Skip to main content

Characterization of Antimicrobial and Host-Defense Peptides by NMR Spectroscopy

  • Living reference work entry
  • First Online:
Modern Magnetic Resonance

Abstract

The mammalian innate immune system relies on a series of cationic antimicrobial peptides and various host-defense proteins to ward of invasions by pathogenic bacteria. NMR spectroscopy has played a dominant role in identifying the amphipathic three-dimensional structures of antimicrobial peptides and gaining an understanding of their mechanism of action. Most studies to date have relied on regular proton NMR approaches, but multidimensional NMR studies of carbon-13 and nitrogen-15 isotope-labeled peptides, as well as fluorine-19 NMR, are now commonly used as well. While the majority of the cationic antimicrobial peptides can give rise to bacterial killing by selectively perturbing the negatively charged bacterial membranes, others enter the cell and act on intracellular protein targets or nucleic acids. Some host defense proteins create ‘nutritional immunity’, by binding essential metal ions, such as iron or zinc, while others can enzymatically degrade bacterial peptidoglycan in the cell envelope. In response, several pathogenic bacteria have developed various defense mechanisms, involving the alteration of their membrane surface charge, or expression of unique proteins that can intercept antimicrobial peptides or host defense proteins. NMR spectroscopy has also played a major role in characterizing the protein-protein or protein-peptide complexes that play a role in these processes. Finally, NMR metabolomics and MRI imaging approaches have been deployed to study the mode of action of antibiotics and antimicrobial peptides in animal models and hopefully in the future these techniques can be used to determine their efficacy in human patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States. 2013. Available from http//www.cdc.gov/drugresistance/threat-Report-2013/pdf/ar-Threats-2013-508.pdf.

  2. World Health Organization (WHO). Antimicrobial resistance: global report on surveillance. 2014. Available from http//www.who.int/drugresistance/documents/surveillancereport/en/.

  3. Piddock LJV. The crisis of no new antibiotics-what is the way forward? Lancet Infect Dis. 2012;12:249–53.

    Article  Google Scholar 

  4. Bartlett JG, Gilbert DN, Spellberg B. Seven ways to preserve the miracle of antibiotics. Clin Infect Dis. 2013;56:1445–50.

    Article  Google Scholar 

  5. Bax R, Green S. Antibiotics: The changing regulatory and pharmaceutical industry paradigm. J Antimicrob Chemother. 2014;70:1281–4.

    Article  Google Scholar 

  6. Kostyanev T, Bonten MJM, O’Brien S, Steel H, Ross S, Francois B, et al. The innovative medicines initiative’s new drugs for bad bugs programme: European public-private partnerships for the development of new strategies to tackle antibiotic resistance. J Antimicrob Chemother. 2016;71:290–5.

    Article  Google Scholar 

  7. Hancock REW, Sahl H-G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol. 2006;24:1551–7.

    Article  Google Scholar 

  8. Wang G, Li X, Wang Z. APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 2016;44:D1087–93.

    Article  Google Scholar 

  9. Arnold TM, Forrest GN, Messmer KJ. Polymyxin antibiotics for gram-negative infections. Am J Heal Pharm. 2007;64:819–26.

    Article  Google Scholar 

  10. Baltz RH, Miao V, Wrigley SK. Natural products to drugs: daptomycin and related lipopeptide antibiotics. Nat Prod Rep. 2005;22:717–41.

    Article  Google Scholar 

  11. Tam JP, Wang S, Wong KH, Tan WL. Antimicrobial peptides from plants. Pharmaceuticals. 2015;8:711–57.

    Article  Google Scholar 

  12. Henry BGD, Sykes BD. Methods to study membrane protein structure in solution. Methods Enzymol. 1994;239:515–35.

    Article  Google Scholar 

  13. Ramamoorthy A. Beyond NMR spectra of antimicrobial peptides: dynamical images at atomic resolution and functional insights. Solid State Nucl Magn Reson. 2009;35:201–7.

    Article  Google Scholar 

  14. Koch K, Afonin S, Ieronimo M, Berditsch M, Ulrich AS. Solid-state 19F-NMR of peptides in native membranes. Top Curr Chem. 2012;306:89–118.

    Article  Google Scholar 

  15. Fillion M, Ouellet M, Auger M. Solid-state NMR studies of the interactions and structure of antimicrobial peptides in model membranes. In: Webb GA, editor. Modern magnetic resonance. Dordrecht: Springer; 2016. p. 1–18.

