Skip to main content

Jakobida

  • Reference work entry
  • First Online:
Handbook of the Protists

Abstract

Jakobida is a small group (<20 described species) that is related to Heterolobosea and Euglenozoa. Jakobids are free-living heterotrophs with two flagella. They primarily eat prokaryotes that are captured by suspension feeding, using a current produced by the posterior flagellum (which has a dorsal vane), and an “excavate”-type feeding groove. Most are marine or freshwater aerobes, although the Stygiellidae (Stygiella, Velundella) are marine and brackish water anaerobes. Most jakobids are free-swimming cells, some of which temporarily attach to surfaces, while Histionidae (e.g., Histiona, Reclinomonas) are freshwater sessile forms that sit within conical or wineglass-shaped organic loricas. Jakobids have rarely been identified as major components of microbial ecosystems, except in some anoxic marine waters. They are of special evolutionary importance, however, because their mitochondrial genomes retain more ancestral bacterial-like features than those of other eukaryotes. The mitochondrial genomes of aerobic jakobids encode more genes than those of any other eukaryote group; around 100 genes in total, including up to 69 protein-coding genes, ~10 of which occur in no other mitochondrial genome examined to date. In particular, they encode (subunits of) a bacterial-type RNA polymerase, while the mitochondrial RNA polymerase in other eukaryotes is a nucleus-encoded single-subunit enzyme with viral affinities. This retention by jakobids of the inferred-to-be-original mitochondrial RNA polymerase is an important datum for inferring the evolutionary history of eukaryotic cells, including the mitochondrial symbiosis. Malawimonads are a small group of heterotrophic flagellates that superficially resemble jakobids, but are of uncertain evolutionary position within eukaryotes and thus also of particular evolutionary importance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adl, S. M., Simpson, A. G. B., Farmer, M. A., Andersen, R. A., Anderson, O. R., Barta, J. R., Bowser, S. S., Brugerolle, G., Fensome, R. A., Fredericq, S., James, T. Y., Karpov, S., Kugrens, P., Krug, J., Lane, C. E., Lewis, L. A., Lodge, J., Lynn, D. H., Mann, D. G., McCourt, R. M., Mendoza, L., Moestrup, O., Mozley-Standridge, S. E., Nerad, T. A., Shearer, C. A., Smirnov, A. V., Spiegel, F. W., & Taylor, M. F. J. R. (2005). The new higher-level classification of eukaryotes with emphasis on the taxonomy of protists. Journal of Eukaryotic Microbiology, 52, 399–451.

    Article  PubMed  Google Scholar 

  • Adl, S. M., Simpson, A. G. B., Lane, C. E., Lukeš, J., Bass, D., Bowser, S. S., Brown, M. W., Burki, F., Dunthorn, M., Hampl, V., Heiss, A. A., Hoppenrath, M., Lara, E., le Gall, L., Lynn, D. H., McManus, H., Mitchell, E. A. D., Mozley-Stanridge, S. E., Parfrey, L. W., Pawlowski, J., Rueckert, S., Shadwick, L., Schoch, C. L., Smirnov, A., & Spiegel, F. W. (2012). The revised classification of eukaryotes. Journal of Eukaryotic Microbiology, 59, 429–493.

    Article  PubMed  PubMed Central  Google Scholar 

  • Alexander, E., Stock, A., Breiner, H.-W., Behnke, A., Bunge, J., Yakimov, M. M., & Stoeck, T. (2009). Microbial eukaryotes in the hypersaline anoxic L’Atalante deep-sea basin. Microbial Ecology, 11, 360–381.

    CAS  Google Scholar 

  • Archibald, J. M., O’Kelly, C. J., & Doolittle, W. F. (2002). The chaperonin genes of jakobid and jakobid-like flagellates: Implications for eukaryotic evolution. Molecular Biology and Evolution, 19, 422–431.

    Article  CAS  PubMed  Google Scholar 

  • Behnke, A., Bunge, J., Barger, K., Breiner, H.-W., Alla, V., & Stoeck, T. (2006). Microeukaryote community patterns along an O2/H2S gradient in a supersulfidic anoxic fjord (Framvaren, Norway). Applied and Environmental Microbiology, 72, 3626–3636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergthorsson, U., Adams, K. L., Thomason, B., & Palmer, J. D. (2003). Widespread horizontal transfer of mitochondrial genes in flowering plants. Nature, 424, 197–201.

