ, Tofts P, MacManus DG, Kendall BE, Kingsley DP, Moseley IF, Rudge P, McDonald WI. Breakdown of the blood-brain barrier precedes symptoms and other MRI signs of new lesions in multiple sclerosis. Pathogenetic and clinical implications. Brain. 1990;113(Pt 5):1477–89.CrossRefGoogle Scholar
  51. 51.
    Harris NG, Gauden V, Fraser PA, Williams SR, Parker GJ. MRI measurement of blood-brain barrier permeability following spontaneous reperfusion in the starch microsphere model of ischemia. Magn Reson Imaging. 2002;20:221–30.CrossRefGoogle Scholar
  52. 52.
    Shreiber DI, Smith DH, Meaney DF. Immediate in vivo response of the cortex and the blood-brain barrier following dynamic cortical deformation in the rat. Neurosci Lett. 1999;259:5–8.CrossRefGoogle Scholar
  53. 53.
    van Bruggen N, Busch E, Palmer JT, Williams S-P, De Crespigny AJ. High resolution functional magnetic resonance imaging of the rat brain: mapping changes in cerebral blood volume using iron oxide contrast media. J Cereb Blood Flow Metab. 1998;18:1178–83.CrossRefGoogle Scholar
  54. 54.
    Mandeville JB, Marota JJA, Kosofsky BE, Keltner JR, Weissleder R, Rosen BR, Weisskoff RM. Dynamic functional imaging of relative cerebral blood volume during rat forepaw stimulation. Magn Reson Med. 1998;39:615–24.CrossRefGoogle Scholar
  55. 55.
    Kennan RP, Scanley BE, Innis RB, Gore JC. Physiological basis for BOLD MR signal changes due to neuronal stimulation: separation of blood volume and magnetic susceptibility effects. Magn Reson Med. 1998;40:840–6.CrossRefGoogle Scholar
  56. 56.
    Chen N-K, Wyrwicz AM. Optimized distortion correction technique for echo planar imaging. Magn Reson Med. 2001;45:525–8.CrossRefGoogle Scholar
  57. 57.
    Mueggler T, Baumann D, Rausch M, Staufenbiel M, Rudin M. Age-dependent impairment of somatosensory response in the amyloid precursor protein 23 transgenic mouse model of Alzheimer’s disease. J Neurosci. 2003;23:8231–6.Google Scholar
  58. 58.
    Dijkhuizen RM, Ren J, Mandeville JB, Wu O, Ozdag FM, Moskowitz MA, Rosen BR, Finklestein SP. Functional magnetic resonance imaging of reorganization in rat brain after stroke. Proc Natl Acad Sci U S A. 2001;98:12766–71.CrossRefGoogle Scholar
  59. 59.
    D’Arceuil HE, Crespigny AJ, Rother J, Moseley M, Rhine W. Serial magnetic resonance diffusion and hemodynamic imaging in a neonatal rabbit model of hypoxic-ischemic encephalopathy. NMR Biomed. 1999;12:505–14.CrossRefGoogle Scholar
  60. 60.
    Thomas DL, Lythgoe MF, Pell GS, Calamante F, Ordidge RJ. The measurement of diffusion and perfusion in biological systems using magnetic resonance imaging. Phys Med Biol. 2000;45:R97–138.CrossRefGoogle Scholar
  61. 61.
    Basser PJ, Mattiello D, Le Bihan D. MR diffusion tensor spectroscopy and imaging. Biophys J. 1994;66:259–67.CrossRefGoogle Scholar
  62. 62.
    Pierpaoli C, Alger JR, Righini A, Mattiello J, Dickerson R, Despres D, Barnett A, Di Chiro G. High temporal resolution diffusion MRI of global cerebral ischaemia and reperfusion. J Cereb Blood Flow Metab. 1996;16:892–905.CrossRefGoogle Scholar
  63. 63.
    Mori S, van Zijl PC. Fiber tracking: principles and strategies – a technical review. NMR Biomed. 2002;15:468–80.CrossRefGoogle Scholar
  64. 64.
    Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage. 2012;61:1000–16.CrossRefGoogle Scholar
  65. 65.
    Colgan N, Siow B, O’Callaghan JM, Harrison IF, Wells JA, Holmes HE, Ismail O, Richardson S, Alexander DC, Collins EC, Fisher EM, Johnson R, Schwarz AJ, Ahmed Z, O’Neill MJ, Murray TK, Zhang H, Lythgoe MF. Application of neurite orientation dispersion and density imaging (NODDI) to a tau pathology model of Alzheimer’s disease. Neuroimage. 2016;125:739–44.CrossRefGoogle Scholar
  66. 66.
    Shellock FG, Kanal E. Safety of magnetic resonance imaging contrast agents. J Magn Reson Imaging. 1999;10:477–84.CrossRefGoogle Scholar
  67. 67.