    Chapter  Google Scholar 

  16. Bechinger B, Salnikov ES. The membrane interactions of antimicrobial peptides revealed by solid-state NMR spectroscopy. Chem Phys Lipids. 2012;165:282–301.

    Article  Google Scholar 

  17. Hwang PM, Vogel HJ. Structure-function relationships of antimicrobial peptides. Biochem Cell Biol. 1998;76:235–46.

    Article  Google Scholar 

  18. Nguyen LT, Haney EF, Vogel HJ. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol. 2011;29:464–72.

    Article  Google Scholar 

  19. Pletzer D, Coleman SR, Hancock REW. Anti-biofilm peptides as a new weapon in antimicrobial warfare. Curr Opin Microbiol. 2016;33:35–40.

    Article  Google Scholar 

  20. Hancock REW, Haney EF, Gill EE. The immunology of host defence peptides: beyond antimicrobial activity. Nat Rev Immunol. 2016;16:321–34.

    Article  Google Scholar 

  21. Rautenbach M, Troskie AM, Vosloo JA. Antifungal peptides: to be or not to be membrane active. Biochimie. 2016;130:132–45.

    Article  Google Scholar 

  22. Arias M, Hilchie A, Haney EF, Bolscher JG, Hyndman ME, Hancock REW, et al. Anticancer activities of bovine and human lactoferricin-derived peptides. Biochem Cell Biol. 2017;95:91–8.

    Article  Google Scholar 

  23. Gaspar D, Salomé Veiga A, Castanho MARB. From antimicrobial to anticancer peptides. A review. Front Microbiol. 2013;4:1–16.

    Article  Google Scholar 

  24. Wuthrich K. NMR of proteins and nucleic acids. New York: Wiley; 1986.

    Google Scholar 

  25. Wishart DS, Sykes BD, Richards FM. Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. J Mol Biol. 1991;222:311–33.

    Article  Google Scholar 

  26. Cordier F, Grzesiek S. Temperature-dependence of protein hydrogen bond properties as studied by high-resolution NMR. J Mol Biol. 2002;317:739–52.

    Article  Google Scholar 

  27. Baxter NJ, Williamson MP. Temperature dependence of 1H chemical shifts in proteins. J Biomol NMR. 1997;9:359–69.

    Article  Google Scholar 

  28. Haney EF, Vogel HJ. NMR of antimicrobial peptides. In: Webb G, editor. Annual reports on NMR spectroscopy. 1st ed. New York: Academic Press; 2009. p. 1–45.

    Google Scholar 

  29. Nishida M, Imura Y, Yamamoto M, Kobayashi S, Yano Y, Matsuzaki K. Interaction of a magainin−PGLa hybrid peptide with membranes: insight into the mechanism of synergism. Biochemistry. 2007;46:14284–90.

    Article  Google Scholar 

  30. Tencza SB, Creighton DJ, Yuan T, Vogel HJ, Montelaro RC, Mietzner TA. Lentivirus-derived antimicrobial peptides: increased potency by sequence engineering and dimerization. J Antimicrob Chemother. 1999;44:33–41.

    Article  Google Scholar 

  31. Haney EF, Hunter HN, Matsuzaki K, Vogel HJ. Solution NMR studies of amphibian antimicrobial peptides: linking structure to function? Biochim Biophys Acta. 2009;1788:1639–55.

    Article  Google Scholar 

  32. Kay LE. NMR methods for the study of protein structure and dynamics. Biochem Cell Biol. 1997;75:1–15.

    Article  Google Scholar 

  33. Ishida H, Nguyen LT, Ramamourthy G, Aizawa T, Vogel HJ. Overexpression of antimicrobial, anticancer, and transmembrane peptides in Escherichia coli through a calmodulin-peptide fusion system. J Am Chem Soc. 2016;138:11318–26.

    Article  Google Scholar 

  34. Kapust RB, Tözsér J, Fox JD, Anderson DE, Cherry S, Copeland TD, et al. Tobacco etch virus protease: mechanism of autolysis and rational design of stable mutants with wild-type catalytic proficiency. Protein Eng Des Sel. 2001;14:993–1000.