    Article  CAS  PubMed  Google Scholar 

  • Bernard, C., Simpson, A. G. B., & Patterson, D. J. (2000). Some free-living flagellates (Protista) from anoxic habitats. Ophelia, 52, 113–142.

    Article  Google Scholar 

  • Berney, C., Fahrni, J., & Pawlowski, J. (2004). How many novel eukaryotic “kingdoms”? Pitfalls and limitations of environmental DNA surveys. BMC Biology, 2, 1–13.

    Article  Google Scholar 

  • Bourrelly, P. (1953). Flagellés incolores rares ou nouveaux. Österreichische Botanische Zeitschrift, 100, 533–539.

    Article  Google Scholar 

  • Bourrelly, P. (1968). Les algues d’eau douce. Paris: Éditions N. Boubée & Cie.

    Google Scholar 

  • Burger, G., Lang, B. F., Reith, M., & Gray, M. W. (1996). Genes encoding the same three subunits of respiratory complex II are present in the mitochondrial DNA of two phylogenetically distant eukaryotes. Proceedings of the National Academy of Sciences USA, 93, 2328–2332.

    Article  CAS  Google Scholar 

  • Burger, G., Lang, B. F., Braun, H.-P., & Marx, S. (2003). The enigmatic mitochondrial ORF ymf39 codes for ATP synthase chain b. Nucleic Acids Research, 31, 2353–2360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burger, G., Gray, M. W., Forget, L., & Lang, B. F. (2013). Strikingly bacteria-like and gene-rich mitochondrial genomes throughout jakobid protists. Genome Biology and Evolution, 5, 418–438.

    Article  PubMed  PubMed Central  Google Scholar 

  • Burki, F., Inagaki, Y., Bråte, J., Archibald, J. M., Keeling, P. J., Cavalier-Smith, T., Sakaguchi, M., Hashimoto, T., Horak, A., Kumar, S., Klaveness, D., Jakobsen, K. S., Pawlowski, J., & Shalchian-Tabrizi, K. (2009). Large-scale phylogenomic analyses reveal that two enigmatic protist lineages, Telonemia and Centroheliozoa, are related to photosynthetic chromalveolates. Genome Biology and Evolution, 1, 231–238.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cavalier-Smith, T. (1987). Eukaryotes with no mitochondria. Nature, 326, 332–333.

    Article  CAS  Google Scholar 

  • Cavalier-Smith, T. (2000). Flagellate megaevolution: The basis for eukaryote diversification. In B. S. C. Leadbeater & J. C. Green (Eds.), The flagellates; unity, diversity and evolution (pp. 361–390). London: Taylor and Francis.

    Google Scholar 

  • Cavalier-Smith, T. (2004). Only six kingdoms of life. Proceedings of the Royal Society of London B, 271, 1251–1262.

    Article  CAS  Google Scholar 

  • Cermakian, N., Ikeda, T. M., Cedergren, R., & Gray, M. W. (1996). Sequences homologous to yeast mitochondrial and bacteriophage T3 and T7 RNA polymerases are widespread throughout the eukaryotic lineage. Nucleic Acids Research, 24, 648–654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christaki, U., Vázquez-Dominguez, E., Courties, C., & Lebaron, P. (2005). Grazing impact of different heterotrophic nanoflagellates on eukaryotic (Ostreococcus tauri) and prokaryotic picoautotrophs (Prochlorococcus and Synechococcus). Environmental Microbiology, 7, 1200–1210.

    Article  PubMed  Google Scholar 

  • Christensen-Dalsgaard, K. K., & Fenchel, T. (2003). Increased filtration efficiency of attached compared to free-swimming flagellates. Aquatic Microbial Ecology, 33, 77–86.

    Article  Google Scholar 

  • Clement, S. L., & Koslowsky, D. J. (2001). Unusual organization of a developmentally regulated mitochondrial RNA polymerase (TBMTRNAP) gene in Trypanosoma brucei. Gene, 272, 209–218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derelle, R., & Lang, B. F. (2012). Rooting the eukaryote tree with mitochondrial and bacterial proteins. Molecular Biology and Evolution, 29, 1277–1289.

    Article  CAS  PubMed  Google Scholar 

  • Derelle, R., Torruella, G., Klimes, V., Brinkmann, H., Kim, E., Vlček, Č., Lang, B. F., & Eliás, M. (2015). Bacterial proteins pinpoint a single eukaryotic root. Proceedings of the National Academy of Sciences of the United States of America, 112, 693–699.

