Skip to main content

Zygnematophyta

  • Reference work entry
  • First Online:
Handbook of the Protists

Abstract

The Zygnematophyta are among the most diverse green algae, with a variety of thallus types (filaments, unicells, colonies), cell wall structure (one to several layers, with varying degrees of ornamentation), and approximately 4,000 described species. The group lacks flagella at all stages of the life cycle. Several types of asexual spores are produced. Sexual reproduction, when present, involves conjugation or the union of two haploid vegetative protoplasts (individual cells of filaments or unicells) to form a zygospore, which undergoes meiosis to produce a new haploid thallus upon germination. Almost exclusively freshwater, these algae are common in ponds, lakes, and streams, in surface mats, or as phytoplankton or benthic growths. Many, but not all, are found in oligotrophic to mesotrophic waters of moderate to low pH, although the diversity of habitats occupied spans a wide range and may be quite specific for individual species. The fossil record extends at least to the Carboniferous. Recent analyses have placed this group as the sister taxon to land plants, despite the dramatic differences in morphology, life cycles, and reproduction. The group includes the well-known Spirogyra and numerous beautiful unicellular forms known as desmids, many of which have elaborate external ornamentations (e.g., spines, granules, large lobes). The conjugating green algae are important as ecological indicator species and for the ecological services they provide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe, J., Hori, S., Tsuchikane, Y., Kitao, N., Kato, M., & Sekimoto, H. (2011). Stable nuclear transformation of the Closterium peracerosum-strigosum-littorale complex. Plant and Cell Physiology, 52, 1676–1685.

    Article  CAS  PubMed  Google Scholar 

  • Adl, S. M., Simpson, A. G. B., Lane, C. E., Lukeš, J., Bass, D., Bowser, S. S., Brown, M. W., Burki, F., Dunthorn, M., Hampl, V., Heiss, A., Hoppenrath, M., Lara, E., le Gall, L., Lynn, D. H., McManus, H., Mitchell, E. A. D., Mozley-Stanridge, S. E., Parfrey, L. W., Pawlowski, J., Rueckert, S., Shadwick, L., Schoch, C. L., Smirnov, A., & Spiegel, F. W. (2012). The revised classification of eukaryotes. The Journal of Eukaryotic Microbiology, 59, 429–514. doi:10.1111/j.1550-7408.2012.00644.x.

    Article  PubMed  PubMed Central  Google Scholar 

  • Afonin, S. A., Barinova, S. S., & Krassilov, V. A. (2001). A bloom of Tympanicysta Balme (green algae of zygnematalean affinities) at the Permian-Triassic boundary. Geodiversitas, 23, 482–487.

    Google Scholar 

  • Allen, M. A.. (1958). The biology of a species complex in Spirogyra. Ph.D. Dissertation, Indiana University, Bloomington.

    Google Scholar 

  • Andersen, R. A. (2005). Algal culturing techniques. Burlington: Academic.

    Google Scholar 

  • Biebel, P. (1973). Morphology and life cycles of saccoderm desmids in culture. Beihefte zur Nova Hedwigia, 4, 39–57.

    Google Scholar 

  • Biebel, P. (1976). Genetics of Zygnematales. In R. A. Lewin (Ed.), The genetics of algae, Botanical monographs (Vol. 12, pp. 198–209). Oxford: Blackwell.

    Google Scholar 

  • Blackburn, S. I., & Tyler, P. A. (1981). Sexual reproduction in desmids with special reference to Micrasterias thomasiana var. notata (Nordst.) Grönblad. British Phycological Journal, 16, 217–229.

    Article  Google Scholar 

  • Bradley, W. H. (1970). Eocene algae and plant hairs from the Green River Formation of Wyoming. American Journal of Botany, 57, 782–785.

    Article  Google Scholar 

  • Bradley, W. H. (1974). Oocardium tufa from the Eocene Green River formation of Wyoming. Journal of Paleontology, 48, 1289–1290.

    Google Scholar 

  • Brandham, P. E. (1967). Time-lapse studies of conjugation in Cosmarium botrytis. 1. Gamete fusion and spine formation. Revue Algologique, 8, 312–316.

    Google Scholar 

  • Brook, A. J. (1965). Plankton algae as indicators of lake types with special reference to the Desmidiaceae. Limnology and Oceanography, 10, 403–411.

    Article  Google Scholar 

  • Brook, A. J. (1981). The biology of desmids. Oxford: Blackwell.