    Article  Google Scholar 

  35. Sattler M, Fesik SW. Use of deuterium labeling in NMR: overcoming a sizeable problem. Structure. 1996;4:1245–9.

    Article  Google Scholar 

  36. Ruschak AM, Kay LE. Methyl groups as probes of supra-molecular structure, dynamics and function. J Biomol NMR. 2009;46:75.

    Article  Google Scholar 

  37. Weininger U, Diehl C, Akke M. 13C relaxation experiments for aromatic side chains employing longitudinal- and transverse-relaxation optimized NMR spectroscopy. J Biomol NMR. 2012;53:181–90.

    Article  Google Scholar 

  38. Frueh DP, Goodrich A, Mishra S, Nichols S. NMR methods for structural studies of large monomeric and multimeric proteins. Curr Opin Struct Biol. 2013;23:734–9.

    Article  Google Scholar 

  39. Tugarinov V, Hwang PM, Ollerenshaw JE, Kay LE. Cross-correlated relaxation enhanced 1H−13C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes. J Am Chem Soc. 2003;125:10420–8.

    Article  Google Scholar 

  40. Tzeng S-R, Pai M-T, Kalodimos CG. NMR studies of large protein systems. In: Shekhtman A, Burz DS, editors. Protein NMR techniques. Totowa: Humana Press; 2012. p. 133–40.

    Chapter  Google Scholar 

  41. Kitevski-LeBlanc JL, Prosser RS. Current applications of 19F NMR to studies of protein structure and dynamics. Prog Nucl Magn Reson Spectrosc. 2012;62:1–33.

    Article  Google Scholar 

  42. Marsh ENG, Suzuki Y. Using 19F NMR to probe biological interactions of proteins and peptides. ACS Chem Biol. 2014;9:1242–50.

    Article  Google Scholar 

  43. Arias M, Aramini JM, Vogel HJ. Recombinant expression of fluorinated analogs of the antimicrobial peptide Tritrpticin and biophysical studies by fluorine-19 NMR. Biochim Biophys Acta (Submitted for publication).

    Google Scholar 

  44. Arias M, Hoffarth ER, Ishida H, Aramini JM, Vogel HJ. Recombinant expression, antimicrobial activity and mechanism of action of tritrpticin analogs containing fluoro-tryptophan residues. Biochim Biophys Acta. 2016;1858:1012–23.

    Article  Google Scholar 

  45. Kim HW, Perez JA, Ferguson SJ, Campbell ID. The specific incorporation of labelled aromatic amino acids into proteins through growth of bacteria in the presence of glyphosate. Application to fluorotryptophan labelling to the H(+)-ATPase of Escherichia coli and NMR studies. FEBS Lett. 1990;272:34–6.

    Article  Google Scholar 

  46. Tkachenko AN, Mykhailiuk PK, Afonin S, Radchenko DS, Kubyshkin VS, Ulrich AS, et al. A 19F NMR label to substitute polar amino acids in peptides: A CF3-substituted analogue of serine and threonine. Angew Chem Int Ed. 2013;52:1486–9.

    Article  Google Scholar 

  47. Tkachenko AN, Mykhailiuk PK, Radchenko DS, Babii O, Afonin S, Ulrich AS, et al. Design and synthesis of a monofluoro-substituted aromatic amino acid as a conformationally restricted 19F NMR label for membrane-bound peptides. Eur J Org Chem. 2014;2014:3584–91.

    Article  Google Scholar 

  48. Kubyshkin V, Afonin S, Kara S, Budisa N, Mykhailiuk PK, Ulrich AS. γ-(S)-Trifluoromethyl proline: evaluation as a structural substitute of proline for solid state (19)F-NMR peptide studies. Org Biomol Chem. 2015;13:3171–81.

    Article  Google Scholar 

  49. Michurin OM, Afonin S, Berditsch M, Daniliuc CG, Ulrich AS, Komarov IV, et al. Delivering structural information on the polar face of membrane-active peptides: 19F-NMR labels with a cationic side chain. Angew Chem Int Ed. 2016;55:14595–9.

    Article  Google Scholar 

  50. Luchette PA, Prosser RS, Sanders CR. Oxygen as a paramagnetic probe of membrane protein structure by cysteine mutagenesis and 19F NMR spectroscopy. J Am Chem Soc. 2002;124:1778–81.