    Ostergaard L, Weisskoff RM, Chesler DA, Glydensted C, Rosen BR. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: mathematical approach and statistical analysis. Magn Reson Med. 1996;36:715–25.CrossRefGoogle Scholar
  68. 68.
    Calamante F, Gadian DG, Connelly A. Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition. Magn Reson Med. 2000;44:466–73.CrossRefGoogle Scholar
  69. 69.
    Zierler KL. Theoretical basis of indicator-dilution methods for measuring flow and volume. Circ Res. 1962;10:393–407.CrossRefGoogle Scholar
  70. 70.
    Zierler KL. Equations for measuring blood flow by external monitoring of radioisotopes. Circ Res. 1965;16:309–21.CrossRefGoogle Scholar
  71. 71.
    Axel L. Cerebral blood flow determination by rapid sequence computed tomography. Radiology. 1980;137:679–86.CrossRefGoogle Scholar
  72. 72.
    Stewart GN. Researches on the circulation time in organs and the influences which affect it. J Physiol. 1894;15:1.CrossRefGoogle Scholar
  73. 73.
    Meier P, Zierler KL. On the theory of the indicator-dilution method for measurement of blood flow and volume. Appl Physiol. 1954;6:731–44.CrossRefGoogle Scholar
  74. 74.
    Detre JA, Leigh JS, Williams DS, Koretsky AP. Perfusion imaging. Magn Reson Med. 1992;23:37–45.CrossRefGoogle Scholar
  75. 75.
    Dixon WT, Du LN, Faul DD, Gado M, Rossnick S. Projection angiograms of blood labeled by adiabatic fast passage. Magn Reson Med. 1986;3:454–62.CrossRefGoogle Scholar
  76. 76.
    Kim SG. Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med. 1995;34:293–301.CrossRefGoogle Scholar
  77. 77.
    Dai W, Garcia D, de Bazelaire C, Alsop DC. Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn Reson Med. 2008;60:1488–97.CrossRefGoogle Scholar
  78. 78.
    Duhamel G, Callot V, Tachrount M, Alsop DC, Cozzone PJ. Pseudo-continuous arterial spin labeling at very high magnetic field (11.75T) for high-resolution mouse brain perfusion imaging. Magn Reson Med. 2012;67:1225–36.CrossRefGoogle Scholar
  79. 79.
    Calamante F, Lythgoe MF, Pell GS, Thomas DL, King MD, Busza AL, Sotak CH, Williams SR, Ordidge RJ, Gadian DG. Early changes in water diffusion, perfusion, T1 and T2 during focal ischaemia in the rat studied at 8.5T. Magn Reson Med. 1999;41:479–85.CrossRefGoogle Scholar
  80. 80.
    Alsop DC, Detre JA. Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow. J Cereb Blood Flow Metab. 1996;16:1236–49.CrossRefGoogle Scholar
  81. 81.
    Wong EC, Buxton RB, Frank LR. Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II). Magn Reson Med. 1998;39:702–8.CrossRefGoogle Scholar
  82. 82.
    Luh WM, Wong EC, Bandettini PA, Hyde JS. QUIPSS II with thin-slice TI1 periodic saturation: a method for improving accuracy of quantitative perfusion imaging using pulsed arterial spin labeling. Magn Reson Med. 1999;41:1246–54.CrossRefGoogle Scholar
  83. 83.
    Wolff S, Balaban R. Magnetisation transfer contrast (MTC) and tissue water proton relaxation in vivo. Magn Reson Med. 1989;10:135–44.CrossRefGoogle Scholar
  84. 84.
    Henkelman RM, Stanisz GJ, Graham SJ. Magnetization transfer in MRI: a review. NMR Biomed. 2001;14:57–64.CrossRefGoogle Scholar
  85. 85.
    Dousset V, Grossman RI, Ramer KN, Schnall MD, Young LH, Gonzalez-Scarano F, Lavi E, Cohen JA. Experimental allergic encephalomyelitis and multiple sclerosis: lesion characterization with magnetization transfer imaging. Radiology. 1992;182:483–91.CrossRefGoogle Scholar
  86. 86.
    van Zijl PC, Yadav NN. Chemical exchange saturation transfer (CEST): what is in a name and what isn’t? Magn Reson Med. 2011;65:927–48.CrossRefGoogle Scholar
  87. 87.
    Zhou J, Payen JF, Wilson DA, Traystman RJ, van Zijl PC. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nat Med. 2003;9:1085–90.CrossRefGoogle Scholar
  88. 88.
    Haris M, Nanga RP, Singh A, Cai K, Kogan F, Hariharan H, Reddy R. Exchange rates of creatine kinase metabolites: feasibility of imaging creatine by chemical exchange saturation transfer MRI. NMR Biomed. 2012;25:1305–9.CrossRefGoogle Scholar
  89. 89.
    Jin T, Wang P, Zong X, Kim SG. Magnetic resonance imaging of the Amine-Proton EXchange (APEX) dependent contrast. Neuroimage. 2012;59:1218–27.CrossRefGoogle Scholar
  90. 90.