    Article  Google Scholar 

  • Eccleston-Parry, J. D., & Leadbeater, B. S. C. (1994). A comparison of the growth kinetics of six marine heterotrophic nanoflagellates fed with one bacterial species. Marine Ecology Progress Series, 105, 167–177.

    Article  Google Scholar 

  • Edgcomb, V. P., Roger, A. J., Simpson, A. G. B., Kysela, D., & Sogin, M. L. (2001). Evolutionary relationships among “jakobid” flagellates as indicated by alpha- and beta-tubulin phylogenies. Molecular Biology and Evolution, 18, 514–522.

    Article  CAS  PubMed  Google Scholar 

  • Flavin, M., & Nerad, T. A. (1993). Reclinomonas americana n. g., n. sp., a new freshwater heterotrophic flagellate. Journal of Eukaryotic Microbiology, 40, 172–179.

    Article  CAS  PubMed  Google Scholar 

  • Fulnečková, J., Ševčíková, T., Fajkus, J., Lukešová, A., Lukeš, M., Vlček, Č., Lang, B. F., Kim, E., Eliáš, M., & Sýkorová, E. (2013). A broad phylogenetic survey unveils the diversity and evolution of telomeres in eukaryotes. Genome Biology and Evolution, 5, 468–483.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gray, M. W. (1999). Evolution of organellar genomes. Current Opinion in Genetics and Development, 9, 678–687.

    Article  CAS  PubMed  Google Scholar 

  • Gray, M. W., & Lang, B. F. (1998). Transcription in chloroplasts and mitochondria: A tale of two polymerases. Trends in Microbiology, 6, 1–3.

    Article  CAS  PubMed  Google Scholar 

  • Gray, M. W., Lang, B. F., Cedegren, R., Golding, G. B., Lemieux, C., Sankoff, D., Turmel, M., Brossard, N., Delage, E., Littlejohn, T. G., Plante, I., Rioux, P., Saint-Louis, D., Zhu, Y., & Burger, G. (1998). Genome structure and gene content in protist mitochondrial DNAs. Nucleic Acids Research, 26, 865–878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray, M. W., Burger, G., & Lang, B. F. (1999). Mitochondrial evolution. Science, 283, 1476–1481.

    Article  CAS  PubMed  Google Scholar 

  • Gray, M. W., Lang, B. F., & Burger, G. (2004). Mitochondria of protists. Annual Review of Genetics, 38, 477–525.

    Article  CAS  PubMed  Google Scholar 

  • Hampl, V., Hug, L., Leigh, J., Dacks, J. B., Lang, B. F., Simpson, A. G. B., & Roger, A. J. (2009). Taxon-rich phylogenomic analyses support the monophyly of Excavata and robustly resolve relationships among eukaryotic “supergroups”. Proceedings of the National Academy of Sciences USA, 106, 3859–3864.

    Article  CAS  Google Scholar 

  • He, D., Fiz-Palacios, O., Fu, C., Fehling, J., Tsai, C. C., & Baldauf, S. L. (2014). An alternative root for the eukaryote tree of life. Current Biology, 24, 465–470.

    Article  CAS  PubMed  Google Scholar 

  • He, D., Fu, C. J., & Baldauf, S. L. (2016). Multiple origins of eukaryotic cox15 suggest horizontal gene transfer from bacteria to jakobid mitochondrial DNA. Molecular Biology and Evolution, 33, 122–133.

    Google Scholar 

  • Jacob, Y., Seif, E., Paquet, P.-O., & Lang, B. F. (2004). Loss of the mRNA-like region in mitochondrial tmRNAs of jakobids. RNA, 10, 605–614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamikawa, R., Kolisko, M., Nishimura, Y., Yabuki, A., Brown, M. W., Ishikawa, S. A., Ishida, K., Roger, A. J., Hashimoto, T., & Inagaki, Y. (2014). Gene content evolution in discobid mitochondria deduced from the phylogenetic position and complete mitochondrial genome of Tsukubamonas globosa. Genome Biology and Evolution, 6, 306–315.

    Article  PubMed  PubMed Central  Google Scholar 

  • Keiler, K. C., Shapiro, L., & Williams, K. P. (2000). tmRNAs that encode proteolysis-inducing tags are found in all known bacterial genomes: A two-piece tmRNA functions in Caulobacter. Proceedings of the National Academy of Sciences USA, 97, 7778–7783.