    Article  Google Scholar 

  51. Prosser RS, Evanics F, Kitevski JL, Patel S. The measurement of immersion depth and topology of membrane proteins by solution state NMR. Biochim Biophys Acta. 2007;1768:3044–51.

    Article  Google Scholar 

  52. Fleming A. On a remarkable bacteriolytic element found in tissues and secretions. Proc R Soc Lond Ser B Contain Pap Biol. 1922;93:306–17.

    Article  Google Scholar 

  53. Vogel HJ. Lactoferrin, a bird’s eye view. Biochem Cell Biol. 2012;90:233–44.

    Article  Google Scholar 

  54. Gifford JL, Hunter HN, Vogel HJ. Lactoferricin: a lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties. Cell Mol Life Sci. 2005;62:2588–98.

    Article  Google Scholar 

  55. Damo SM, Kehl-Fie TE, Sugitani N, Holt ME, Rathi S, Murphy WJ, et al. Molecular basis for manganese sequestration by calprotectin and roles in the innate immune response to invading bacterial pathogens. Proc Natl Acad Sci. 2013;110:3841–6.

    Article  Google Scholar 

  56. Zackular JP, Chazin WJ, Skaar EP. Nutritional immunity: S100 proteins at the host-pathogen interface. J Biol Chem. 2015;290:18991–8.

    Article  Google Scholar 

  57. Torrent M, Pulido D, Valle J, Nogués MV, Andreu D, Boix E. Ribonucleases as a host-defence family: evidence of evolutionarily conserved antimicrobial activity at the N-terminus. Biochem J. 2013;456:99–108.

    Article  Google Scholar 

  58. Koczera P, Martin L, Marx G, Schuerholz T. The ribonuclease a superfamily in humans: canonical RNases as the buttress of innate immunity. Int J Mol Sci. 2016;17:1278.

    Article  Google Scholar 

  59. Yang D, Chen Q, Hoover DM, Staley P, Tucker KD, Lubkowski J, et al. Many chemokines including CCL20/MIP-3α display antimicrobial activity. J Leukoc Biol. 2003;74:448–55.

    Article  Google Scholar 

  60. Nguyen LT, Vogel HJ. Structural perspectives on antimicrobial chemokines. Front Immunol. 2012;3:1–11.

    Article  Google Scholar 

  61. Chan DI, Hunter HN, Tack BF, Vogel HJ. Human macrophage inflammatory protein 3α: protein and peptide nuclear magnetic resonance solution structures, dimerization, dynamics, and anti-infective properties. Antimicrob Agents Chemother. 2008;52:883–94.

    Article  Google Scholar 

  62. Schibli DJ, Hunter HN, Aseyev V, Starner TD, Wiencek JM, McCray PB, et al. The solution structures of the human β-defensins lead to a better understanding of the potent bactericidal activity of HBD3 against Staphylococcus aureus. J Biol Chem. 2002;277:8279–89.

    Article  Google Scholar 

  63. Kwakman PHS, Krijgsveld J, de Boer L, Nguyen LT, Boszhard L, Vreede J, et al. Native thrombocidin-1 and unfolded thrombocidin-1 exert antimicrobial activity via distinct structural elements. J Biol Chem. 2011;286:43506–14.

    Article  Google Scholar 

  64. Haney EF, Nathoo S, Vogel HJ, Prenner EJ. Induction of non-lamellar lipid phases by antimicrobial peptides: a potential link to mode of action. Chem Phys Lipids. 2010;163:82–93.

    Article  Google Scholar 

  65. Hilpert K, McLeod B, Yu J, Elliott MR, Rautenbach M, Ruden S, et al. Short cationic antimicrobial peptides interact with ATP. Antimicrob Agents Chemother. 2010;54:4480–3.

    Article  Google Scholar 

  66. de la Fuente-Núñez C, Reffuveille F, Haney EF, Straus SK, Hancock REW. Broad-spectrum anti-biofilm peptide that targets a cellular stress response. PLoS Pathog. 2014;10:e1004152.

    Article  Google Scholar 

  67. Omardien S, Brul S, Zaat SAJ. Antimicrobial activity of cationic antimicrobial peptides against gram-positives: current progress made in understanding the mode of action and the response of cacteria. Front Cell Dev Biol. 2016;4:111.

    Article  Google Scholar 

  68. Chung M-C, Dean SN, van Hoek ML. Acyl carrier protein is a bacterial cytoplasmic target of cationic antimicrobial peptide LL-37. Biochem J. 2015;470:243–53.