    Google Scholar 

  • Brook, A. J., & Williamson, D. B. (2010). A monograph of some British desmids. London: Ray Society.

    Google Scholar 

  • Carty, S.. (2003). Dinoflagellates. In J. D. Wehr & R. G. Sheath (Eds.), Freshwater algae of North America (pp. 685–714). Elsevier Science. Boston.

    Google Scholar 

  • Coesel, P. F. M. (1982). Structural characteristics and adaptations of desmid communities. Journal of Ecology, 70, 163–177.

    Article  Google Scholar 

  • Coesel, P. F. M. (1996). Biogeography of desmids. Hydrobiologia, 336, 41–53.

    Article  Google Scholar 

  • Coesel, P. F. M. (1997). The edibility of Staurastrum chaetoceras and Cosmarium abbreviatum (Desmidiaceae) for Daphnia galeata/hyalina and the role of desmids in the aquatic food web. Aquatic Ecology, 31, 73–78.

    Article  Google Scholar 

  • Coesel, P. F. M. (2001). A method for quantifying conservation value in lentic freshwater habitats using desmids as indicators organisms. Biodiversity and Conservation, 10, 177–187.

    Article  Google Scholar 

  • Coesel, P. F. M. (2003). Desmid flora data as a tool in conservation management of Dutch freshwater wetlands. Biologia, Bratislava, 58, 717–722.

    Google Scholar 

  • Coesel, P. F. M., & Meesters, K. J. (2007). Desmids of the lowlands; Mesotaeniaceae and Desmidiaceae of the European lowlands. Zeist: KNNV Publishing.

    Book  Google Scholar 

  • Coesel, P. F. M., Kwakkestein, R., & Verschoor, A. (1978). Oligotrophic and eutrophic tendencies in some Dutch moorland pools, as reflected in their desmid flora. Hydrobiologia, 61, 21–31.

    Article  Google Scholar 

  • Croasdale, H., & Flint, A. (1986). Flora of New Zealand desmids. Christchurch: The Caxton Press.

    Google Scholar 

  • Croasdale, H., & Flint, A. (1988). Flora of New Zealand desmids. Christchurch: The Caxton Press.

    Google Scholar 

  • Croasdale, H., de Bicudo M, C. E., Prescott, G. W. (1983). A synopsis of North American desmids. Part II. Desmidiaceae: Placodermae. Section 5. Lincoln: University of Nebraska Press.

    Google Scholar 

  • Croasdale, H., Flint, A., & Racine, M. M. (1994). Flora of New Zealand desmids. Christchurch: The Caxton Press.

    Google Scholar 

  • Davis, C. C., Xi, Z., & Mathews, S. (2014). Plastid phylogenomics and green plant phylogeny: Almost full circle but not quite there. BMC Biology, 12, 1–4.

    Article  Google Scholar 

  • Delwiche, C. F., & Cooper, E. D. (2015). The evolutionary origin of a terrestrial flora. Current Biology, 25, R899–R910.

    Article  CAS  PubMed  Google Scholar 

  • DeVries, P. F. R., Simons, J., & Van Beem, A. P. (1983). Sporopollenin in the spore wall of Spirogyra (Zygnemataceae, Chlorophyceae). Acta Botanica Neerlandica, 32, 25–28.

    Article  Google Scholar 

  • Donohue, C. M., & Fawley, M. W. (1995). Distribution of the xanthophyll Loroxanthin in desmids (Charophyceae, Chlorophyta). Journal of Phycology, 31, 294–296.

    Article  CAS  Google Scholar 

  • Dörfelt, H., & Schäfer, U. (2000). Palaeozygnema spiralis, ein Vertreter der Conjugatophyceae in mesozoischem Bernstein aus Bayern. Hoppea. Denkschriften der Regensburgischen Botanischen Gesellshaft. Das Band, 61, 785–793.

    Google Scholar 

  • Ellis, A. C., & Van Geel, B. (1978). Fossil zygospores of Debarya glyptosperma (DeBary) Wittr. (Zygnemataceae) in Holocene sandy soils. Acta Botanica Neerlandica, 27, 389–396.

    Article  Google Scholar 

  • Förster, K. (1982). Das Phytoplankton des Süsswassers. Systematik and Biologie. Band XVI. 8. Teil, 1. Hälfte. Conjugatophyceae, Zygnematales und Desmidiales (excl. Zygnemataceae). Stuttgart: E. Schweizerbart’sche Verlagsbuchhandlung.