    Article  CAS  Google Scholar 

  • Lang, B. F., Goff, L. J., & Gray, M. W. (1996). A 5S rRNA gene is present in the mitochondrial genome of the protist Reclinomonas americana but is absent from red algal mitochondrial DNA. Journal of Molecular Biology, 261, 607–613.

    Article  CAS  Google Scholar 

  • Lang, B. F., Burger, G., O’Kelly, C. J., Cedergren, R., Golding, G. B., Lemieux, C., Sankoff, D., Turmel, M., & Gray, M. W. (1997). An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature, 387, 493–497.

    Article  CAS  PubMed  Google Scholar 

  • Lang, B. F., Gray, M. W., & Burger, G. (1999a). Mitochondrial genome evolution and the origin of eukaryotes. Annual Review of Genetics, 33, 351–397.

    Article  CAS  PubMed  Google Scholar 

  • Lang, B. F., Seif, E., Gray, M. W., O’Kelly, C., & Burger, G. (1999b). A comparative genomics approach to the evolution of the eukaryotes and their mitochondria. Journal of Eukaryotic Microbiology, 46, 320–326.

    Article  CAS  PubMed  Google Scholar 

  • Lara, E., Chatzinotas, A., & Simpson, A. G. B. (2006). Andalucia (gen. nov,): A new taxon for the deepest branch within jakobids (Jakobida; Excavata), based on morphological and molecular study of a new flagellate from soil. Journal of Eukaryotic Microbiology, 53, 112–120.

    Article  CAS  PubMed  Google Scholar 

  • Lara, E., Berney, C., Ekelund, F., Harms, H., & Chatzinotas, A. (2007). Molecular comparison of cultivable protozoa from a pristine and a polycyclic aromatic hydrocarbon polluted site. Soil Biology and Biochemistry, 39, 139–148.

    Article  CAS  Google Scholar 

  • Leger, M. M., Petrů, M., Žárský, V., Eme, L., Vlček, Č., Harding, T., Lang, B. F., Eliáš, M., Doležal, P., & Roger, A. J. (2015). An ancestral bacterial division system is widespread in eukaryotic mitochondria. Proceedings of the National Academy of Sciences USA, 112, 10239–10246.

    Google Scholar 

  • Leger, M. M., Eme, L., Hug, L. A., & Roger, A. J. (2016). Novel hydrogenosomes in the microaerophilic jakobid Stygiella incarcerata. Molecular Biology and Evolution, 33, 2318–2336.

    Google Scholar 

  • Leigh, J., & Lang, B. F. (2004). Mitochondrial 3′ tRNA editing in the jakobid Seculamonas ecuadoriensis: A novel mechanism and implications for tRNA processing. RNA, 10, 615–621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo, Q. W., Krumholz, L. R., Najar, F. Z., Peacock, A. D., Roe, B. A., White, D. C., & Elshahed, M. S. (2005). Diversity of the microeukaryotic community in sulfide-rich Zodletone Spring (Oklahoma). Applied and Environmental Microbiology, 71, 6175–6184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marx, S., Baumgärtner, M., Kunnan, S., Braun, H.-P., Lang, B. F., & Burger, G. (2003). Structure of the bc 1 complex from Seculamonas ecuadoriensis: A jakobid flagellate with an ancestral mitochondrial genome. Molecular Biology and Evolution, 20, 145–153.

    Article  CAS  PubMed  Google Scholar 

  • Mohapatra, B. R., & Fukami, K. (2004a). Comparison of the numerical grazing response of two marine heterotrophic nanoflagellates fed with different bacteria. Journal of Sea Research, 52, 99–107.

    Article  Google Scholar 

  • Mohapatra, B. R., & Fukami, K. (2004b). Production of aminopeptidase by marine heterotrophic nanoflagellates. Aquatic Microbial Ecology, 34, 129–137.

    Article  Google Scholar 

  • Mohapatra, B. R., & Fukami, K. (2005). Effect of different bacterial species on the growth kinetics of the heterotrophic nanoflagellate Jakoba libera. Basic and Applied Ecology, 6, 67–73.

    Article  Google Scholar 

  • Mohapatra, B. R., & Fukami, K. (2007). Chemical detection of prey bacteria by the marine heterotrophic nanoflagellate Jakoba libera. Basic and Applied Ecology, 8, 475–481.

    Article  Google Scholar 

  • Mylnikov, A. P. (1984). The morphology and life cycle of Histiona aroides Pascher (Chrysophyta). Biologiya Vnutrennikh Vod: Informatsionnyi Byulleten, 62, 16–19 [In Russian].

    Google Scholar 

  • Mylnikov, A. P. (1989). The fine structure and systematic position of Histiona aroides (Bicoecales). Botanicheskii Zhurnal, 74, 184–189 [In Russian].

    Google Scholar 

  • Mylnikov, A. P., & Mylnikov, A. A. (2014). Structure of the flagellar apparatus of the bacterivorous flagellate Histiona aroides Pascher, 1943 (Jakobida, Excavata). Inland Water Biology, 7, 331–337.

    Article  Google Scholar 

  • Nicholls, K. H. (1984). On the validity of Histiona aroides Pascher (Chrysophyceae?). Archiv für Protistenkunde, 128, 141–146.

    Article  Google Scholar 

  • O’Brien, E. A., Koski, L. B., Zhang, Y., Yang, L., Wang, E., Gray, M. W., Burger, G., & Lang, B. F. (2007). TBestDB: A taxonomically broad database of expressed sequence tags (ESTs). Nucleic Acids Research, 35, D445–D451.

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Kelly, C. J. (1993). The jakobid flagellates: Structural features of Jakoba, Reclinomonas and Histiona and implications for the early diversification of eukaryotes. Journal of Eukaryotic Microbiology, 40, 627–636.

    Article  Google Scholar 

  • O’Kelly, C. J. (1997). Ultrastructure of trophozoites, zoospores and cysts of Reclinomonas americana Flavin & Nerad, 1993 (Protista incertae sedis: Histionidae). European Journal of Protistology, 33, 337–348.

    Article  Google Scholar 

  • O’Kelly, C. J., & Nerad, T. A. (1999). Malawimonas jakobiformis n. gen., n. sp. (Malawimonadidae n. fam.): A Jakoba-like heterotrophic nanoflagellate with discoidal mitochondrial cristae. Journal of Eukaryotic Microbiology, 46, 522–531.

    Article  Google Scholar 

  • Pánek, T., Táborský, P., Pachiadaki, M. G., Hroudová, M., Vlček, Č., Edgcomb, V. P., Čepička, I. (2015). Combined culture-based and culture-independent approaches provide insights into diversity of jakobids, an extremely plesiomorphic eukaryotic lineage. Frontiers in Microbiology, 6, art. 1288, 1–13.

    Google Scholar 

  • Pascher, A. (1942). Zur Klärung einiger gefärbter und farbloser Flagellaten und ihrer Einrichtungen zur Aufnahme animalischer Nahrung. Archiv für Protistenkunde, 96, 75–108.

    Google Scholar 

  • Pascher, A. (1943). Eine neue Art der Flagellatengattung Histiona aus den Uralpen. Archiv für Protistenkunde, 96, 288–294.

    Google Scholar 

  • Patterson, D. J. (1990). Jakoba libera (Ruinen, 1938), a heterotrophic flagellate from deep oceanic sediments. Journal of the Marine Biological Association of the United Kingdom, 70, 381–393.

    Article  Google Scholar 

  • Patterson, D. J., & Sogin, M. L. (1992). Eukaryote origins and protistan diversity. In H. Hartmann & K. Matsumo (Eds.), The origin and evolution of the cell (pp. 14–46). Singapore: World Scientific.

    Google Scholar 

  • Patterson, D. J., Nygaard, K., Steinberg, G., & Turley, C. M. (1993). Heterotrophic flagellates and other protists associated with oceanic detritus throughout the water column in the mid North Atlantic. Journal of the Marine Biology Association of the UK, 73, 67–95.

    Article  Google Scholar 

  • Patterson, D. J., Vørs, N., Simpson, A. G. B., & O’Kelly, C. J. (2002). Residual and predatory heterotrophic flagellates. In J. J. Lee, G. F. Leedale, & P. Bradbury (Eds.), An illustrated guide to the protozoa (2nd ed., pp. 1302–1328). Lawrence: Society of Protozoologists.

    Google Scholar 

  • Penard, E. (1921). Studies on some flagellata. Proceedings of the Academy of Natural Sciences of Philadelphia, 73, 105–168.

    Google Scholar 

  • Petersen, J. B., & Hansen, J. B. (1961). On some neuston organisms III. Svensk Botanisk Tidskrift., 57, 293–305.