    Article  Google Scholar 

  69. Joo H-S, Otto M. Mechanisms of resistance to antimicrobial peptides in staphylococci. Biochim Biophys Acta Biomembr. 2015;1848:3055–61.

    Article  Google Scholar 

  70. Bostanci N, Belibasakis GN. Porphyromonas gingivalis: an invasive and evasive opportunistic oral pathogen. FEMS Microbiol Lett. 2012;333:1–9.

    Article  Google Scholar 

  71. Braff MH, Jones AL, Skerrett SJ, Rubens CE. Staphylococcus aureus exploits cathelicidin antimicrobial peptides produced during early Pneumonia to promote staphylokinase-dependent fibrinolysis. J Infect Dis. 2007;195:1365–72.

    Article  Google Scholar 

  72. Jin T, Bokarewa M, Foster T, Mitchell J, Higgins J, Tarkowski A. Staphylococcus aureus resists human defensins by production of staphylokinase, a novel bacterial evasion mechanism. J Immunol. 2004;172:1169–76.

    Article  Google Scholar 

  73. Nguyen LT, Vogel HJ. Staphylokinase has distinct modes of interaction with antimicrobial peptides, modulating its plasminogen-activation properties. Sci Report. 2016;6:31817.

    Article  Google Scholar 

  74. Abergel C, Monchois V, Byrne D, Chenivesse S, Lembo F, Lazzaroni J-C, et al. Structure and evolution of the Ivy protein family, unexpected lysozyme inhibitors in Gram-negative bacteria. Proc Natl Acad Sci. 2007;104:6394–9.

    Article  Google Scholar 

  75. Clarke CA, Scheurwater EM, Clarke AJ. The vertebrate lysozyme inhibitor Ivy functions to inhibit the activity of lytic transglycosylase. J Biol Chem. 2010;285:14843–7.

    Article  Google Scholar 

  76. Derbise A, Pierre F, Merchez M, Pradel E, Laouami S, Ricard I, et al. Inheritance of the lysozyme inhibitor Ivy was an important evolutionary step by Yersinia pestis to avoid the host innate immune response. J Infect Dis. 2013;207:1535–43.

    Article  Google Scholar 

  77. Dostal SM, Fang Y, Guerrette JC, Scanlon TC, Griswold KE. Genetically enhanced lysozyme evades a pathogen derived inhibitory protein. ACS Chem Biol. 2015;10:1110–7.

    Article  Google Scholar 

  78. Liu Z, García-Díaz B, Catacchio B, Chiancone E, Vogel HJ. Protecting gram-negative bacterial cell envelopes from human lysozyme: Interactions with Ivy inhibitor proteins from Escherichia coli and Pseudomonas aeruginosa. Biochim Biophys Acta Biomembr. 2015;1848:3032–46.

    Article  Google Scholar 

  79. Callewaert L, Van Herreweghe JM, Vanderkelen L, Leysen S, Voet A, Michiels CW. Guards of the great wall: bacterial lysozyme inhibitors. Trends Microbiol. 2012;20:501–10.

    Article  Google Scholar 

  80. Lindon JC. NMR-based metabolic phenotyping techniques and applications. In: Webb GA, editor. Modern magnetic resonance. Dordrecht: Springer; 2017. p. 1–25.

    Chapter  Google Scholar 

  81. Nagana Gowda GA, Raftery D. Can NMR solve some significant challenges in metabolomics? J Magn Reson. 2015;260:144–60.

    Article  Google Scholar 

  82. Mickiewicz B, Vogel HJ, Wong HR, Winston BW. Metabolomics as a novel approach for early diagnosis of pediatric septic shock and its mortality. Am J Respir Crit Care Med. 2013;187:967–76.

    Article  Google Scholar 

  83. Mickiewicz B, Duggan GE, Winston BW, Doig C, Kubes P, Vogel HJ, et al. Metabolic profiling of serum samples by 1H nuclear magnetic resonance spectroscopy as a potential diagnostic approach for septic shock. Crit Care Med. 2014;42:1140–9.

    Article  Google Scholar 

  84. Mickiewicz B, Tam P, Jenne CN, Leger C, Wong J, Winston BW, et al. Integration of metabolic and inflammatory mediator profiles as a potential prognostic approach for septic shock in the intensive care unit. Crit Care. 2015;19:11.