    Google Scholar 

  • Fritsch, F. E. (1935). The structure and reproduction of the algae (Vol. I). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Fukumoto, R.-H., Fujii, T., & Sekimoto, H. (2003). Cloning and characterization of a cDNA encoding a sexual cell division-inducing pheromone from a unicellular green alga Closterium ehrenbergii (Chlorophyta). Journal of Phycology, 39, 931–936.

    Article  CAS  Google Scholar 

  • Gerrath, J. F. (1993). The biology of desmids: a decade of progress. In F. E. Round & D. J. Chapman (Eds.), Progress in phycological research (pp. 79–192). Bristol: Biopress Ltd.

    Google Scholar 

  • Godward, M. B. E. (1966). The chromosomes of the algae. London: Edward Arnold Publishers Ltd.

    Google Scholar 

  • Gontcharov, A. A., & Melkonian, M. (2004). Unusual position of Spirotaenia (Zygnematophyceae) among streptophytes revealed by SSU rDNA and rbcL sequence comparisons. Phycologia, 43, 105–113.

    Article  Google Scholar 

  • Gontcharov, A. A., & Melkonian, M. (2008). In search of monophyletic taxa in the family Desmidiaceae (Zygnematophyceae, Viridiplantae): The genus Cosmarium. American Journal of Botany, 95(9), 1079–1095.

    Article  CAS  PubMed  Google Scholar 

  • Gontcharov, A. A., Marin, B., & Melkonian, M. (2003). Molecular phylogeny of conjugating green algae (Zygnemophyceae, Streptophyta) inferred from SSU rDNA sequence comparisons. Journal of Molecular Evolution, 56, 89–104.

    Article  CAS  PubMed  Google Scholar 

  • Gontcharov, A. A., Marin, B., & Melkonian, M. (2004). Are combined analyses better than single gene phylogenies? A case study using SSU rDNA and rbcL sequence comparisons in the Zygnematophyceae (Streptophyta). Molecular Biology and Evolution, 21, 612–624.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, V. K., Shrivastava, A. K., & Neeraj, J. (2001). Biosorption of chromium (VI) from aqueous solutions by green algae Spirogyra species. Water Research, 35, 4079–4085.

    Article  CAS  PubMed  Google Scholar 

  • Hall, J. D., & Delwiche, C. F. (2007). In the shadow of giants; systematics of the charophyte green algae. In J. Brodie & J. Lewis (Eds.), Unraveling the algae: The past, present, and future of algal systematics. Systematics Association: Boca Raton.

    Google Scholar 

  • Hall, J. D., Karol, K. G., McCourt, R. M., & Delwiche, C. F. (2008a). Phylogeny of conjugating green algae based on chloroplast and mitochondrial sequence data. Journal of Phycology, 44, 467–477.

    Article  CAS  PubMed  Google Scholar 

  • Hall, J. D., McCourt, R. M., & Delwiche, C. F. (2008b). Patterns of cell division in the filamentous Desmidiaceae, close green algal relatives of land plants. American Journal of Botany, 95, 643–654.

    Article  PubMed  Google Scholar 

  • Harada, A., & Yamagishi, T. (1980). Cytological studies on Zygnema (Chlorophyceae). 1.Mitosis. Japanese Journal of Phycology, 28, 233–239.

    Google Scholar 

  • Haupt, W. (1982). Light-mediated movement of chloroplasts. Annual Review of Plant Physiology, 33, 205–233.

    Article  CAS  Google Scholar 

  • Haupt, W. (1983). Movement of chloroplasts under the control of light. In F. E. Round & D. J. Chapman (Eds.), Progress in phycological research (Vol. 2, pp. 227–281). Amsterdam: Elsevier Science Publishers B. V.

    Google Scholar 

  • Hauptfleich, P. (1888). Zellmembran und Hüllgallerte der Desmidiaceen. Mittheilungen aus dem Naturwissenschaftlichen Vereine für Neuvorpommern und Rügen, 59–136; plates I–III.

    Google Scholar 

  • Heimans, J. (1969). Ecological, phytogeographical and taxonomic problems with desmids. Vegetatio, 17, 50–82.

    Article  Google Scholar 

  • Hirano, N., Marukawa, Y., Abe, J., Hashiba, S., Ichikawa, M., Tanabe, Y., Ito, M., Nishii, I., Tsuchikane, Y., & Sekimoto, H. (2015). A receptor-like kinase, related to cell wall sensor of higher plants, is required for sexual reproduction in the unicellular charophycean alga, Closterium peracerosum-strigosum-littorale complex. Plant Cell Physiology, 56, 1456–1462.