    Google Scholar 

  • Pont-Kingdon, G., Okada, N. A., Macfarlane, J. L., Beagley, C. T., Watkins-Sims, C. D., Cavalier-Smith, T., Clark-Walker, G. D., & Wolstenholme, D. R. (1998). Mitochondrial DNA of the coral Sarcophyton glaucum contains a gene for a homologue of bacterial MutS: A possible case of gene transfer from the nucleus to the mitochondrion. Journal of Molecular Evolution, 46, 419–431.

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Ezpeleta, N., Brinkmann, H., Burger, G., Roger, A. J., Gray, M. W., Philippe, H., & Lang, B. F. (2007). Toward resolving the eukaryotic tree: The phylogenetic positions of jakobids and cercozoans. Current Biology, 17, 1420–1425.

    Article  PubMed  Google Scholar 

  • Ruinen, J. (1938). Notizen über Salzflagellaten. II. Über die Verbereitung der Salzflagellaten. Archiv für Protistenkunde, 90, 210–258.

    CAS  Google Scholar 

  • Russell, A. G., Shutt, T. E., Watkins, R. F., Gray, M. W. (2005). An ancient spliceosomal intron in the ribosomal protein L7a gene (Rp17a) of Giardia lamblia. BMC Evolutionary Biology, 5, art. 45, 1–9.

    Google Scholar 

  • Seif, E., Cadieux, A., & Lang, B. F. (2006). Hybrid E. coli – Mitochondrial ribonuclease P RNAs are catalytically active. RNA, 12, 1661–1670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shutt, T. E., & Gray, M. W. (2006a). Bacteriophage origins of mitochondrial replication and transcription proteins. Trends in Genetics, 22, 90–95.

    Article  CAS  PubMed  Google Scholar 

  • Shutt, T. E., & Gray, M. W. (2006b). Twinkle, the mitochondrial replicative DNA helicase, is widespread in the eukaryotic radiation and may also be the mitochondrial DNA primase in most eukaryotes. Journal of Molecular Evolution, 62, 588–599.

    Article  CAS  PubMed  Google Scholar 

  • Simpson, A. G. B. (2003). Cytoskeletal organisation phylogenetic affinities and systematics in the contentious taxon Excavata (Eukaryota). International Journal of Systematic and Evolutionary Microbiology, 53, 1759–1777.

    Article  PubMed  Google Scholar 

  • Simpson, A. G. B., & Patterson, D. J. (1999). The ultrastructure of Carpediemonas membranifera (Eukaryota) with reference to the “excavate hypothesis”. European Journal of Protistology, 35, 353–370.

    Article  Google Scholar 

  • Simpson, A. G. B., & Patterson, D. J. (2001). On core jakobids and excavate taxa: The ultrastructure of Jakoba incarcerata. Journal of Eukaryotic Microbiology, 48, 480–492.

    Article  CAS  PubMed  Google Scholar 

  • Simpson, A. G. B., & Roger, A. J. (2004). Excavata and the origin of amitochondriate eukaryotes. In R. P. Hirt & D. S. Horner (Eds.), Organelles, genomes and eukaryote phylogeny: An evolutionary synthesis in the age of genomics (pp. 27–53). London: CRC Press.

    Chapter  Google Scholar 

  • Simpson, A. G. B., Roger, A. J., Silberman, J. D., Leipe, D. D., Edgcomb, V. P., Jermiin, L. S., Patterson, D. J., & Sogin, M. L. (2002). Evolutionary history of “early diverging” eukaryotes: the excavate taxon Carpediemonas is a close relative of Giardia. Molecular Biology and Evolution, 19, 1782–1791.

    Article  CAS  PubMed  Google Scholar 

  • Simpson, A. G. B., Inagaki, Y., & Roger, A. J. (2006). Comprehensive multigene phylogenies of excavate protists reveal the evolutionary positions of “primitive” eukaryotes. Molecular Biology and Evolution, 23, 615–625.

    Article  CAS  PubMed  Google Scholar 

  • Simpson, A. G. B., Perley, T., & Lara, E. (2008). Lateral transfer of the gene for a widely used marker, alpha tubulin, indicated by a multi-protein study of the phylogenetic position of Andalucia (Excavata). Molecular Phylogenetics and Evolution, 47, 366–377.

    Article  CAS  PubMed  Google Scholar 

  • Stechmann, A., & Cavalier-Smith, T. (2002). Rooting the eukaryote tree by using a derived gene fusion. Science, 297, 89–91.