    Bar-Shir A, Liu G, Liang Y, Yadav NN, McMahon MT, Walczak P, Nimmagadda S, Pomper MG, Tallman KA, Greenberg MM, van Zijl PC, Bulte JW, Gilad AA. Transforming thymidine into a magnetic resonance imaging probe for monitoring gene expression. J Am Chem Soc. 2013;135:1617–24.CrossRefGoogle Scholar
  91. 91.
    Walker-Samuel S, Ramasawmy R, Torrealdea F, Rega M, Rajkumar V, Johnson SP, Richardson S, Goncalves M, Parkes HG, Arstad E, Thomas DL, Pedley RB, Lythgoe MF, Golay X. In vivo imaging of glucose uptake and metabolism in tumors. Nat Med. 2013;19:1067–72.CrossRefGoogle Scholar
  92. 92.
    Torrealdea F, Rega M, Golay X. Chemical exchange saturation transfer: advances and applications, eds. McMahon MT, Gilad AA, Bulte JWM, van Zijl PCM. Singapore: Pan Stanford; 2017.Google Scholar
  93. 93.
    van Zijl PC, Jones CK, Ren J, Malloy CR, Sherry AD. MRI detection of glycogen in vivo by using chemical exchange saturation transfer imaging (glycoCEST). Proc Natl Acad Sci U S A. 2007;104:4359–64.CrossRefGoogle Scholar
  94. 94.
    Cai K, Singh A, Roalf DR, Nanga RP, Haris M, Hariharan H, Gur R, Reddy R. Mapping glutamate in subcortical brain structures using high-resolution GluCEST MRI. NMR Biomed. 2013;26:1278–84.CrossRefGoogle Scholar
  95. 95.
    Zhou J, van Zijl PCM. Chemical exchange saturation transfer imaging and spectroscopy. Prog Nucl Magn Reson Spectrosc. 2006;48:109–36.CrossRefGoogle Scholar
  96. 96.
    Wu B, Warnock G, Zaiss M, Lin C, Chen M, Zhou Z, Mu L, Nanz D, Tuura R, Delso G. An overview of CEST MRI for non-MR physicists. EJNMMI Phys. 2016;3:19.CrossRefGoogle Scholar
  97. 97.
    Kogan F, Hariharan H, Reddy R. Chemical exchange saturation transfer (CEST) imaging: description of technique and potential clinical applications. Curr Radiol Rep. 2013;1:102–14.CrossRefGoogle Scholar
  98. 98.
    Zaiss M, Bachert P. Chemical exchange saturation transfer (CEST) and MR Z-spectroscopy in vivo: a review of theoretical approaches and methods. Phys Med Biol. 2013;58:R221–69.CrossRefGoogle Scholar
  99. 99.
    Sinharay S, Pagel MD. Advances in Magnetic Resonance Imaging Contrast Agents for Biomarker Detection. Annu Rev Anal Chem (Palo Alto Calif). 2016;9:95–115.CrossRefGoogle Scholar
  100. 100.
    Zhou J, Tryggestad E, Wen Z, Lal B, Zhou T, Grossman R, Wang S, Yan K, Fu DX, Ford E, Tyler B, Blakeley J, Laterra J, van Zijl PC. Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides. Nat Med. 2011;17:130–4.CrossRefGoogle Scholar
  101. 101.
    Sun PZ, Zhou J, Sun W, Huang J, van Zijl PC. Detection of the ischemic penumbra using pH-weighted MRI. J Cereb Blood Flow Metab. 2007;27:1129–36.CrossRefGoogle Scholar
  102. 102.
    Desmond KL, Moosvi F, Stanisz GJ. Mapping of amide, amine, and aliphatic peaks in the CEST spectra of murine xenografts at 7T. Magn Reson Med. 2014;71:1841–53.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • David L. Thomas
    • 1
    • 2
  • Karin Shmueli
    • 6
  • Marilena Rega
    • 3
  • Francisco Torrealdea
    • 4
    • 5
  • Louise van der Weerd
    • 7
  • Mark F. Lythgoe
    • 8
  • John S. Thornton
    • 9
  1. 1.Leonard Wolfson Experimental Neurology Centre, UCL Institute of NeurologyUniversity College LondonLondonUK
  2. 2.Neuroradiological Academic Unit, UCL Institute of NeurologyUniversity College LondonLondonUK
  3. 3.Institute of Nuclear MedicineUniversity College LondonLondonUK
  4. 4.Centre for Medical ImagingUniversity College LondonLondonUK
  5. 5.Department of Brain Repair and Rehabilitation, UCL Institute of NeurologyUniversity College LondonLondonUK
  6. 6.Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
  7. 7.Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
  8. 8.Centre for Advanced Biomedical Imaging, Division of MedicineUniversity College LondonLondonUK
  9. 9.Lysholm Department of Neuroradiology, National Hospital for Neurology and NeurosurgeryUCLH NHS TrustLondonUK

Personalised recommendations