    Article  CAS  PubMed  Google Scholar 

  • Hofmann, C.-C., & Zetter, R. (2005). Reconstruction of different wetland plant habitats of the Pannonian Basin System (Neogene, Eastern Austria). Palaios, 20, 266–279.

    Article  Google Scholar 

  • Holzinger, A., & Lütz-Meindl, U. (2002). Kinesin-like proteins are involved in postmitotic nuclear migration of the unicellular green alga Micrasterias denticulata. Cell Biology International, 26, 689–697.

    Article  CAS  PubMed  Google Scholar 

  • Hoshaw, R. W. (1968). Biology of the filamentous conjugating algae. In D. F. Jackson (Ed.), Algae, man and environment (pp. 135–184). Syracuse: Syracuse University Press.

    Google Scholar 

  • Hoshaw, R. W., & Wells, C. V. (1982). Systematics of the Zygnemataceae (Chlorophyceae). IV. Nuclear cytology of Sirogonium melanosporum, a species with large chromosomes. Transactions of the American Microscopical Society, 101, 276–286.

    Article  Google Scholar 

  • Hoshaw, R. W., Wang, J.-C., McCourt, R. M., & Hull, H. M. (1985). Ploidal changes in clonal cultures of Spirogyra communis and implications for species definition. American Journal of Botany, 72, 805–811.

    Article  Google Scholar 

  • Hoshaw, R. W., Wells, C. V., & McCourt, R. M. (1987). A polyploid species complex in Spirogyra maxima (Chlorophyta, Zygnemataceae), a species with large chromosomes. Journal of Phycology, 23, 267–273.

    Article  Google Scholar 

  • Hunger, R. (1953). Mikrobotanisch-stratigraphische Untersuchungen der Braunkohlen der südlichen Oberlausitz und die Pollenanalyse als Mittel zur Deutung der Flözgenese. Frieberger Forschungshefte, Beihefte der Zeitschrift “Bergakademie,” Reihe C. Angewandte Naturwissenschaften, Geologia, 8, 1–38.

    Google Scholar 

  • Ichimura, T. (1983). Hybrid inviability and predominant survival of mating type minus progeny in laboratory crosses between two closely related mating groups of Closterium ehrenbergii. Evolution, 37, 252–260.

    Article  PubMed  Google Scholar 

  • Jarnefelt, H.(1952). Plankton als Indikator der Tropheigruppen der Seen. Annales Academiae Scientiarum Fennicae. Seris A. IV. Biologica, 18, 3–27.

    Google Scholar 

  • Jarzen, D. M. (1979). Zygospores of Zygnemataceae in the Paleocene of southern Saskatchewan (Canada). Review of Palaeobotany and Palynology, 28, 21–25.

    Article  Google Scholar 

  • Kadlubowska, J. Z. (1972). Zygnemaceae. Tom 12A. Flora Slodkowodna Polski. Krakow: Polska Adademia Nauk Instytut Botaniki.

    Google Scholar 

  • Kadlubowska, J. Z. (1984). Conjugatophyceae I. Chlorophyta VIII. Zygnemales. Süsswasserflora von Mitteleuropa 16. Stuttgart: Gustav-Fischer Verlag.

    Google Scholar 

  • Kadlubowska, J. Z. (1999). Rare species of fungi parasitizing on algae. II. Parasites of Desmidiaceae. Acta Mycologica, 34, 51–54.

    Article  Google Scholar 

  • Kagami, M., de Bruin, A., Ibilings, B. W., Van Donk, E.: Parasitic chytrids: Their effects on phytoplankton communities and food-web dynamics. Hydrobiologia 578, 113–129 (2007).

    Article  Google Scholar 

  • Karol, K. G., McCourt, R. M., Cimino, M. T., & Delwiche, C. F. (2001). The closest living relatives of land plants. Science, 294, 2351–2353.

    Article  CAS  PubMed  Google Scholar 

  • Kiermayer, O. (1981). Cytoplasmic basis of morphogenesis in Micrasterias. In O. Kiermayer (Ed.), Cytomorphogenesis in plants, Cell biology monographs (Vol. 8, pp. 147–189). New York: Springer.

    Chapter  Google Scholar 

  • Kim, G. H., Yoon, M., & Klotchkova, T. A. (2005). A moving mat: Phototaxis in the filamentous green algae Spirogyra (Chlorophyta, Zygnemataceae). Journal of Phycology, 41, 232–237.

    Article  Google Scholar 

  • Krieger, W. (1937). Die Desmidiaceen Europas mit Berücksichtigung der außereuropäischen Arten. Akademische Verlagsgesellschaft M B H.

    Google Scholar 

  • Krupp, J. M., & Lang, N. J. (1985). Cell division and the role of the primary wall in the filamentous desmid Onychonema laeve (Chlorophyta). Journal of Phycology, 21, 316–322.

    Article  Google Scholar 

  • Lee, R. E. (1980). Phycology. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Leliaert, F., Smith, D. R., Moreau, H., Herron, M. D., Verbruggen, H., Delwiche, C. F., & De Clerck, O. (2012). Phylogeny and molecular evolution of the green algae. Critical Reviews in Plant Sciences, 31, 1–46.

    Article  Google Scholar 

  • Lewis, L. A., & Lewis, P. O. (2005). Unearthing the molecular phylodiversity of desert soil green algae (Chlorophyta). Systematic Biology, 54, 936–947.

    Article  PubMed  Google Scholar 

  • Lewis, L. A., & McCourt, R. M. (2004). Green algae and the origin of land plants. American Journal of Botany, 91, 1535–1556.

    Article  PubMed  Google Scholar 

  • Mattox, K. R., & Stewart, K. D. (1984). Classification of the green algae. A concept based on comparative cytology. In D. E. G. Irvine & D. M. John (Eds.), The systematics of the green algae (pp. 29–72). London: Academic.

    Google Scholar 

  • McCourt, R. M. (2016). Archaeplastida: Diversification of red algae and the green plant lineage. In R. M. Kliman (Ed.), Encyclopedia of evolutionary biology (Vol. 1, pp. 101–106). Oxford: Academic.

    Chapter  Google Scholar 

  • McCourt, R. M., Hoshaw, R. W., & Wang, J. C. (1986). Distribution, morphological diversity, and evidence for polyploidy in North American Zygnemataceae (Chlorophyta). Journal of Phycology, 22, 307–313.

    Article  Google Scholar 

  • McCourt, R. M., Karol, K. G., Kaplan, S., & Hoshaw, R. W. (1995). Using rbcL sequences to test hypotheses of chloroplast and thallus evolution in the conjugating green algae (Zygnematales, Charophyceae). Journal of Phycology, 31, 989–995.

    Article  CAS  Google Scholar 

  • McCourt, R. M., Karol, K. G., Bell, J., Helm-Bychowski, M., Grajewska, A., Wojciechowski, M. F., & Hoshaw, R. W. (2000). Phylogeny of the conjugating green algae (Zygnematophyceae) based on rbcL sequences. Journal of Phycology, 36, 747–758.

    Article  CAS  Google Scholar 

  • McCourt, R. M., Delwiche, C. F., & Karol, K. G. (2004). Charophyte algae and land plant origins. Ecology and Evolution, 19, 661–666.

    Article  PubMed  Google Scholar 

  • Meindl, U. (1986). Autonomous circular and radial motions of the nucleus in Pleurenterium tumidum and their relation to cytoskeletal elements and the plasma membrane. Protoplasma, 135, 50–66.

    Article  Google Scholar 

  • Meindl, U. (1993). Micrasterias cells as a model system for research on morphogenesis. Microbiological Reviews, 57, 415–433.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mix, M. (1972). Die Feinstruktur der Zellwande bei Mesotaeniaceae und Gonatozygaceae mit einer vergleichenden Betrachtung de verschiedenen Wandentypen der Conjugatophyceae und uber deren systematischen Wert. Archiv für Mikrobiologie, 81, 197–220.

    Article  Google Scholar 

  • Mix, M. (1975). Die Feinstruktur der Zellwände der Conjugaten und ihre systemische Bedeutung. Beihefte zur Nova Hedwigia, 42, 179–194.

    Google Scholar 

  • Neuhaus, G., Kiermayer, O.: Formation and distribution of cell wall pores in desmids. In: Cytomorphogenesis in plants (Kiermayer, O., ed.), pp. 215–228. Cell Biology monographs, Vol. 8. New York: Springer, 1981.

    Google Scholar 

  • Nichols, H. W. (1980). Polyploidy in algae. In W. H. Lewis (Ed.), Polyploidy: Biological relevance (pp. 151–161). New York: Plenum Press.

    Chapter  Google Scholar 

  • Oertel, A., Aichinger, N., Hochreiter, R., Thalhamer, J., & Lütz-Meindl, U. (2004). Analysis of mucilage secretion and excretion in Micrasterias (Chlorophyta) by means of immunoelectron microscopy and digital time lapse video microscopy. Journal of Phycology, 40, 711–720.

    Article  Google Scholar 

  • Palamar-Mordvintseva, G. M. (2003). Flora Algarum Aquatorium Continentalium. Kiev: Ucrainicae.

    Google Scholar 

  • Palamar-Mordvintseva, G. M. (2005). Flora Algarum Aquatorium Continentalium. Kiev: Ucrainicae.

    Google Scholar 

  • Pessoney, G. F. (1968). Field and laboratory investigation of zygnemataceous algae. Ph.D. Dissertation, The University of Texas at Austin.

    Google Scholar 

  • Pickett-Heaps, J. D. (1975). Green algae: Structure, reproduction, and evolution in selected genera. Sunderland: Sinauer Associates, Inc., Publishers.

    Google Scholar 

  • Pickett-Heaps, J. D. (1983). Morphogenesis in desmids: Our present state of ignorance. Modern Cell Biology, 2, 241–258.

    Google Scholar 

  • Prescott, G. W. (1984). Bibliographia Desmidiacearum Universalis. Koenigstein: Koeltz Scientific Books.

    Google Scholar 

  • Prescott, G. W., Croasdale, H. T., & Vinyard, W. C. (1972). Desmidiales, part 1. Saccodermae, Mesotaeniaceae. North American Flora, II, part 6. Bronx: The New York Botanical Garden.

    Google Scholar 

  • Prescott, G. W., Croasdale, H. T., & Vinyard, W. C.(1975). A synopsis of North American desmids. Part II. Desmidiaceae: Placodermae. Section 1. Lincoln: University of Nebraska Press.

    Google Scholar 

  • Prescott, G. W., Croasdale, H. T., & Vinyard, W. C.(1977). A synopsis of North American desmids. Part II. Desmidiaceae: Placodermae. Section 2. Lincoln: University of Nebraska Press.

    Google Scholar 

  • Prescott, G. W., Croasdale, H. T., Vinyard, W. C., de Bicudo M, C. E. (1981). A synopsis of North American desmids. Part II. Desmidiaceae: Placodermae. Section 3. Lincoln: University of Nebraska Press.

    Google Scholar 

  • Prescott, G. W., de Bicudo M, C. E., Vinyard, W. C. (1982). A synopsis of North American desmids. Part II. Desmidiaceae: Placodermae. Section 4. Lincoln: University of Nebraska Press.

    Google Scholar 

  • Rai, U. N., Dubey, S., Shukla, O. P., Dwivedi, S., & Tripathi, R. D. (2008). Screening and identification of early warning algal species for metal contamination in fresh water bodies polluted from point and non-point sources. Environmental Monitoring and Assessment, 144, 469–481.

    Article  CAS  PubMed  Google Scholar 

  • Randhawa, M. S. (1959). Zygnemaceae. New Delhi: Indian Council of Agricultural Research.

    Google Scholar 

  • Rawson, D. S. (1956). Algal indicators of trophic lake types. Limnology and Oceanography, 1, 18–25.

    Article  Google Scholar 

  • Rogers-Domozich, C., Plante, K., Blais, P., Paliulis, L., & Domozych, D. S. (1993). Mucilage processing and secretion in the green alga Closterium. I. Cytology and biochemistry. Journal of Phycology, 29, 650–659.

    Article  Google Scholar 

  • Ruhfel, B. R., Gitzendanner, M. A., Soltis, P. S., Soltis, D. E., & Burleigh, J. G. (2014). From algae to angiosperms–inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes. BMC Evolutionary Biology, 14, 23.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rundina, L. A. (1998). The Zygnematales of Russia. Saint Petersburg: Nauka.

    Google Scholar 

  • Růžička, J. (1977). Die Desmidiaceen Mitteleuropas. Stuttgart: E. Schweizerbart’sche Verlagsbuchhandlung.

    Google Scholar 

  • Růžička, J. (1981). Die Desmidiaceen Mitteleuropas. Stuttgart: E. Schweizerbart’sche Verlagsbuchhandlung.

    Google Scholar 

  • Schmidt, A. R., Ragazzi, E., Coppelloti, O., & Roghi, G. (2006). A microworld in Triassic amber. Nature, 444, 835.

    Article  CAS  PubMed  Google Scholar 

  • Schrank, E. (2005). Dinoflagellate cysts and associated aquatic palynomorphs from the Tendaguru beds (Upper Jurassic-Lower Cretaceus) of southeast Tanzania. Palynology, 29, 49–85.

    Google Scholar 

  • Sekimoto, H., Tsuchikane, Y., & Abe, J. (2014). Sexual reproduction of a unicellular charophycean alga, Closterium peracerosum-strigosum-littorale complex. In H. Sawada, N. Inoue, & M. Iwano, (Eds.), Sexual reproduction in animals and plants.

    Google Scholar 

  • Singh, A., Kumar, D., & Gaur, J. P. (2007). Copper (III) and lead (II) sorption from aqueous solution by non-living Spirogyra neglecta. Bioresource Technology, 98, 2622–2629.

    Google Scholar 

  • Sorensen, I., Fei, Z., Andreas, A., Willats, W. G., Domozych, D. S., & Rose, J. K. (2014). Stable transformation and reverse genetic analysis of Penium margaritaceum: A platform for studies of charophyte green algae, the immediate ancestors of land plants. Plant Journal, 77, 339–351.

    Article  CAS  PubMed  Google Scholar 

  • Starr, R. C. (1964). The culture collection of algae at Indiana University. American Journal of Botany, 51, 1013–1044.

    Article  Google Scholar 

  • Starr, R. C. (1978). The culture collection of algae at The University of Texas at Austin. Journal of Phycology (Supplement), 14, 47–100.

    Article  Google Scholar 

  • Stein, J. R. (1973). Handbook of phycological methods: Culture methods and growth measurements. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Suetsugu, N., Mittman, F., Wagner, G., Hughes, J., & Wada, M. (2005). A chimeric photoreceptor gene, NEOCHROME, has arisen twice during plant evolution. Proceedings of the National Academy of Science, 102, 13705–13709.

    Article  CAS  Google Scholar 

  • Tappan, H. (1980). The paleobiology of plant protists. San Francisco: W. H. Freeman and Company.

    Google Scholar 

  • Transeau, E. N. (1951). The Zygnemataceae. Columbus: The Ohio State University Press.

    Google Scholar 

  • Tsuchikane, Y., Fukumoto, R.-H., Akatsuka, S., Fujii, T., & Sekimoto, H. (2003). Sex pheromones that induce sexual cell division in the Closterium peracerosum-strigosum-littorale complex (Charophyta). Journal of Phycology, 39, 303–309.

    Article  Google Scholar 

  • Turmel, M., Otis, C., & Lemieux, C. (2006). The chloroplast genome sequence of Chara vulgaris sheds new light into the closest green algal relatives of land plants. Molecular Biology and Evolution, 23, 1324–1338.

    Article  CAS  PubMed  Google Scholar 

  • Turmel, M., Pombert, J.-F., Charlebois, P., Otis, C., & Lemieux, C. (2007). The green algal ancestry of land plants as revealed by the chloroplast genome. International Journal of Plant Science, 168, 679–689.

    Article  CAS  Google Scholar 

  • Tyler, P. A. (1996). Endemism in freshwater algae with special reference to the Australian region. Hydrobiologia, 336, 127–135.

    Article  Google Scholar 

  • Van Dam, H., & Buskens, R. F. M. (1993). Ecology and management of moorland pools; balancing acidification and eutrophication. Hydrobiologia, 265, 225–263.

    Article  CAS  Google Scholar 

  • Van Geel, B. (1976). Fossil spores of Zygnemataceae in ditches of a prehistoric settlement in Hoogkarsel (The Netherlands). Review of Paleobotany and Palynology, 22, 337–344.

    Article  Google Scholar 

  • Van Geel, B. (1978). A paleoecological study of Holocene peat bog sections in Germany and The Netherlands. Review of Palaeobotany and Palynology, 25, 1–120.

    Article  Google Scholar 

  • Van Geel, B. (1979). Preliminary report on the history of Zygnemataceae and the use of their spores as ecological markers. In IVth International palynological conference, Lucknow (1976–77) 1, 467–469.

    Google Scholar 

  • Van Geel, B., & Van der Hammen, T. (1978). Zygnemataceae in Quaternary Colombian sediments. Review of Palaeobotany and Palynology, 25, 377–392.

    Article  Google Scholar 

  • Van Geel, B., Bohncke, S. J. P., & Dee, H. (1981). A palaeoecological study of an upper late glacial and Holocene sequence from “De Borchert”, The Netherlands. Review of Palaeobotany and Palynology, 31, 367–448.

    Article  Google Scholar 

  • Van Geel, B., Coope, G. R., & Van Der Hammen, T. (1989). Palaeoecology and stratigraphy of the lateglacial type section at Usselo (The Netherlands). Review of Palaeobotany and Palynology, 60, 25–129.

    Article  Google Scholar 

  • Van Geel, B., & Grenfell, H. R. (1996). Green and blue-green algae; 7A – Spores of Zygnemataceae. In J. Jansonius, D. C. McGregor (Eds.), Palynology: Principles and applications (pp. 173–179). American Association of Stratigraphic Palynologists Foundation.

    Google Scholar 

  • Vries, Jd., Stanton, A., Archibald, J. M., & Gould, S. B. (2016). Streptophyte terrestrialization in light of plastid evolution. Trends in Plant Science, 21, 467–476.

    Article  PubMed  CAS  Google Scholar 

  • Vannerum, K., Abe, J., Sekimoto, H., Inzé, D., & Vyverman, W. (2010). Intracellular localization of an endogenous cellulose synthase of Micrasterias denticulata (Demidiales, Chlorophyta) by means of transient genetic transformation. Journal of Phycology, 46, 839–845.

    Article  CAS  Google Scholar 

  • Vannerum, K., Huysman, M. J., De Rycke, R., Vuylsteke, M., Leliaert, F., Pollier, J., et al. (2011). Transcriptional analysis of cell growth and morphogenesis in the unicellular green alga Micrasterias (Streptophyta), with emphasis on the role of expansin. BMC Plant Biology, 11(1), 1–17.

    Article  CAS  Google Scholar 

  • Wagner, G. (2001). Phytochrome as an algal photoreceptor. In D.-P. Hader & M. Lebert (Eds.), Photomovement. Amsterdam: Elsevier.

    Google Scholar 

  • Watanabe, M. M., & Ichimura, T. (1982). Biosystematic studies of the Closterium peracerosum-strigosum-littorale complex. IV. Hybrid breakdown between two closely related groups, Group II-A and Group II-B. Botanical Magazine Tokyo, 95, 241–247.

    Article  Google Scholar 

  • Waggoner, B. M. (1994). An aquatic microfossil assemblage from Cenomanian amber of France. Lethaia, 27, 77–84.

    Article  Google Scholar 

  • Weyland, H. (1963). Zwei neue Algen aus der Braunkohle von Baccinello (Toscana). Palaeontographica Abt. B, 113, 30–37.

    Google Scholar 

  • Wickett, N. J., Mirarab, S., Nguyen, N., Warnow, T., Carpenter, E., Matasci, N., Ayyampalayam, S., Barker, M. S., Burleigh, J. G., Gitzendanner, M. A., et al. (2014). Phylotranscriptomic analysis of the origin and early diversification of land plants. Proceedings of the National Academy of Sciences of the United States of America, 111, E4859–E4868.

    Google Scholar 

  • Wiltshire, K., Boersma, M., & Meyer, B. (2003). Grazer-induced changes in the desmid Staurastrum. Hydrobiologia, 491, 255–260.

    Article  Google Scholar 

  • Yamagishi, T.(1963). Classification of the Zygnemataceae. Sc. Re. T.K.D. Sect. B, 11, 191–210.

    Google Scholar 

  • Zettler, A. A., Gomez, F., Zettler, E., Keenan II, B. G., Amils, R., & Sogin, M. L. (2002). Eukaryotic diversity in Spain’s River of Fire. Nature, 417, 137.

    Article  PubMed  CAS  Google Scholar 

  • Zippi, P. A. (1998). Freshwater algae from the Mattagami Formation (Albian), Ontario: Paleoecology, botanical affinities, and systematic taxonomy. Micropaleontology, 44(s. 1), 1–78.

    Google Scholar 

Download references

Acknowledgments

This chapter is dedicated to Dr. Robert W. Hoshaw, who coauthored the chapter in the first edition of this book.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Hall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Hall, J.D., McCourt, R.M. (2017). Zygnematophyta. In: Archibald, J., Simpson, A., Slamovits, C. (eds) Handbook of the Protists. Springer, Cham. https://doi.org/10.1007/978-3-319-28149-0_41

Download citation

Publish with us

Policies and ethics