    Article  CAS  PubMed  Google Scholar 

  • Stock, A., Jürgens, K., Bunge, J., & Stoeck, T. (2009). Protistan diversity in suboxic and anoxic waters of the Gotland Deep (Baltic Sea) as revealed by 18S rRNA clone libraries. Aquatic Microbial Ecology, 55, 267–284.

    Article  Google Scholar 

  • Stock, A., Breiner, H.-W., Pachidiaki, M., Edgcomb, V., Filker, S., La Cono, V., Yakimov, M. M., & Stoeck, T. (2012). Microbial eukaryote life in the new hypersaline deep-sea basin Thetis. Extremophiles, 16, 21–34.

    Article  PubMed  Google Scholar 

  • Strassert, J. F. H., Tikhonenkov, D. V., Pombert, J.-F., Kolisko, M., Tai, V., Mylnikov, A. P., & Keeling, P. J. (2016). Moramonas marocensis gen. nov., sp. nov., a jakobid flagellate isolated from desert soil with a bacteria-like, but bloated mitochondrial genome. Open Biology, 6, 150239.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tong, J., Dolezal, P., Selkrig, J., Crawford, S., Simpson, A. G. B., Noinaj, N., Buchanan, S. K., Gabriel, K., & Lithgow, T. (2011). Ancestral and derived protein import pathways in the mitochondrion of Reclinomonas americana. Molecular Biology and Evolution, 28, 1581–1591.

    Article  CAS  PubMed  Google Scholar 

  • Vázquez-Domínguez, E., Casamayor, E. O., Català, P., & Lebaron, P. (2005). Different marine heterotrophic nanoflagellates affect differentially the composition of enriched bacterial communities. Microbial Ecology, 49, 474–485.

    Article  PubMed  Google Scholar 

  • Voigt, M. (1901). Über einige bisher unbekannte Süsswasserorganismen. Zoologischer Anzeiger, 24, 191–195.

    Google Scholar 

  • Voigt, M. (1902). Neue Organismen aus Plöner Gewässern. Forschungsberichte aus der Biologischen Station zu Plön, 9, 33–46.

    Google Scholar 

  • Vørs, N., Buck, K. R., Chavez, F. P., Eikrem, W., Hansen, L. E., Ostergaard, J. B., & Thomsen, H. A. (1995). Nanoplankton of the equatorial pacific with emphasis on the heterotrophic protists. Deep Sea Research II, 42, 585–602.

    Article  Google Scholar 

  • Weber, F., Anderson, R., Foissner, W., Mylnikov, A. P., & Jürgens, K. (2014). Morphological and molecular approaches reveal highly stratified protist communities along Baltic Sea pelagic redox gradients. Aquatic Microbial Ecology, 73, 1–16.

    Article  Google Scholar 

  • Yubuki, N., Inagaki, Y., Nakayama, T., & Inouye, I. (2007). Ultrastructure and ribosomal RNA phylogeny of the free-living heterotrophic flagellate Dysnectes brevis n. gen., n. sp., a new member of the Fornicata. Journal of Eukaryotic Microbiology, 54, 191–200.

    Article  CAS  PubMed  Google Scholar 

  • Yubuki, N., Simpson, A. G. B., & Leander, B. L. (2013). Comprehensive ultrastructure of Kipferlia bialata provides evidence for character evolution within the Fornicata (Excavata). Protist, 164, 423–439.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, S., Burki, F., Bråte, J., Keeling, P. J., Klaveness, D., & Shalchian-Tabrizi, K. (2012). Collodictyon – An ancient lineage in the tree of eukaryotes. Molecular Biology and Evolution, 29, 1557–1568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Thanks to Michael Gray (Dalhousie University), Michelle Leger (Dalhousie University), Marek Eliáš (University of Ostrava) and Tomas Pánek (University of Ostrava) for constructive comments, and B. Franz Lang (Université de Montréal) and Jürgen Strassert (University of British Columbia) for discussions. The author gratefully acknowledges the support of the Canadian Institute for Advanced Research (CIfAR), program in Integrated Microbial Biodiversity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alastair G. B. Simpson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Simpson, A.G.B. (2017). Jakobida. In: Archibald, J., Simpson, A., Slamovits, C. (eds) Handbook of the Protists. Springer, Cham. https://doi.org/10.1007/978-3-319-28149-0_6

Download citation

Publish with us

Policies and ethics