    Article  Google Scholar 

  85. Mickiewicz B, Thompson GC, Blackwood J, Jenne CN, Winston BW, Vogel HJ, et al. Development of metabolic and inflammatory mediator biomarker phenotyping for early diagnosis and triage of pediatric sepsis. Crit Care. 2015;19:320.

    Article  Google Scholar 

  86. Adamko DJ, Saude E, Bear M, Regush S, Robinson JL. Urine metabolomic profiling of children with respiratory tract infections in the emergency department: a pilot study. BMC Infect Dis. 2016;16:439.

    Article  Google Scholar 

  87. Slupsky CM, Cheypesh A, Chao DV, Fu H, Rankin KN, Marrie TJ, et al. Streptococcus pneumoniae and Staphylococcus aureus Pneumonia induce distinct metabolic responses. J Proteome Res. 2009;8:3029–36.

    Article  Google Scholar 

  88. Hoerr V, Zbytnuik L, Leger C, Tam PPC, Kubes P, Vogel HJ. Gram-negative and Gram-positive bacterial infections give rise to a different metabolic response in a mouse model. J Proteome Res. 2012;11:3231–45.

    Article  Google Scholar 

  89. Dörries K, Schlueter R, Lalk M. Impact of antibiotics with various target sites on the metabolome of Staphylococcus aureus. Antimicrob Agents Chemother. 2014;58:7151–63.

    Article  Google Scholar 

  90. Hoerr V, Duggan GE, Zbytnuik L, Poon KKH, Große C, Neugebauer U, et al. Characterization and prediction of the mechanism of action of antibiotics through NMR metabolomics. BMC Microbiol. 2016;16:82.

    Article  Google Scholar 

  91. Halouska S, Fenton RJ, Barletta RG, Powers R. Predicting the in vivo mechanism of action for drug leads using NMR metabolomics. ACS Chem Biol. 2012;7:166–71.

    Article  Google Scholar 

  92. Hoerr V, Hoffmann K, Schollmayer C, Holzgrabe U, Haase A, Jakob P, et al. Assessment of inhibitory potency of antibiotics by MRI: apparent T2 as a marker of cell growth. Magn Reson Mater Physics, Biol Med. 2006;19:247–55.

    Article  Google Scholar 

  93. Hertlein T, Sturm V, Jakob P, Ohlsen K. 19F magnetic resonance imaging of perfluorocarbons for the evaluation of response to antibiotic therapy in a Staphylococcus aureus infection model. PLoS One. 2013;8:e64440.

    Article  Google Scholar 

  94. Ring J, Hoerr V, Tuchscherr L, Kuhlmann MT, Löffler B, Faber C. MRI visualization of Staphyloccocus aureus-induced infective endocarditis in mice. PLoS One. 2014;9:e107179.

    Article  Google Scholar 

  95. Hoerr V, Faber C. Magnetic resonance imaging characterization of microbial infections. J Pharm Biomed Anal. 2014;93:136–46.

    Article  Google Scholar 

  96. Nevins AM, Subramanian A, Tapia JL, Delgado DP, Tyler RC, Jensen DR, et al. A requirement for metamorphic interconversion in the antimicrobial activity of chemokine XCL1. Biochemistry. 2016;55:3784–93.

    Article  Google Scholar 

  97. Sim S, Wang P, Beyer BN, Cutrona KJ, Radhakrishnan ML, Elmore DE. Investigating the nucleic acid interactions of histone-derived antimicrobial peptides. FEBS Lett. 2017;591:706–17.

    Article  Google Scholar 

Download references

Acknowledgments

Research on antimicrobial peptides and host-defense proteins in the authors’ laboratory was supported by a “Novel alternatives to antibiotics” operating team grant from the Canadian Institutes for Health Research and by a CRIO grant from Alberta Innovates Health Solutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans J. Vogel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Vogel, H.J., Arias, M., Aramini, J.M., Paul, S., Liu, Z., Ishida, H. (2017). Characterization of Antimicrobial and Host-Defense Peptides by NMR Spectroscopy. In: Webb, G. (eds) Modern Magnetic Resonance. Springer, Cham. https://doi.org/10.1007/978-3-319-28275-6_119-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28275-6_119-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28275-6

  • Online ISBN: 978-3-319-28275-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics