Skip to main content

Haptophyta

  • Reference work entry
  • First Online:

Abstract

Haptophyta are predominantly planktonic and phototrophic organisms that have their main distribution in marine environments worldwide. They are a major component of the microbial ecosystem, some form massive blooms and some are toxic. Haptophytes are significant players in the global carbonate cycle through photosynthesis and calcification. They are characterized by the haptonema, a third appendage used for attachment and food handling, two similar flagella, two golden-brown chloroplasts, and organic body scales that serve in species identification. Coccolithophores have calcified scales termed coccoliths. Phylogenetically Haptophyta form a well-defined group and are divided into two classes Pavlovophyceae and Coccolithophyceae (Prymnesiophyceae). Currently, about 330 species are described. Environmental DNA sequencing shows high haptophyte diversity in the marine pico- and nanoplankton, of which many likely represent novel species and lineages. Haptophyte diversity is believed to have peaked in the past and their presence is documented in the fossil record back to the Triassic, approximately 225 million years ago. Some biomolecules of haptophyte origin are extraordinarily resistant to decay and are thus used by geologists as sedimentary proxies of past climatic conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aanesen, R. T., Eilertsen, H. C., & Stabell, O. B. (1998). Light-induced toxic properties of the marine alga Phaeocystis pouchetii towards cod larvae. Aquatic Toxicology, 40, 109–121.

    Article  CAS  Google Scholar 

  • Allen, D. M., & Northcote, D. H. (1975). The scales of Chrysochromulina chiton. Protoplasma, 83, 389–412.

    Article  CAS  Google Scholar 

  • Andersen, R. A. (2005). Algal culturing techniques. Burlington: Academic Press. 578 pp.

    Google Scholar 

  • Andersen, R. A., & Kawachi, M. (2005). Traditional microalgae isolation techniques. In R. A. Andersen (Ed.), Algal culturing techniques (pp. 83–100). Burlington: Academic Press.

    Google Scholar 

  • Andersen, R. A., Kim, J. I., Tittley, I., & Yoon, H. S. (2014). A reinvestigation of Chrysotila (Prymnesiophyceae) using material collected from the type locality. Phycologia, 53, 463–473.

    Article  Google Scholar 

  • Andersen, R. A., Kim, J. I., Tittley, I., & Yoon, H. S. (2015). Chrysotila dentata comb. nov., Chrysotila roscoffiensis comb. nov. and Chrysocapsa wetherbeei sp. nov. Phycologia, 54, 321–322.

    Article  Google Scholar 

  • Anderson, O. R., Swanberg, N. R., & Bennett, P. (1983). Fine structure of yellow-brown symbionts (Prymnesiida) in solitary Radiolaria and their comparison with acantharian symbionts. Journal of Protozoology, 30, 718–722.

    Article  Google Scholar 

  • Anning, T., Nimer, N., Merrett, M. J., & Brownlee, C. (1996). Costs and benefits of calcification in coccolithophorids. Journal of Marine Systems, 9, 45–56.

    Article  Google Scholar 

  • Antia, N. J. (1980). Nutritional physiology and biochemistry of marine cryptomonads and chrysomonads. In M. Levandowsky & S. H. Hutner (Eds.), Biochemistry and physiology of protozoa (Vol. 3, pp. 67–115). New York: Academic.

    Google Scholar 

  • Antoine, D., & Morel, A. (1996). Oceanic primary production: 1. Adaptation of a spectral light-photosynthesis model in view of application to satellite chlorophyll observations. Global Biogeochemical Cycles, 10, 43–55.

    Article  CAS  Google Scholar 

  • Aubry, M.-P. (1992). Late Paleogene calcareous nannoplankton evolution: A tale of climatic deterioration. In D. R. Prothero & W. A. Berggren (Eds.), Eocene-Oligocene climatic and biotic evolution (pp. 272–309). Princeton: Princeton University Press.

    Google Scholar 

  • Aubry, M.-P. (2007). A major Pliocene coccolithophore turnover: Change in morphological strategy in the photic zone. In S. Monechi, R. Coccioni, & M. R. Rampino (Eds.), Large ecosystem perturbations: Causes and consequences (The Geological Society of America special paper, Vol. 424, pp. 25–51). Boulder: Geological Society of America.

    Chapter  Google Scholar 

  • Bach, L. T., Mackinder, L. C. M., Schulz, K. G., Wheeler, G., Schroeder, D. C., Brownlee, C., & Riebesell, U. (2013). Dissecting the impact of CO2 and pH on the mechanisms of photosynthesis and calcification in the coccolithophore Emiliania huxleyi. New Phytologist, 199, 121–134.

    Google Scholar 

  • Bach, L. T., Riebesell, U., Gutowska, M. A., Federwisch, L., & Schulz, K. G. (2015). A unifying concept of coccolithophore sensitivity to changing carbonate chemistry embedded in an ecological framework. Progress in Oceanography, 135, 125–138.

    Article  Google Scholar 

  • Bach, L. T., Riebesell, U., & Schulz, K. G. (2011). Distinguishing between the effects of ocean acidification and ocean carbonation in the coccolithophore Emiliania huxleyi. Limnology and Oceanography, 56, 2040–2050.

    Article  CAS  Google Scholar 

  • Baker, J. W., Grover, J. P., Brooks, B. W., Urena-Boeck, F., Roelke, D. L., Errera, R., & Kiesling, R. L. (2007). Growth and toxicity of Prymnesium parvum (Haptophyta) as a function of salinity, light, and temperature. Journal of Phycology, 43, 219–227.

    Article  Google Scholar 

  • Balch, W. M., Holligan, P. M., Ackleson, S. G., & Voss, K. J. (1991). Biological and optical properties of mesoscale coccolithophore blooms in the Gulf of Maine. Limnology and Oceanography, 36, 629–643.

    Article  CAS  Google Scholar 

  • Balch, W. M., Kilpatrick, K. A., Holligan, P., Harbour, D., & Fernandez, E. (1996). The 1991 coccolithophore bloom in the central North Atlantic. 2. Relating optics to coccolith concentration. Limnology and Oceanography, 41, 1684–1696.

    Article  Google Scholar 

  • Baumann, K.-H., Böckel, B., & Frenz, M. (2004). Coccolith contribution to South Atlantic carbonate sedimentation. In H. R. Thierstein & J. R. Young (Eds.), Coccolithophores (pp. 367–402). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Beaufort, L. (2005). Weight estimates of coccoliths using the optical properties (birefringence) of calcite. Micropaleontology, 51, 289–298.

    Article  Google Scholar 

  • Beaufort, L., Barbarin, N., & Gally, Y. (2014). Optical measurements to determine the thickness of calcite crystals and the mass of thin carbonate particles such as coccoliths. Nature Protocols, 9, 633–642.

    Article  CAS  PubMed  Google Scholar 

  • Beaufort, L., Probert, I., de Garidel-Thoron, T., Bendif, E. M., Ruiz-Pino, D., Metzl, N., Goyet, C., Buchet, N., Coupel, P., Grelaud, M., Rost, B., Rickaby, R. E. M., & de Vargas, C. (2011). Sensitivity of coccolithophores to carbonate chemistry and ocean acidification. Nature, 476, 80–83.

    Article  CAS  PubMed  Google Scholar 

  • Beech, P., & Wetherbee, R. (1984). Serial reconstruction of the mitochondrial reticulum in the coccolithophorid, Pleurochrysis carterae (Prymnesiophyceae). Protoplasma, 123, 226–229.

    Article  Google Scholar 

  • Beech, P., Wetherbee, R., & Pickett-Heaps, J. (1988). Transformation of the flagella and associated flagellar components during cell division in the coccolithophorid Pleurochrysis carterae. Protoplasma, 145, 37–46.

    Article  Google Scholar 

  • Beech, P. L., & Wetherbee, R. (1988). Observations on the flagellar apparatus and peripheral endoplasmic reticulum of the coccolithophorid, Pleurochrysis carterae (Prymnesiophyceae). Phycologia, 27, 142–158.

    Article  Google Scholar 

  • Beltran, C., de Rafélis, M., Minoletti, F., Renard, M., Sicre, M. A., & Ezat, U. (2007). Coccolith δ18O and alkenone records in middle Pliocene orbitally controlled deposits: High-frequency temperature and salinity variations of sea surface water. Geochemistry, Geophysics, Geosystems, 8, Q05003.

    Article  CAS  Google Scholar 

  • Bendif, E., Probert, I., Herve, A., Billard, C., Goux, D., Lelong, C., Cadoret, J. P., & Veron, B.(2011). Integrative taxonomy of the Pavlovophyceae (Haptophyta): A reassessment. Protist, 162, 738–761.

    Article  Google Scholar 

  • Bendif, M., Probert, I., Schroeder, D. C., & de Vargas, C. (2013). On the description of Tisochrysis lutea gen. nov. sp. nov. and Isochrysis nuda sp. nov. in the Isochrysidales, and the transfer of Dicrateria to the Prymnesiales (Haptophyta). Journal of Applied Phycology, 25, 1763–1776.

    Article  CAS  Google Scholar 

  • Benthien, A., Zondervan, I., Engel, A., Hefter, J., Terbrüggen, A., & Riebesell, U. (2007). Carbon isotopic fractionation during a mesocosm bloom experiment dominated by Emiliania huxleyi: Effects of CO2 concentration and primary production. Geochimica et Cosmochimica Acta, 71, 1528–1541.

    Article  CAS  Google Scholar 

  • Berge, G. (1962). Discoloration of the sea due to Coccolithus huxleyi “bloom”. Sarsia, 6, 27–40.

    Article  Google Scholar 

  • Berger, R., Liaaen-Jensen, S., McAlister, V., & Guillard, R. R. (1977). Carotenoids of Prymnesiophyceae (Haptophyceae). Biochemical Systematics and Ecology, 5, 71–75.

    Article  CAS  Google Scholar 

  • Berry, L., Taylor, A. R., Lucken, U., Ryan, K. P., & Brownlee, C. (2002). Calcification and inorganic carbon acquisition in coccolithophores. Functional Plant Biology, 29, 289–299.

    Article  CAS  Google Scholar 

  • Bertin, M. J., Zimba, P. V., Beauchesne, K. R., Huncik, K. M., & Moeller, P. D. R. (2012a). The contribution of fatty acid amides to Prymnesium parvum Carter toxicity. Harmful Algae, 20, 117–125.

    Article  CAS  Google Scholar 

  • Bertin, M. J., Zimba, P. V., Beauchesne, K. R., Huncik, K. M., & Moeller, P. D. R. (2012b). Identification of toxic fatty acid amides isolated from the harmful alga Prymnesium parvum Carter. Harmful Algae, 20, 111–116.

    Article  CAS  Google Scholar 

  • Billard, C. (1994). Life cycles. In J. C. Green & B. S. C. Leadbeater (Eds.), The Haptophyte algae (Vol. 51, pp. 167–186). Oxford/New York: Oxford University Press/Clarendon.

    Google Scholar 

  • Billard, C., & Inouye, I. (2004). What is new in coccolithophore biology? In H. R. Thierstein & E. B. Young (Eds.), Coccolithophores: From molecular process to global impact (pp. 1–29). Berlin/Heidelberg/New York: Springer.

    Google Scholar 

  • Birkhead, M., & Pienaar, R. N. (1994). The flagellar apparatus of Prymnesium nemamethecum (Prymnesiophyceae). Phycologia, 33, 311–323.

    Article  Google Scholar 

  • Birkhead, M., & Pienaar, R. N. (1995). The flagellar apparatus of Chrysochromulina sp. (Prymnesiophyceae). Journal of Phycology, 31, 96–108.

    Article  Google Scholar 

  • Bittner, L., Gobet, A., Audic, S., Romac, S., Egge, E. S., Santini, S., Ogata, H., Probert, I., Edvardsen, B., & de Vargas, C. (2013). Diversity patterns of uncultured haptophytes unravelled by pyrosequencing in Naples Bay. Molecular Ecology, 22, 87–101.

    Article  CAS  PubMed  Google Scholar 

  • Bollmann, J., Baumann, K.-H., & Thierstein, H. R. (1998). Global dominance of Gephyrocapsa coccoliths in the Late Pleistocene: Selective dissolution, evolution or global environment change? Paleoceanography, 13, 517–529.

    Article  Google Scholar 

  • Borman, A. H., JONG, E. W., Huizinga, M., Kok, D. J., Westbroek, P., & Bosch, L. (1982). The role in CaCO3 crystallization of an acid Ca2+−binding polysaccharide associated with coccoliths of Emiliania huxleyi. European Journal of Biochemistry, 129, 179–183.

    Article  CAS  PubMed  Google Scholar 

  • Bornemann, A., Aschwer, U., & Mutterlose, J. (2003). The impact of calcareous nannofossils on the pelagic carbonate accumulation across the Jurassic-Cretaceous boundary. Palaeogeography Palaeoclimatology Palaeoecology, 199, 187–228.

    Article  Google Scholar 

  • Bougaran, G., Le Déan, L., Lukomska, E., Kaas, R., & Baron, R. (2003). Transient initial phase in continuous culture of Isochrysis galbana affinis Tahiti. Aquatic Living Resources, 16, 389–394.

    Article  Google Scholar 

  • Bown, P. (Ed.). (1998). Calcareous nannofossil biostratigraphy. Cambridge: Chapman & Hall. 314.

    Google Scholar 

  • Bown, P. (2005). Selective calcareous nannoplankton survivorship at the Cretaceous-Tertiary boundary. Geology, 33, 653–656.

    Article  Google Scholar 

  • Bown, P. R., Lees, J. A., & Young, J. R. (2004). Calcareous nannoplankton evolution and diversity through time. In H. R. Thierstein & J. R. Young (Eds.), Coccolithophores: From molecular processes to global impact (pp. 481–508). Berlin: Springer.

    Chapter  Google Scholar 

  • Bramlette, M. N. (1958). Significance of coccolithophorids in calcium-carbonate deposition. Bulletin of the Geologicial Society of America, 69, 121–126.

    Article  Google Scholar 

  • Brassell, S. C., & Dumitrescu, M. (2004). Recognition of alkenones in a lower Aptian porcellanite from the west-central Pacific. Organic Geochemistry, 35, 181–188.

    Article  CAS  Google Scholar 

  • Brown, M., Jeffrey, S., Volkman, J., & Dunstan, G. (1997). Nutritional properties of microalgae for mariculture. Aquaculture, 151, 315–331.

    Article  CAS  Google Scholar 

  • Brownlee, C., & Taylor, A. (2004). Calcification in coccolithophores: A cellular perspective. In H. R. Thierstein & J. R. Young (Eds.), Coccolithophores (pp. 31–49). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Bruce, J. R., Knight, M., & Parke, M. W. (1940). The rearing of oysters on an algal diet. Journal of the Marine Biological Association of the United Kingdom, 24, 337–374.

    Article  Google Scholar 

  • Buitenhuis, E., van Bleijswijk, J., Bakker, D., & Veldhuis, M. (1996). Trends in inorganic and organic carbon in a bloom of Emiliania huxleyi in the North Sea. Marine Ecology Progress Series, 143, 271–282.

    Article  CAS  Google Scholar 

  • Buitenhuis, E. T., De Baar, H. J. W., & Veldhuis, M. J. W. (1999). Photosynthesis and calcification by Emiliania huxleyi (Prymnesiophyceae) as a function of inorganic carbon species. Journal of Phycology, 35, 949–959.

    Article  CAS  Google Scholar 

  • Butcher, R. (1952). Contributions to our knowledge of the smaller marine algae. Journal of the Marine Biological Association of the United Kingdom, 31, 175–191.

    Article  Google Scholar 

  • Carr, M.-E., Friedrichs, M. A., Schmeltz, M., Aita, M. N., Antoine, D., Arrigo, K. R., Asanuma, I., Aumont, O., Barber, R., & Behrenfeld, M. (2006). A comparison of global estimates of marine primary production from ocean color. Deep Sea Research Part II: Topical Studies in Oceanography, 53, 741–770.

    Article  Google Scholar 

  • Carter, N. (1937). New or interesting algae from brackish water. Archiv für Protistenkunde, 90, 1–68.

    Google Scholar 

  • Castberg, T., Thyrhaug, R., Larsen, A., Sandaa, R.-A., Heldal, M., Van Etten, J. L., & Bratbak, G. (2002). Isolation and characterization of a virus that infects Emiliania huxleyi (Haptophyta). Journal of Phycology, 38, 767–774.

    Article  CAS  Google Scholar 

  • Charlson, R. J., Lovelock, J. E., Andreae, M. O., & Warren, S. G. (1987). Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature, 326, 655–661.

    Article  CAS  Google Scholar 

  • Chrétiennot-Dinet, M-J., Vaulot, D., Putaux, J-L., Saito, Y & Chanzy H. (1997). The chitinous nature of filaments ejected by Phaeocystis (Prymnesiophyceae). Journal of Phycology, 33: 666–672.

    Article  Google Scholar 

  • Chrétiennot-Dinet, M.-J., Desreumaux, N., & Vignes-Lebbe, R. (2014). An interactive key to the Chrysochromulina species (Haptophyta) described in the literature. PhytoKeys: 34, 47–60.

    Google Scholar 

  • Conte, M. H., Thompson, A., Lesley, D., & Harris, R. P. (1998). Genetic and physiological influences on the alkenone/alkenoate versus growth temperature relationship in Emiliania huxleyi and Gephyrocapsa oceanica. Geochimica et Cosmochimica Acta, 62, 51–68.

    Article  CAS  Google Scholar 

  • Conte, M. H., Volkman, J. K., & Eglinton, G. (1994). Lipid biomarkers for the Haptophyta. In J. C. Green & B. S. C. Leadbeater (Eds.), The Haptophyte algae (Vol. 51, pp. 265–285). Oxford: Clarendon.

    Google Scholar 

  • Cros, L., & Estrada, M. (2013). Holo-heterococcolithophore life cycles: Ecological implications. The Marine Ecology Progress Series, 492, 57–68.

    Article  Google Scholar 

  • Cros, L., Kleijne, A., Zeltner, A., Billard, C., & Young, J. (2000). New examples of holococcolith–heterococcolith combination coccospheres and their implications for coccolithophorid biology. Marine Micropaleontology, 39, 1–34.

    Article  Google Scholar 

  • Cuvelier, M. L., Allen, A. E., Monier, A., McCrow, J. P., Messie, M., Tringe, S. G., Woyke, T., Welsh, R. M., Ishoey, T., Lee, J. H., Binder, B. J., DuPont, C. L., Latasa, M., Guigand, C., Buck, K. R., Hilton, J., Thiagarajan, M., Caler, E., Read, B., Lasken, R. S., Chavez, F. P., & Worden, A. Z. (2010). Targeted metagenomics and ecology of globally important uncultured eukaryotic phytoplankton. Proceedings of the National Academy of Sciences of the United States of America, 107, 14679–14684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cyronak, T., Schulz, K. G., & Jokiel, P. L. (2015). The Omega myth: What really drives lower calcification rates in an acidifying ocean. ICES Journal of Marine Science: Journal du Conseil: doi: 10.1093/icesms/fsv075

    Google Scholar 

  • Dahl, E., Lindahl, O., Paasche, E., & Throndsen, J. (1988). The Chrysochromulina polylepis bloom in Scandinavian waters during spring 1988. In E. M. Cosper, V. M. Bricelj & E. J. Carpenter (Eds.), Novel Phytoplankton Blooms. (pp. 383-405). New York: Springer.

    Google Scholar 

  • Daugbjerg, N., & Henriksen, P. (2001). Pigment composition and rbcL sequence data from the silicoflagellate Dictyocha speculum: A heterokont alga with pigments similar to some haptophytes. Journal of Phycology, 37, 1110–1120.

    Article  CAS  Google Scholar 

  • de Vargas, C., Aubry, M. P., Probert, I., & Young, J. R. (2007). Origin and evolution of coccolithophores: From coastal hunters to oceanic farmers. In P. Falkowski & A. H. Knoll (Eds.), Evolution of aquatic photoautotrophs (pp. 251–281). New York: Elsevier Academic.

    Google Scholar 

  • Decelle, J., Suzuki, N., Mahé, F., de Vargas, C., & Not, F. (2012). Molecular phylogeny and morphological evolution of the Acantharia (Radiolaria). Protist, 163, 435–450.

    Article  PubMed  Google Scholar 

  • Delille, B., Harlay, J., Zondervan, I., Jacquet, S., Chou, L., Wollast, R., Bellerby, R. G. J., Frankignoulle, M., Vieira Borges, A., Riebesell, U., & Gattuso, J.-P. (2005). Response of primary production and calcification to changes of pCO2 during experimental blooms of the coccolithophorid Emiliania huxleyi. Global Biogeochemical Cycles, 19, 1–14.

    Article  CAS  Google Scholar 

  • Droop, M. R. (1953). On the ecology of flagellates from some brackish and fresh water rockpools of Finland. Acta Botanica Fennica, 51, 3–52.

    Google Scholar 

  • Dunkley Jones, T., Bown, P. R., Pearson, P. N., Wade, B. S., Coxall, H. K., & Lear, C. H. (2008). Major shifts in calcareous phytoplankton assemblages through the Eocene-Oligocene transition of Tanzania and their implications for low-latitude primary production. Paleoceanography, 23, PA4204.

    Article  Google Scholar 

  • Edvardsen, B., Eikrem, W., Green, J. C., Andersen, R. A., Moon-van der Staay, S. Y., & Medlin, L. K. (2000). Phylogenetic reconstructions of the Haptophyta inferred from 18S ribosomal DNA sequences and available morphological data. Phycologia, 39, 19–35.

    Article  Google Scholar 

  • Edvardsen, B., Eikrem, W., Shalchian-Tabrizi, K., Riisberg, I., Johnsen, G., Naustvoll, L., & Throndsen, J. (2007). Verrucophora farcimen gen. et sp nov (Dictyochophyceae, Heterokonta) – A bloom-forming ichthyotoxic flagellate from the Skagerrak, Norway. Journal of Phycology, 43, 1054–1070.

    Article  CAS  Google Scholar 

  • Edvardsen, B., Eikrem, W., Throndsen, J., Saez, A. G., Probert, I., & Medlin, L. K. (2011). Ribosomal DNA phylogenies and a morphological revision provide the basis for a revised taxonomy of the Prymnesiales (Haptophyta). European Journal of Phycology, 46, 202–228.

    Article  Google Scholar 

  • Edvardsen, B., & Imai, I. (2006). The ecology of harmful flagellates within Prymnesiophyceae and Raphidophyceae. Ecology of Harmful Algae, 189, 67–79.

    Article  CAS  Google Scholar 

  • Edvardsen, B., & Medlin, L. (1998). Genetic analyses of authentic and alternate forms of Chrysochromulina polylepis (Haptophyta). Phycologia, 37, 275–283.

    Article  Google Scholar 

  • Edvardsen, B., & Paasche, E. (1998). Bloom dynamics and physiology of Prymnesium and Chrysochromulina. NATO ASI Series, Series G: Ecological Sciences, 41, 193–208.

    Google Scholar 

  • Edvardsen, B., & Vaulot, D. (1996). Ploidy analysis of the two motile forms of Chrysochromulina polylepis (Prymnesiophyceae). Journal of Phycology, 32, 94–102.

    Article  Google Scholar 

  • Egge, E. S., Eikrem, W., & Edvardsen, B. (2015a). Deep-branching Novel Lineages and High Diversity of Haptophytes in the Skagerrak (Norway) uncovered by 454 Pyrosequencing. Journal of Eukaryotic Microbiology, 62: 121–140.

    Google Scholar 

  • Egge, E. S., Johannessen, T. V., Andersen, T., Eikrem, W., Bittner, L., Larsen, A., Sandaa, R. A. and Edvardsen, B. (2015b). Seasonal diversity and dynamics of haptophytes in the Skagerrak, Norway, explored by high-throughput sequencing. Molecular ecology, 24, 3026–3042.

    Google Scholar 

  • Ehrenberg, D. C. G. (1836). Bemerkungen über feste mikroskopische, anorganische Formen in den erdigen und derben Mineralien. Bericht ber die Verhandlungen der Königlich Preussichen Akademie der Wissenschaften Berlin, 1836, 84–85.

    Google Scholar 

  • Eikrem, W. (1996). Chrysochromulina throndsenii sp. nov. (Prymnesiophyceae). Description of a new haptophyte flagellate from Norwegian waters. Phycologia, 35, 377–380.

    Article  Google Scholar 

  • Eikrem, W., & Edvardsen, B. (1999). Chrysochromulina fragaria sp. nov. (Prymnesiophyceae), a new haptophyte flagellate from Norwegian waters. Phycologia, 38, 149–155.

    Article  Google Scholar 

  • Eikrem, W., & Moestrup, Ø. (1998). Structural analysis of the flagellar apparatus and the scaly periplast in Chrysochromulina scutellum sp. nov. (Prymnesiophyceae, Haptophyta) from the Skagerrak and the Baltic. Phycologia, 37, 132–153.

    Article  Google Scholar 

  • Eltgroth, M. L., Watwood, R. L., & Wolfe, G. V. (2005). Production and cellular localization of neutral long-chain lipids in the haptophyte algae Isochrysis galbana and Emiliania huxleyi. Journal of Phycology, 41, 1000–1009.

    Article  CAS  Google Scholar 

  • Erba, E. (2006). The first 150 million years history of calcareous nannoplankton: Biosphere-geosphere interactions. Palaeogeography Palaeoclimatology Palaeoecology, 232, 237–250.

    Article  Google Scholar 

  • Estep, K. W., Davis, P. G., Hargraves, P. E., & Sieburth, J. M. (1984). Chloroplast containing microflagellates in natural populations of north Atlantic nanoplankton, their identification and distribution; including a description of five new species of Chrysochromulina (Prymnesiophyceae). Protistologica, 20, 613–634.

    Google Scholar 

  • Everitt, D., Wright, S., Volkman, J., Thomas, D., & Lindstrøm, E. (1990). Phytoplankton community compositions in the western equatorial Pacific determined from chlorophyll and carotenoid pigment distributions. Deep Sea Research Part A: Oceanographic Research Papers, 37, 975–997.

    Article  CAS  Google Scholar 

  • Farrimond, P., Eglinton, G., & Brassell, S. C. (1986). Alkenones in Cretaceous black shales, Blake-Bahama Basin, western North Atlantic. Organic Geochemistry, 10, 897–903.

    Article  CAS  Google Scholar 

  • Febvre, J., & Febvre-Chevalier, C. (1979). Ultrastructural study of zooxanthellae of three species of Acantharia (Protozoa: Actinopoda) with details of their taxonomic position in the Prymnesiales (Prymnesiophyceae Hibberd). Journal of the Marine Biological Association of the United Kingdom, 59, 215–226.

    Article  Google Scholar 

  • Feng, Y., Warner, M. E., Zhang, Y., Sun, J., Fu, F. X., Rose, J. M., & Hutchins, D. A. (2008). Interactive effects of increased pCO2, temperature and irradiance on the marine coccolithophore Emiliania huxleyi (Prymnesiophyceae). European Journal of Phycology, 43, 78–98.

    Article  CAS  Google Scholar 

  • Fichtinger-Schepman, A. M. J., Kamerling, J. P., Versluis, C., & Vliegenthart, J. F. (1981). Structural studies of the methylated, acidic polysaccharide associated with coccoliths of Emiliania huxleyi (Lohmann) Kamptner. Carbohydrate Research, 93, 105–123.

    Article  CAS  Google Scholar 

  • Field, C. B., Behrenfeld, M. J., Randerson, J. T., & Falkowski, P. (1998). Primary production of the biosphere: Integrating terrestrial and oceanic components. Science, 281, 237–240.

    Article  CAS  PubMed  Google Scholar 

  • Findlay, C. S., Young, J. R., & Scott, F. J. (2005). Haptophytes: Order Coccolithophorales. In F. J. Scott & H. J. Marchant (Eds.), Antarctic marine protists (pp. 276–294). Canberra: Australian Biological Resources Study.

    Google Scholar 

  • Frada, M., Probert, I., Allen, M. J., Wilson, W. H., & de Vargas, C. (2008). The “Cheshire Cat” escape strategy of the coccolithophore Emiliania huxleyi in response to viral infection. Proceedings of the National Academy of Sciences of the United States of America, 105, 15944–15949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frada, M. J., Bidle, K. D., Probert, I., & de Vargas, C. (2012). In situ survey of life cycle phases of the coccolithophore Emiliania huxleyi (Haptophyta). Environmental Microbiology, 14, 1558–1569.

    Article  CAS  PubMed  Google Scholar 

  • Fresnel, J., & Billard, C. (1991). Pleurochrysis placolithoides sp. nov. (Prymnesiophyceae), a new marine coccolithophorid with remarks on the status of cricolith-bearing species. British Phycological Journal, 26, 67–80.

    Article  Google Scholar 

  • Fresnel, J., & Probert, I. (2005). The ultrastructure and life cycle of the coastal coccolithophorid Ochrosphaera neapolitana (Prymnesiophyceae), European Journal of Phycology, 40, 105–122.

    Article  Google Scholar 

  • Gaebler-Schwarz, S., Davidson, A., Assmy, P., Chen, J., Henjes, J., Nöthig, E. M., Lunau, M., & Medlin, L. K. (2010). A new cell stage in the haploid-diploid life cycle of the colony-forming Phaeocystis antarctica and its ecological implications. Journal of Phycology, 46, 1006–1016.

    Article  Google Scholar 

  • Gao, Y., Tseng, C. K., & Guo, Y. (1991). Some new species of nannoplankton in Jiaozhou Bay, Shandong, China. Protoplasma, 161, 1–11.

    Article  Google Scholar 

  • Gast, R. J., McDonnell, T. A., & Caron, D. A. (2000). srDna-based taxonomic affinities of algal symbionts from a planktonic foraminifer and a solitary radiolarian. Journal of Phycology, 36, 172–177.

    Article  Google Scholar 

  • Gattuso, J. P., Frankignoulle, M., & Wollast, R. (1998). Carbon and carbonate metabolism in coastal aquatic ecosystems. Annual Review of Ecology and Systematics, 29, 405–434.

    Article  Google Scholar 

  • Gayral, P., & Fresnel, J. (1979). Exanthemachrysis gayraliae Lepailleur (Prymnesiophyceae, Pavlovales): Ultra-structure et discussion taxinomique. Protistologica, 15, 271–282.

    Google Scholar 

  • Gayral, P., & Fresnel, J. (1983). Description, sexualité, et cycle de développement d’une nouvelle coccolithophoracée (Prymnesiophyceae): Pleurochrysis pseudoroscoffensis sp. nov. Protistologica, 19, 245–261.

    Google Scholar 

  • Geisen, M., Billard, C., Brierse, A. T. C., Cros, L., Probert, I., & Young, J. R. (2002). Life cycle associations involving pairs of holococcolithophorid species: Intraspecific variation or cryptic speciations? European Journal of Phycology, 37, 531–550.

    Article  Google Scholar 

  • Gibbs, S., Bralower, T. J., Bown, P. R., Zachos, J. C., & Bybell, L. M. (2006). Shelf and open-ocean calcareous phytoplankton assemblages across the Paleocene-Eocene Thermal Maximum: Implications for global productivity gradients. Geology, 34, 233–236.

    Article  CAS  Google Scholar 

  • Gibbs, S., Poulton, A. J., Bown, P. R., Daniels, C. J., Hopkins, J., Young, J. R., Jones, H. L., Thiemann, G. J., O’Dea, S. A., & Newsam, C. (2013). Species-specific growth response of coccolithophores to Palaeocene-Eocene environmental change. Nature Geoscience, 6, 218–222.

    Article  CAS  Google Scholar 

  • Gjøsæter, J., Lekve, K., Stenseth, N.-C., Leinaas, H. P., Christie, H., Dahl, E., Danielssen, D. S., Edvardsen, B., Olsgard, F., Oug, E., & Paasche, E. (2000). A long term perspective on the Chrysochromulina bloom on the Norwegian Skagerrak coast 1988: A catastrophe or an innocent incident? Marine Ecology Progress Series, 207, 201–218.

    Article  Google Scholar 

  • Graham, L. E., & Wilcox, L. W. (2000). “Introduction to the algae: occurrence, relationships, nutrition, definition, general features”. Algae, Prentice-Hall, Upper Saddle River, NJ. p 640.

    Google Scholar 

  • Granéli, E., Edvardsen, B., Roelke, D. L., & Hagstrom, J. A. (2012). The ecophysiology and bloom dynamics of Prymnesium spp. Harmful Algae, 14, 260–270.

    Google Scholar 

  • Granéli, E., Paasche, E., & Maestrini, S. (1993). Three years after the Chrysochromulina polylepis bloom in Scandinavian waters in 1988: Some conclusions of recent research and monitoring. In T. J. Smayda & Y. Shimizu (Eds.), Toxic phytoplankton blooms in the sea (pp. 23–32). Amsterdam: Elsevier.

    Google Scholar 

  • Green, J. (1975). The fine-structure and taxonomy of the haptophycean flagellate Pavlova lutheri (Droop) comb. nov. (= Monochrysis lutheri Droop). Journal of the Marine Biological Association of the United Kingdom, 55, 785–793.

    Article  Google Scholar 

  • Green, J. (1976). Notes on the flagellar apparatus and taxonomy of Pavlova mesolychnon van der Veer, and on the status of Pavlova Butcher and related genera within the Haptophyceae. Journal of the Marine Biological Association of the United Kingdom, 56, 595–602.

    Article  Google Scholar 

  • Green, J. (1980). The fine structure of Pavlova pinguis Green and a preliminary survey of the order Pavlovales (Prymnesiophyceae). British Phycological Journal, 15, 151–191.

    Article  Google Scholar 

  • Green, J., Course, P., & Tarran, G. (1996). The life-cycle of Emiliania huxleyi: A brief review and a study of relative ploidy levels analysed by flow cytometry. Journal of Marine Systems, 9, 33–44.

    Article  Google Scholar 

  • Green, J., & Parke, M. (1975). New observations upon members of the genus Chrysotila Anand, with remarks upon their relationships within the Haptophyceae. Journal of the Marine Biological Association of the United Kingdom, 55, 109–121.

    Article  Google Scholar 

  • Green, J., Perch-Nielsen, K., & Westbroek, P. (1990). Phylum Prymnesiophyta. In L. Margulis, J. Corliss, M. Melkonian, & D. Chapman (Eds.), Handbook of Protoctista (pp. 293–317). Boston: Jones and Bartlett Publishers.

    Google Scholar 

  • Green, J., & Pienaar, R. (1977). The taxonomy of the order Isochrysidales (Prymnesiophyceae) with special reference to the genera Isochrysis Parke, Dicrateria Parke and Imantonia Reynolds. Journal of the Marine Biological Association of the United Kingdom, 57, 7–17.

    Article  Google Scholar 

  • Green, J. C., & Course, P. A. (1983). Extracellular calcification in Chrysotila lamellosa Prymnesiophyceae. British Phycological Journal, 18, 367–382.

    Article  Google Scholar 

  • Green, J. C., & Hibberd, D. J. (1977). The ultrastructure and taxonomy of Diacronema vlkianum (Prymnesiophyceae) with special reference to the haptonema and flagellar apparatus. Journal of the Marine Biological Association of the United Kingdom, 57, 1125–1136.

    Article  Google Scholar 

  • Green, J. C., Hibberd, D. J., & Pienaar, R. N. (1982). The taxonomy of Prymnesium (Prymnesiophyceae) including a description of a new cosmopolitan species, P. patellifera sp. nov., and further observations on P. parvum N. Carter. British Phycological Journal, 17, 363–382.

    Article  Google Scholar 

  • Green, J. C., & Hori, T. (1990). The architecture of the flagellar apparatus of Prymnesium patellifera (Prymnesiophyta). Botanical Magazine Tokyo, 103, 191–207.

    Article  Google Scholar 

  • Green, J. C., & Hori, T. (1994). Flagella and flagellar roots. In J. C. Green & B. S. C. Leadbeater (Eds.), The Haptophyte algae (Vol. 51, pp. 47–71). Oxford: Clarendon.

    Google Scholar 

  • Green, J. C., & Parke, M. (1975b). A reinvestigation by light and electron-microscopy of Ruttnera spectabilis Geitler (Haptophyceae), with special reference to the fine structure of the zoids. Journal of the Marine Biological Association of the United Kingdom, 54, 539–550.

    Article  Google Scholar 

  • Gregson, A. J., Green, J. C., & Leadbeater, B. S. C. (1993). Structure and physiology of the haptonema in Chrysochromulina (Prymnesiophyceae). II. Mechanisms of haptonematal coiling and the regeneration process. Journal of Phycology, 29, 686–700.

    Article  Google Scholar 

  • Guillard, R. R. L. (2005). Purification methods for microalgae. In R. A. Andersen (Ed.), Algal culturing techniques (pp. 117–132). Burlington: Academic.

    Google Scholar 

  • Guschina, I. A., & Harwood, J. L. (2006). Lipids and lipid metabolism in eukaryotic algae. Progress in Lipid Research, 45, 160–186.

    Article  CAS  PubMed  Google Scholar 

  • Hagino, K., & Young, J. R. (2015). Biology and paleontology of Coccolithophores (Haptophytes). In S. Ohtsuka, T. Suzaki, T. Horiguchi, N. Suzuki & F. Not (Eds.), Marine Protists (pp. 311–330). Tokyo: Springer

    Google Scholar 

  • Hannisdal, B., Henderiks, J., & Liow, L. H. (2012). Long-term evolutionary and ecological responses of calcifying phytoplankton to changes in atmospheric CO2. Global Change Biology, 18, 3504–3516.

    Article  Google Scholar 

  • Hansen, E., Ernstsen, A., & Eilertsen, H. C. (2004). Isolation and characterisation of a cytotoxic polyunsaturated aldehyde from the marine phytoplankter Phaeocystis pouchetii (Hariot) Lagerheim. Toxicology, 199, 207–217.

    Article  CAS  PubMed  Google Scholar 

  • Hansen, L. R., Kristiansen, J., & Rasmussen, J. V. (1994). Potential toxicity of the freshwater Chrysochromulina species C. parva (Prymnesiophyceae). Hydrobiologia, 287, 157–159.

    Article  Google Scholar 

  • Harris, R. P. (1994). Zooplankton grazing on the coccolithophore Emiliania huxleyi and its role in inorganic carbon flux. Marine Biology, 119, 431–439.

    Article  Google Scholar 

  • Henderiks, J. (2008). Coccolithophore size rules – Reconstructing ancient cell geometry and cellular calcite quota from fossil coccoliths. Marine Micropaleontology, 67, 143–154.

    Article  Google Scholar 

  • Henderiks, J., Lindberg, L., & Törner, A. (2004). Neogene patterns of coccolith size evolution and carbonate burial in the deep sea. Journal of Nannoplankton Research, 26, 55–56.

    Google Scholar 

  • Henderiks, J., & Pagani, M. (2008). Coccolithophore cell size and the Paleogene decline in atmospheric CO2. Earth and Planetary Science Letters, 269, 575–583.

    Article  CAS  Google Scholar 

  • Henderiks, J., & Rickaby, R. E. M. (2007). A coccolithophore concept for constraining the Cenozoic carbon cycle. Biogeosciences, 4, 323–329.

    Article  CAS  Google Scholar 

  • Henriksen, K., Stipp, S., Young, J., & Marsh, M. (2004). Biological control on calcite crystallization: AFM investigation of coccolith polysaccharide function. American Mineralogist, 89, 1709–1716.

    Article  CAS  Google Scholar 

  • Henson, S. A., Sanders, R., Madsen, E., Morris, P. J., Le Moigne, F., & Quartly, G. D. (2011). A reduced estimate of the strength of the ocean’s biological carbon pump. Geophysical Research Letters, 4, 38. doi: 10.1029/2011GL046735

    Google Scholar 

  • Herfort, L., Thake, B., & Roberts, J. (2002). Acquisition and use of bicarbonate by Emiliania huxleyi. New Phytologist, 156, 427–436.

    Article  CAS  Google Scholar 

  • Hibberd, D. J. (1980). Prymnesiophytes (=Haptophytes). In E. R. Cox (Ed.), Developments in marine biology (Vol. 2, pp. 273–317). New York: Elsevier North Holland.

    Google Scholar 

  • Hoepffner, N., & Haas, L. W. (1990). Electron microscopy of nanoplankton from the North Pacific central gyre. Journal of Phycology, 26, 421–439.

    Article  Google Scholar 

  • Holdway, P. A., Watson, R. A., & Moss, B. (1978). Aspects of the ecology of Prymnesium parvum (Haptophyta) and water chemistry in the Norfolk Broads, England. Freshwater Biology, 8, 295–311.

    Article  CAS  Google Scholar 

  • Holligan, P. M., Fernandez, E., Aiken, J., Balch, W. M., Boyd, P., Burkill, P. H., Finch, M., Groom, S. B., Malin, G., Muller, K., Purdie, D. A., Robinson, C., Trees, C. C., Turner, S. M., & Vanderwal, P. (1993). A biogeochemical study of the coccolithophore, Emiliania huxleyi, in the North-Atlantic. Global Biogeochemical Cycles, 7, 879–900.

    Article  CAS  Google Scholar 

  • Holligan, P. M., Viollier, M., Harbour, D. S., Camus, P., & Champagne-Philippe, M. (1983). Satellite and ship studies of coccolithophore production along a continental shelf edge. Nature, 304, 339–342.

    Article  CAS  Google Scholar 

  • Hoppe, C. J. M., Langer, G., & Rost, B. (2011). Emiliania huxleyi shows identical responses to elevated pCO2 in TA and DIC manipulations. Journal of Experimental Marine Biology and Ecology, 406, 54–62.

    Article  Google Scholar 

  • Hori, T., & Green, J. (1991). The ultrastructure of the flagellar root system of Isochrysis galbana (Prymnesiophyta). Journal of the Marine Biological Association of the United Kingdom, 71, 137.

    Article  Google Scholar 

  • Houdan, A., Billard, C., MArie, D., Not, F., Sáez, A. G., Young, J. R., & Probert, I. (2004a). Holococcolithophore-heterococcolithophore (Haptophyta) life cycles: Flow cytometric analysis of relative ploidy levels. Systematics and Biodiversity, 1, 453–465.

    Article  Google Scholar 

  • Houdan, A., Bonnard, A., Fresnel, J., Fouchard, S., Billard, C., & Probert, I. (2004b). Toxicity of coastal coccolithophores (Prymnesiophyceae, Haptophyta). Journal of Plankton Reserch, 26, 875–883.

    Article  Google Scholar 

  • Huxley, T. H. (1858). Appendix A. In J. Dayman (Ed.), Deep sea soundings in the North Atlantic Ocean between Ireland and Newfoundland (pp. 63–68). London: Her Majesty’s Stationery Office.

    Google Scholar 

  • Hällfors, G., & Niemi, Å. (1974). A Chrysochromulina (Haptophyceae) bloom under the ice in the Tvärminne archipelago, southern coast of Finland. Memoranda Societas pro Fauna et Flora Fennica, 50, 89–104.

    Google Scholar 

  • Igarashi, T., Aritake, S., Satake, M., Matsunaga, S., & Yasumoto, T. (1995). Structures and activities of prymnesin-1 and prymnesin-2 isolated from Prymnesium parvum. Seventh International Conference on Toxic Phytoplankton, 12–16 July 1995, Sendai.

    Google Scholar 

  • Igarashi, T., Satake, M., & Yasumoto, T. (1996). Prymnesin-2: A potent ichthyotoxic and hemolytic glycoside isolated from the red tide alga Prymnesium parvum. Journal of American Chemical Society, 118, 479–480.

    Article  CAS  Google Scholar 

  • Inouye, I., & Kawachi, M. (1994). The haptonema. In J. C. Green & B. S. C. Leadbeater (Eds.), The Haptophyte algae (Vol. 51, pp. 73–89). Oxford: Clarendon.

    Google Scholar 

  • Inouye, I., & Pienaar, R. N. (1984). New observations on the coccolithophorid Umbilicosphaera sibogae var. foliosa (Prymnesiophyceae) with reference to cell covering, cell structure and flagellar apparatus. British Phycological Journal, 19, 357–369.

    Article  Google Scholar 

  • Inouye, I., & Pienaar, R. N. (1985). Ultrastructure of the flagellar apparatus in Pleurochrysis (Class Prymnesiophyceae). Protoplasma, 125, 24–35.

    Article  Google Scholar 

  • Inouye, I., & Pienaar, R. N. (1988). Light and electron microscope observations of the type species of Syracosphaera, S. pulchra (Prymnesiophyceae). British Phycological Journal, 23, 205–217.

    Article  Google Scholar 

  • Jacobsen, A., Larsen, A., Martinez-Martinez, J., Verity, P. G., & Frischer, M. E. (2007). Susceptibility of colonies and colonial cells of Phaeocystis pouchetii (Haptophyta) to viral infection. Aquatic Microbial Ecology, 48, 105–112.

    Article  Google Scholar 

  • Janse, I., Rijssel, M., Hall, P. J., Gerwig, G. J., Gottschal, J. C., & Prins, R. A. (1996). The storage glucan of Phaeocystis globosa (Prymnesiophyceae) cells. Journal of Phycology, 32, 382–387.

    Article  CAS  Google Scholar 

  • Jardillier, L., Zubkov, M. V., Pearman, J., & Scanlan, D. J. (2010). Significant CO2 fixation by small prymnesiophytes in the subtropical and tropical northeast Atlantic Ocean. Isme Journal, 4, 1180–1192.

    Article  CAS  PubMed  Google Scholar 

  • Jeffrey, S. W., Brown, M. R., & Volkman, J. K. (1994). Haptophyte as feedstocks in mariculture. In J. C. Green & B. S. C. Leadbeater (Eds.), The Haptophyte algae (Vol. 51, pp. 287–302). Oxford: Clarendon.

    Google Scholar 

  • Jensen, M. Ø., & Moestrup, Ø. (1999). Ultrastructure of Chrysochromulina ahrengotii sp nov (Prymnesiophyceae), a new saddle-shaped species of Chrysochromulina from Danish coastal waters. Phycologia, 38, 195–207.

    Article  Google Scholar 

  • Jensen, M. Ø. (1998). The genus Chrysochromulina (Prymnesiophyceae) in Scandinavian coastal waters. PhD. thesis, University of Copenhagen.

    Google Scholar 

  • Johnsen, T. M., Eikrem, W., Olseng, C. D., Tollefsen, K. E., & Bjerknes, V. (2010). Prymnesium parvum: The Norwegian experience. Journal of the American Water Resources Association, 46, 6–13.

    Article  Google Scholar 

  • Jones, H. L. J., Leadbeater, B. S. C., & Green, J. C. (1994). Mixotrophy in haptophytes. In J. C. Green & B. S. C. Leadbeater (Eds.), The Haptophyte algae (Vol. 51, pp. 247–263). Oxford: Clarendon.

    Google Scholar 

  • Jordan, R. W., Cros, L., & Young, J. R. (2004). A revised classification scheme for living haptophyte. Micropaleontology, 50, 55–79.

    Article  Google Scholar 

  • Jordan, R. W., Kleijne, A., Heimdal, B. R., & Green, J. C. (1995). A glossary of the extant Haptophyta of the world. Journal of Marine Biological Association of the United Kingdom, 75, 769–814.

    Article  Google Scholar 

  • Kamptner, E. (1941). Die Coccolithineen der Südwestküste von Istrien. Annalen des Naturhistorischen Museums in Wien, 51, 54–149.

    Google Scholar 

  • Kawachi, M., & Inouye, I. (1993). Chrysochromulina quadrikonta sp. nov., a quadriflagellate member of the genus Chrysochromulina (Prymnesiophyceae = Haptophyceae). Japanese Journal of Phycology, 41, 221–230.

    Google Scholar 

  • Kawachi, M., & Inouye, I. (1995). Functional roles of the haptonema and the spine scales in the feeding process of Chrysochromulina spinifera (Fournier) Pienaar et Norris (Haptophyta = Prymnesiophyta). Phycologia, 34, 193–200.

    Article  Google Scholar 

  • Kawai, H., & Inouye, I. (1989). Flagellar autofluorescence in forty-four chlorophyll c-containing algae. Phycologia, 28, 222–227.

    Article  Google Scholar 

  • Kegel, J. U., Blaxter, M., Allen, M. J., Metfies, K., Wilson, W. H., & Valentin, K. (2010). Transcriptional host-virus interaction of Emiliania huxleyi (Haptophyceae) and EhV-86 deduced from combined analysis of expressed sequence tags and microarrays. European Journal of Phycology, 45, 1–12.

    Article  CAS  Google Scholar 

  • Keller, M. D., Bellows, W. K., & Guillard, R. R. L. (1989). Dimethyl sulfide production in marine phytoplankton. In E. S. Saltzman & W. J. Cooperand (Eds.), Biogenic sulfur in the environment (Vol. 393, pp. 167–182). Washington, DC: American Chemical Society.

    Chapter  Google Scholar 

  • Kirkham, A. R., Jardillier, L. E., Tiganescu, A., Pearman, J., Zubkov, M. V., & Scanlan, D. J. (2011). Basin-scale distribution patterns of photosynthetic picoeukaryotes along an Atlantic Meridional Transect. Environmental Microbiology, 13, 975–990.

    Article  CAS  PubMed  Google Scholar 

  • Kirst, G. O. (1996). Osmotic adjustment in phytoplankton and MacroAlgae. In R. Kiene, P. Visscher, M. Keller, & G. Kirst (Eds.), Biological and environmental chemistry of DMSP and related sulfonium compounds (pp. 121–129). Boston: Springer US.

    Chapter  Google Scholar 

  • Klaveness, D. (1972). Coccolithus huxleyi (Lohm.) Kamptn. II. The flagellate cell, aberrant cell types, vegetative propagation and life cycles. British Phycological Journal, 7, 309–318.

    Article  Google Scholar 

  • Klaveness, D. (1973). The microanatomy of Calyptrosphaera sphaeroidea, with some supplementary observations on the motile stages of Coccolithus pelagicus. Norwegian Journal of Botany, 20, 151–162.

    Google Scholar 

  • Klaveness, D. (1976). “Emiliania huxleyi (Lohmann) Hay & Mohler. III.” Mineral deposition and the origin of the matrix during coccolith formation. Protistologica, 12, 217–224.

    CAS  Google Scholar 

  • Klaveness, D., & Paasche, E. (1979). Physiology of coccolithophorids. In M. Levandowsky & S. H. Hutner (Eds.), Biochemistry and physiology of protozoa (Vol. 1, pp. 191–213). New York: Academic.

    Chapter  Google Scholar 

  • Kleijne, A. (1993). Morphology, taxonomy and distribution of extant coccolithophrids (Calcerous nannoplankton). PhD, Free University Amsterdam. 321 pp.

    Google Scholar 

  • Klaas, C., & Archer, D. E. (2002). Association of sinking organic matter with various types of mineral ballast in the deep sea: Implications for the rain ratio. Global Biogeochemical Cycles, 16, 1116–1130.

    Article  CAS  Google Scholar 

  • Knappertsbusch, M. (2000). Morphologic evolution of the coccolithophorid Calcidiscus leptoporus from the early miocene to recent. Journal of Paleontology, 74, 712–730.

    Article  Google Scholar 

  • Kornmann, P. (1955). Beobachtungen an Phaeocystis-Kulturen. Helgolaender Wissenschaftliche Meeresuntersuchungen, 5, 218–233.

    Article  Google Scholar 

  • Kozakai, H., Oshima, Y., & Yasumoto, T. (1982). Isolation and structural elucidation of hemolysin from the phytoflagellate Prymnesium parvum. Agricultural and Biological Chemistry, 46, 233–236.

    CAS  Google Scholar 

  • Kreger, D., & Van der Veer, J. (1970). Paramylon in a chrysophyte. Acta Botanica Neerlandica, 19, 401–402.

    Article  Google Scholar 

  • Lange, M., Guillou, L., Vaulot, D., Simon, N., Amann, R. I., Ludwig, W., & Medlin, L. (1996). Identification of the class Prymnesiophyceae and the genus Phaeocystis with ribosomal RNA-targeted nucleic acid probes detected by flow cytometry. Journal of Phycology, 32, 858–868.

    Article  CAS  Google Scholar 

  • Langer, G., De Nooijer, L. J., & Oetjen, K. (2010). On the role of the cytoskeleton in coccolith morphogenesis: The effect of cytoskeleton inhibitors. Journal of Phycology, 46, 1252–1256.

    Article  CAS  Google Scholar 

  • Langer, G., Geisen, M., Baumann, K. H., Kläs, J., Riebesell, U., Thoms, S., & Young, J. R. (2006). Species-specific responses of calcifying algae to changing seawater carbonate chemistry. Geochemistry, Geophysics, Geosystems, 7, Q09006.

    Article  CAS  Google Scholar 

  • Langer, G., Nehrke, G., Probert, I., Ly, J., & Ziveri, P. (2009). Strain-specific responses of Emiliania huxleyi to changing seawater carbonate chemistry. Biogeosciences, 6, 2637–2646.

    Article  CAS  Google Scholar 

  • Larsen, A. (1999). Prymnesium parvum and P. patelliferum (Haptophyta) – One species. Phycologia, 38, 541–543.

    Article  Google Scholar 

  • Larsen, A., & Edvardsen, B. (1998). Relative ploidy levels in Prymnesium parvum and P-patelliferum (Haptophyta) analyzed by flow cytometry. Phycologia, 37, 412–424.

    Article  Google Scholar 

  • Larsen, A., & Medlin, L. K. (1997). Inter- and intraspecific genetic variation in twelve Prymnesium (Haptophyceae) clones. Journal of Phycology, 33, 1007–1015.

    Article  CAS  Google Scholar 

  • Laws, E. A., Falkowski, P. G., Smith, W. O., Ducklow, H., & McCarthy, J. J. (2000). Temperature effects on export production in the open ocean. Global Biogeochemical Cycles, 14, 1231–1246.

    Article  CAS  Google Scholar 

  • Leadbeater, B. S. C. (1970). Preliminary observations on differences of scale morphology at various stages in the life cycle of ‘Apistonema-Syracosphaera’ sensu von Stosch. British Phycological Journal, 5, 57–69.

    Article  Google Scholar 

  • Leadbeater, B. S. C. (1971a). Observations by means of ciné photography on the behaviour of the haptonema in plankton flagellates of the class Haptophyceae. Journal of the Marine Biological Association of the United Kingdom, 51, 207–217.

    Article  Google Scholar 

  • Leadbeater, B. S. C. (1971b). Observations on the life-history of the haptophycean alga Pleurochrysis scherffelii with special reference to the microanatomy of the different types of motile cell. Annals of Botany, 35, 429–439.

    Article  Google Scholar 

  • Leadbeater, B. S. C. (1972). Fine structural observations on six new species of Chrysochromulina (Haptophyceae) from Norway with preliminary observations on scale production in C. microcylindra sp. nov. Sarsia, 49, 65–80.

    Article  Google Scholar 

  • Leadbeater, B. S. C. (1974). Ultrastructural observations on nanoplankton collected from the coast of Jugoslavia and the bay of Algiers. Journal of Marine Biological Association of the United Kingdom, 54, 179–196.

    Article  Google Scholar 

  • Leadbeater, B. S. C. (1994). Cell covering. In J. C. Green & B. S. C. Leadbeater (Eds.), The Haptophyte algae (Vol. 51, pp. 23–46). Oxford: Clarendon.

    Google Scholar 

  • Lefort, F. (1975). Étude de quelques coccolithophoracées marines rapportées aux genres Hymenomonas et Ochrosphaera. Cahiers de Biologie Marine, 16, 213–229.

    Google Scholar 

  • LeRoi, J.-M., & Hallegraeff, G. M. (2004). Scale-bearing nanoflagellates from southern Tasmanian coastal waters, Australia. I. Species of the genus Chrysochromulina (Haptophyta). Botanica Marina, 47, 73–102.

    Article  Google Scholar 

  • LeRoi, J. M., & Hallegraeff, G. M. (2006). Scale-bearing nanoflagellates from southern Tasmanian coastal waters, Australia. II. Species of chrysophyceae (Chrysophyta), prymnesiophyceae (Haptophyta, excluding Chrysochromulina) and prasinophyceae (Chlorophyta). Botanica Marina, 49, 216–235.

    Article  Google Scholar 

  • Liu, H., Probert, I., Uitz, J., Claustre, H., Aris-Brosou, S., Frada, M., Not, F., & de Vargas, C. (2009). Extreme diversity in noncalcifying haptophytes explains a major pigment paradox in open oceans. Proceedings of the National Academy of Sciences of the United States of America, 106, 12803–12808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, W., Liu, Z., Fu, M., & An, Z. (2008). Distribution of the C37 tetra-unsaturated alkenone in Lake Qinghai, China: A potential lake salinity indicator. Geochimica et Cosmochimica Acta, 72, 988–997.

    Article  CAS  Google Scholar 

  • Lohbeck, K., Riebesell, U., & Reusch, T. B. (2011). Rapid evolution of a key phytoplankton species to ocean acidification. Nature Geoscience, 5, 346–351.

    Google Scholar 

  • Löbl, M., Cockshutt, A. M., Campbell, D., & Finkel, Z. V. (2010). Physiological basis for high resistance to photoinhibition under nitrogen depletion in Emiliania huxleyi. Limnology and Oceanography, 55, 2150–2160.

    Article  CAS  Google Scholar 

  • Mackinder, L., Wheeler, G., Schroeder, D., Riebesell, U., & Brownlee, C. (2010). Molecular mechanisms underlying calcification in coccolithophores. Geomicrobiology Journal, 27, 585–595.

    Article  CAS  Google Scholar 

  • Mackinder, L. C. M., Worthy, C. A., Biggi, G., Hall, M., Ryan, K. P., Varsani, A., Harper, G. M., Wilson, W. H., Brownlee, C., & Schroeder, D. C. (2009). A unicellular algal virus, Emiliania huxleyi virus 86, exploits an animal-like infection strategy. Journal of General Virology, 90, 2306–2316.

    Article  CAS  PubMed  Google Scholar 

  • MacLeod, N., Rawson, P., Forey, P., Banner, F., Boudagher-Fadel, M., Bown, P., Burnett, J., Chambers, P., Culver, S., & Evans, S. (1997). The Cretaceous-Tertiary biotic transition. Journal of the Geological Society, 154, 265–292.

    Article  Google Scholar 

  • Malin, G., & Steinke, M. (2004). Dimethyl sulfide production: What is the contribution of the coccolithophores? In H. Thierstein & J. Young (Eds.), Coccolithophores (pp. 127–164). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Malin, G., Turner, S., Liss, P., Holligan, P., & Harbour, D. (1993). Dimethylsulphide and dimethylsulphoniopropionate in the Northeast Atlantic during the summer coccolithophore bloom. Deep Sea Research Part I: Oceanographic Research Papers, 40, 1487–1508.

    Article  CAS  Google Scholar 

  • Manton, I. (1964a). The possible significance of some details of flagellar bases in plants. Journal of the Royal Microscopical Society, 82, 279–285.

    Article  Google Scholar 

  • Manton, I. (1964b). Observations with the electron microscope on the division cycle in the flagellate Prymnesium parvum Carter. Journal of the Royal Microscopical Society, 83, 317–325.

    Article  Google Scholar 

  • Manton, I. (1967). Further observations on the fine structure of Chrysochromulina chiton with special reference to the haptonema, ‘peculiar’ golgi structure and scale production. Journal of Cell Science, 2, 265–272.

    CAS  PubMed  Google Scholar 

  • Manton, I., & Leadbeater, B. S. C. (1974). Fine-structural observations on six species of Chrysochromulina from wild Danish marine nanoplankton, including a description of C. campanulifera sp. nov. and a preliminary summary of the nanoplankton as a whole. Det Kongelige Danske Vitenskabernes Selskab, Biologiske Skrifter, 20, 1–26.

    Google Scholar 

  • Manton, I., & Leedale, G. (1963). Observations on the micro-anatomy of Crystallolithus hyalinus Gaarder and Markali. Archiv für Mikrobiologie, 47, 115–136.

    Article  Google Scholar 

  • Manton, I., & Leedale, G. (1969). Observations on the microanatomy of Coccolithus pelagicus and Cricosphaera carterae, with special reference to the origin and nature of coccoliths and scales. Journal of the Marine Biological Association of the United Kingdom, 49, 1–16.

    Article  Google Scholar 

  • Manton, I., & Leedale, G. F. (1961). Further observations on the fine structure of Chrysochromulina ericina Parke & Manton. Journal of the Marine Biological Association of the United Kingdom, 41, 145–155.

    Article  Google Scholar 

  • Manton, I., & Peterfi, L. S. (1969). Observations on the fine structure of coccoliths, scales and the protoplast of a freshwater coccolithophorid, Hymenomonas roseola Stein, with supplementary observations on the protoplast of Cricosphaera carterae. Proceedings of the Royal Society Series B, 172, 1–15.

    Article  Google Scholar 

  • Marchant, H. J., & Thomsen, H. A. (1994). Haptophytes in polar waters. In J. C. Green & B. S. C. Leadbeater (Eds.), The Haptophyte algae (Vol. 51, pp. 209–228). Oxford: Clarendon.

    Google Scholar 

  • Marlowe, I. T., Green, J. C., Neal, A. C., Brassell, S. C., Eglinton, G., & Course, P. A. (1984). Long-chain (n-C37-C39) alkenones in the Prymnesiophyceae – Distribution of alkenones and other lipids and their taxonomic significance. British Phycological Journal, 19, 203–216.

    Article  Google Scholar 

  • Marsh, M., & Dickinson, D. (1997). Polyanion-mediated mineralization – Mineralization in coccolithophore (Pleurochrysis carterae) variants which do not express PS2, the most abundant and acidic mineral-associated polyanion in wild-type cells. Protoplasma, 199, 9–17.

    Article  CAS  Google Scholar 

  • Marsh, M., Ridall, A., Azadi, P., & Duke, P. (2002). Galacturonomannan and Golgi-derived membrane linked to growth and shaping of biogenic calcite. Journal of Structural Biology, 139, 39–45.

    Article  CAS  PubMed  Google Scholar 

  • Martínez, J. M., Schroeder, D. C., Larsen, A., Bratbak, G., & Wilson, W. H. (2007). Molecular dynamics of Emiliania huxleyi and cooccurring viruses during two separate mesocosm studies. Applied and Environmental Microbiology, 73, 554–562.

    Article  PubMed  CAS  Google Scholar 

  • Masquelier, S., Foulon, E., Jouenne, F., Ferreol, M., Brussaard, C. P. D., & Vaulot, D. (2011). Distribution of eukaryotic plankton in the English Channel and the North Sea in summer. Journal of Sea Research, 66, 111–122.

    Article  Google Scholar 

  • Mattioli, E., & Pittet, B. (2002). Contribution of calcareous nannoplankton to carbonate deposition: A new approach applied to the Lower Jurassic of central Italy. Marine Micropaleontology, 45, 175–190.

    Article  Google Scholar 

  • McIntyre, A., & Bé, A. W. H. (1967). Modern coccolithophorids of the Atlantic Ocean I Placoliths and cyrtoliths. Deep Sea Research, 14, 561–597.

    Google Scholar 

  • Medlin, L., Sáez, A. G., & Young, J. (2008). A molecular clock for coccolithophores and implications for selectivity of phytoplankton extinctions across the K/T boundary. Marine Micropaleontology, 67, 69–86.

    Article  Google Scholar 

  • Medlin, L., & Zingone, A. (2007). A taxonomic review of the genus Phaeocystis. Biogeochemistry, 83, 3–18.

    Article  Google Scholar 

  • Medlin, L. K., Barker, G. L. A., Cambell, L., Green, J. C., Hayes, P. K., Marie, D., Wrieden, S., & Vaulot, D. (1996). Genetic characterisation of Emiliania huxleyi (Haptophyta). Journal of Marine Systematics, 9, 13–31.

    Article  Google Scholar 

  • Medlin, L. K., Kooistra, W. H. C. F., Potter, D., Saunders, G. W., & Andersen, R. A. (1997). Phylogenetic relationships of the ‘golden algae’ (haptophytes, heterokont chromophytes) and their plastids. In D. Bhattacharya (Ed.), The origins of algae and their plastids (Vol. 11, pp. 187–219). Vienna: Springer.

    Chapter  Google Scholar 

  • Medlin, L. K., Saez, A. G., & Young, J. R. (2007). Did mixotrophy prevent phytoplankton extinctions across the K/T boundary? Marine Micropaleontology, 67, 69–86.

    Article  Google Scholar 

  • Meireles, L., Guedes, A., & Malcata, F. X. (2003). Lipid class composition of the microalga Pavlova lutheri: Eicosapentaenoic and docosahexaenoic acids. Journal of Agricultural and Food Chemistry, 51, 2237–2241.

    Article  CAS  PubMed  Google Scholar 

  • Meldahl, A.-S., Thorsen, V. A. T., Sand, O., & Fonnum, F. (1994). The toxin of the alga Prymnesium patelliferum increases cytosolic Ca2+ in synaptosomes and voltage sensitive Ca2+-currents in cultured pituitary cells. In O. D. Kamp (Ed.), Biological membranes: Structure, biogenesis and dynamics (Vol. H 82, pp. 331–339). Berlin: Springer.

    Chapter  Google Scholar 

  • Mihnea, P. (1997). Major shifts in the phytoplankton community (1980–1994) in the Romanian Black Sea. Oceanolica Acta, 20, 119–129.

    Google Scholar 

  • Milliman, J. D. (1993). Production and accumulation of calcium carbonate in the ocean: Budget of a non-steady state. Global Biogeochemistry Cycles, 7, 927–957.

    Article  CAS  Google Scholar 

  • Milliman, J. D., & Droxler, A. W. (1996). Neritic and pelagic carbonate sedimentation in the marine environment: Ignorance is not bliss. Geologische Rundschau, 85, 496–504.

    Article  CAS  Google Scholar 

  • Moestrup, Ø. (1994). Economic aspects: ‘Blooms’, nuisance species, and toxins. In J. C. Green & B. S. C. Leadbeater (Eds.), The Haptophyte algae (Vol. 51, pp. 265–285). Oxford: Clarendon.

    Google Scholar 

  • Moestrup, Ø., & Thomsen, H. A. (1986). Ultrastructure and reconstruction of the flagellar apparatus in Chrysochromulina apheles sp. nov. (Prymnesiophyceae = Haptophyceae). Canadian Journal of Botany, 64, 593–610.

    Article  Google Scholar 

  • Moestrup, Ø., & Thomsen, H. A. (2003). Taxonomy of toxic haptophytes (prymnesiophytes). In G. M. Hallegraeff, D. M. Anderson, & A. D. Cembella (Eds.), Manual on harmful marine microalgae (pp. 433–463). Paris: UNESCO Publishing.

    Google Scholar 

  • Moon-van der Staay, S. Y., van der Staay, G. W., Guillou, L., Claustre, H., Medlin, L., & Vaulot, D.(2000). Abundance and diversity of prymnesiophytes in the picoplankton community from the equatorial Pacific Ocean inferred from 18S rDNA sequences. Limnology and Oceanography, 45, 98–109.

    Article  CAS  Google Scholar 

  • Morse, J. W., & Mackenzie, F. T. (1990). Geochemistry of sedimentary carbonates (p. 707). Amsterdam: Elsevier Science.

    Google Scholar 

  • Müller, M., Barcelos e Ramos, J., Schulz, K., Riebesell, U., Kaźmierczak, J., Gallo, F., Mackinder, L., Li, Y., Nesterenko, P., & Trull, T. (2015). Phytoplankton calcification as an effective mechanism to alleviate cellular calcium poisoning. Biogeosciences, 12, 6493–6501.

    Article  CAS  Google Scholar 

  • Nanninga, H. J., & Tyrrell, T. (1996). Importance of light for the formation of algal blooms by Emiliania huxleyi. Marine Ecology Progress Series, 136, 195–203.

    Article  Google Scholar 

  • Nejstgaard, J. C., Gismervik, I., & Solberg, P. T. (1997). Feeding and reproduction by Calanus finmarchicus, and microzooplankton grazing during mesocosm blooms of diatoms and the coccolithophore Emiliania huxleyi. Marine Ecology Progress Series, 147, 197–217.

    Article  Google Scholar 

  • Nicholls, K. H. (2014). Haptophyte Algae. In J. D. Wehr, R. G. Sheath, & P. Kociolek (Eds.), Freshwater algae of North America (pp. 537586). Amsterdam: Elsevier.

    Google Scholar 

  • Nicholls, K. H., Beaver, J. L., & Estabrook, R. H. (1982). Lakewide odors in Ontario and New Hampshire caused by Chrysochromulina breviturrita Nicholls (Prymnesiophyceae). Hydrobiologia, 96, 91–95.

    Google Scholar 

  • Nielsen, M. V. (1995). Photosynthetic characteristics of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae) exposed to elevated concentrations of dissolved inorganic carbon. Journal of Phycology, 31, 715–719.

    Article  Google Scholar 

  • Nimer, N., & Merrett, M. (1993). Calcification rate in Emiliania huxleyi Lohmann in response to light, nitrate and availability of inorganic carbon. New Phytologist, 123, 673–677.

    Article  CAS  Google Scholar 

  • Okada, H. (2000). Neogene and Quaternary calcareous nannofossils from the Blake Ridge, Sites 994, 995, and 997. In C. K. Paull, R. Matsumoto, P. J. Wallace, & W. P. Dillon (Eds.), Proceedings of the ocean drilling program, scientific results (Vol. 164, pp. 331341)

    Google Scholar 

  • Okada, H., & Honjo, S. (1973). The distribution of oceanic coccolithophorids in the Pacific. Sea Research, 20, 355–374.

    Google Scholar 

  • Outka, D., & Williams, D. (1971). Sequential coccolith morphogenesis in Hymenomonas carterae. Journal of Eukaryotic Microbiology, 18, 285–297.

    CAS  Google Scholar 

  • Pagani, M. (2002). The alkenone-CO2 proxy and ancient atmospheric carbon dioxide. Philosophical Transactions of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences, 360, 609–632.

    Article  CAS  Google Scholar 

  • Palmer, J. R., & Totterdell, I. J. (2001). Production and export in a global ocean ecosystem model. Deep Sea Research Part I: Oceanographic Research Papers, 48, 1169–1198.

    Article  CAS  Google Scholar 

  • Parke, M. (1949). Studies on marine flagellates. Journal of the Marine Biological Association of the United Kingdom, 28, 255–286.

    Article  Google Scholar 

  • Parke, M., & Adams, I. (1960). The motile (Chrystallolithus hyalinus Gaarder & Markali) and non-motile phases in the life history of Coccolithus pelagicus (Wallich) Schiller. Journal of the Marine Biological Association of the United Kingdom, 39, 263–274.

    Article  Google Scholar 

  • Parke, M., Green, J. C., & Manton, I. (1971). Observations on the fine structure of zoids of the genus Phaeocystis (Haptophyceae). Journal of the Marine Biological Association of the United Kingdom, 51, 927–941.

    Article  Google Scholar 

  • Parke, M., & Dixon P. S. (1976). Check-list of British marine algae-third revision. Marine Biological Association of the United Kingdom. 56: 527–594.

    Article  Google Scholar 

  • Parke, M., Manton, I., & Clarke, B. (1955). Studies on marine flagellates II. Three new species of Chrysochromulina. Journal of the Marine Biological Association of the United Kingdom, 34, 579–609.

    Article  Google Scholar 

  • Peperzak, L., Colijn, F., Vrieling, E. G., Gieskes, W. W. C., & Peeters, J. C. H. (2000). Observations of flagellates in colonies of Phaeocystis globosa (Prymnesiophyceae); a hypothesis for their position in the life cycle. Journal of Plankton Research, 22, 2181–2203.

    Article  Google Scholar 

  • Perch-Nielsen, K. (1985a). Mesozoic calcareous nannofossils. In H. M. Bolli, J. B. Saunders, & K. Perch-Nielsen (Eds.), Plankton stratigraphy (pp. 329–426). Cambridge: Cambridge University Press.

    Google Scholar 

  • Perch-Nielsen, K. (1985b). Cenozoic calcareous nannofossils. In H. M. Bolli, J. B. Saunders, & K. Perch-Nielsen (Eds.), Plankton stratigraphy (pp. 427–554). Cambridge: Cambridge University Press.

    Google Scholar 

  • Perch-Nielsen, K., McKenzie, J. A., & He, Q. (1982). Biostratigraphy and isotope stratigraphy and the “catastrophic” extinction of calcareous nannoplankton at the Cretaceous/Tertiary boundary. Geological Society of America Special Papers, 190, 353–371.

    Article  CAS  Google Scholar 

  • Pienaar, R. (1980). Observations on the structure and composition of the cyst of Prymnesium (Prymnesiophyceae). Proceedings of the Electron Microscopy Society of Southern Africa, 10, 73–74.

    Google Scholar 

  • Pienaar, R. N. (1994). Ultrastructure and calcification of coccolithophores. In A. Winter & W. G. Siesser (Eds.), Coccolithophores (pp. 13–37). Cambridge: Cambridge University Press.

    Google Scholar 

  • Pienaar, R. N., & Birkhead, M. (1994). Ultrastructure of Prymnesium nemamethecum sp. nov. (Prymnsiophyceae). Journal of Phycology, 30, 291–300.

    Article  Google Scholar 

  • Pienaar, R. N., & Norris, R. E. (1979). Ultrastructure of the flagellate Chrysochromulina spinifera (Fournier) comb. nov. (Prymnesiophyceae) with special reference to scale production. Phycologia, 18, 99–108.

    Article  Google Scholar 

  • Pintner, I. J., & Provasoli, L. (1968). Heterotrophy in subdued light of 3 Chrysochromulina species. Bulletin of the Misaki Marine Biological Institute, 12, 25–31.

    Google Scholar 

  • Ponis, E., Probert, I., Véron, B., Le Coz, J.-R., Mathieu, M., & Robert, R. (2006). Nutritional value of six Pavlovophyceae for Crassostrea gigas and Pecten maximus larvae. Aquaculture, 254, 544–553.

    Article  Google Scholar 

  • Preisig, H. R. (2002). Phylum Haptophyta. The freshwater algal flora of the British Isles. In D. M. John, B. A. Whitton, & A. J. Brook (Eds.), An identification guide to freshwater and terrestrial algae. Cambridge: Cambridge University Press.

    Google Scholar 

  • Probert, I., Fresnel, J., Billard, C., Geisen, M., & Young, J. R. (2007). Light and electron microscope observations of Algirosphaera robusta (Prymnesiophyceae). Journal of Phycology, 43, 319–332.

    Article  Google Scholar 

  • Probert, I., & Houdan, A. (2004). The laboratory culture of coccolithophores. In H. R. Thierstein & E. B. Young (Eds.), Coccolithophores: From molecular process to global impact (pp. 217–249). Berlin/Heidelberg/New York: Springer.

    Chapter  Google Scholar 

  • Provasoli, L., McLaughlin, J. J. A., & Droop, M. R. (1957). The development of artificial media for marine algae. Archiv für Mikrobiologie, 25, 392–428.

    Article  CAS  PubMed  Google Scholar 

  • Purdie, D. A., & Finch, M. S. (1994). Impact of a coccolithophorid bloom on dissolved carbon dioxide in sea water enclosures in a Norwegian fjord. Sarsia, 79, 379–387.

    Article  Google Scholar 

  • Paasche, E. (1964). A tracer study of the inorganic carbon uptake during coccolith formation and photosynthesis in the coccolithophorid Coccolithus huxleyi. Physiologia Plantarum Supplementum 3: 1–82.

    Google Scholar 

  • Paasche, E. (2002). A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification-photosynthesis interactions. Phycologia, 40, 503–529.

    Article  Google Scholar 

  • Quinn, P. K., & Bates, T. S. (2011). The case against climate regulation via oceanic phytoplankton sulphur emissions. Nature, 480, 51–56.

    Article  CAS  PubMed  Google Scholar 

  • Read, B. A., Kegel, J., Klute, M. J., Kuo, A., Lefebvre, S. C., Maumus, F., Mayer, C., Miller, J., Monier, A., & Salamov, A. (2013). Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature, 499, 209–213.

    Article  CAS  PubMed  Google Scholar 

  • Reitan, T., Schweder, T., & Henderiks, J. (2012). Phenotypic evolution studied by layered stochastic differential equations. Annals of Applied Statistics, 6, 1531–1551.

    Article  Google Scholar 

  • Rickaby, R. E. M., Bard, E., Sonzogni, C., Rostek, F., Beaufort, L., Barker, S., Rees, G., & Schrag, D. P. (2007). Coccolith chemistry reveals secular variations in the global ocean carbon cycle? Earth and Planetary Science Letters, 253, 83–95.

    Article  CAS  Google Scholar 

  • Ridgwell, A., & Zeebe, R. E. (2005). The role of the global carbonate cycle in the regulation and evolution of the Earth system. Earth and Planetary Science Letters, 234, 299–315.

    Article  CAS  Google Scholar 

  • Riebesell, U., Zondervan, I., Rost, B., Tortell, P. D., Zeebe, E., & Morel, F. M. M. (2000). Reduced calcification in marine plankton in response to increased atmospheric CO2. Nature, 407, 634–637.

    Google Scholar 

  • Riegman, R., Stolte, W., Noordeloos, A. A. M., & Slezak, D. (2000). Nutrient uptake and alkaline phosphatase (EC 3.1.3.1) activity of Emiliania huxleyi (Prymnesiophyceae) during growth under N and P limitation in continuous cultures. Journal of Phycology, 36, 87–96.

    Article  CAS  Google Scholar 

  • Roberts, K. R., & Mills, J. T. (1992). The flagellar apparatus of Hymenomonas coronata (Prymnesiophyta). Journal of Phycology, 28, 635–642.

    Article  Google Scholar 

  • Robertson, J. E., Robinson, C., Turner, D. R., Holligan, P., Watson, A. J., Boyd, P., Fernandez, E., & Finch, M. (1994). The impact of a coccolithophore bloom on oceanic carbon uptake in the northeast Atlantic during summer 1991. Deep Sea Research Part I: Oceanographic Research Papers, 41, 297–314.

    Article  CAS  Google Scholar 

  • Rokitta, S. D., de Nooijer, L. J., Trimborn, S., de Vargas, C., Rost, B., & John, U. (2011). Transcriptome analyses reveal differential gene expression patterns between the life-cycle stages of Emiliania huxleyi (Haptophyta) and reflect specialization to different ecological niches. Journal of Phycology, 47, 829–838.

    Article  CAS  PubMed  Google Scholar 

  • Rokitta, S. D., John, U., & Rost, B. (2012). Ocean acidification affects Redox-Balance and Ion-Homeostasis in the life-cycle stages of Emiliania huxleyi. PloS One, 7, e52212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rokitta, S. D., & Rost, B. (2012). Effects of CO2 and their modulation by light in the life-cycle stages of the coccolithophore Emiliania huxleyi. Limnology and Oceanography, 57, 607–618.

    Article  CAS  Google Scholar 

  • Rokitta, S. D., Von Dassow, P., Rost, B., & John, U. (2014). Emiliania huxleyi endures N-limitation with an efficient metabolic budgeting and effective ATP synthesis. BMC Genomics, 15, 1051.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Romanovicz, D. (1981). Scale formation in flagellates. In O. Kiermayer (Ed.), Cytomorphogenesis in plants (pp. 27–62). Wien: Springer.

    Chapter  Google Scholar 

  • Rontani, J. F., Volkman, J. K., Prahl, F. G., & Wakeham, S. G. (2013). Biotic and abiotic degradation of alkenones and implications for paleoproxy applications: A review. Organic Geochemistry, 59, 95–113.

    Article  CAS  Google Scholar 

  • Rost, B., & Riebesell, U. (2004). Coccolithophores and the biological pump: Responses to environmental changes. In H. R. Thierstein & J. R. Young (Eds.), Coccolithophores: From molecular processes to global impact (pp. 76–99). Berlin: Springer.

    Google Scholar 

  • Roth, P. H., & Bowdler, J. L. (1981). Middle Cretaceous calcareous nannoplankton biogeography and oceanography of the Atlantic Ocean. SEPM (Society of Economic Paleotologists and Minerologists) Special Publication, 32, 517–546.

    Google Scholar 

  • Rousseau, V., Chretiennot-Dinet, M. J., Jacobsen, A., Verity, P., & Whipple, S. (2007). The life cycle of Phaeocystis: State of knowledge and presumptive role in ecology. Biogeochemistry, 83, 29–47.

    Article  Google Scholar 

  • Rowson, J. D., Leadbeater, B. S. C., & Green, J. C. (1986). Calcium carbonate deposition in the motile (Crystallolithus) phase of Coccolithus pelagicus (Prymnesiophyceae). British Phycological Journal, 21, 359–370.

    Article  Google Scholar 

  • Sáez, A. G., Probert, I., Young, J. R., Edvardsen, B., Eikrem, W., & Medlin, L. K. (2004). A review of the phylogeny of the Haptophyta. In H. R. Thierstein & J. R. Young (Eds.), Coccolithophores: From molecular processes to global impact (pp. 251–269). Berlin: Springer.

    Chapter  Google Scholar 

  • Sanderson, M. (2006). Estimating rates of molecular evolution, r8s version 1.71. http://ginger.ucdavis.edu/r8s

  • Savage, R. (1930). The influence of Phaeocystis on the migrations of the herring. Fishery Investigations, London Series, 2, 1–14.

    Google Scholar 

  • Schoemann, V., Becquevort, S., Stefels, J., Rousseau, V., & Lancelot, C. (2005). Phaeocystis blooms in the global ocean and their controlling mechanisms: A review. Journal of Sea Research, 53, 43–66.

    Article  CAS  Google Scholar 

  • Schwarz, E. (1932). Beiträge zur Entwicklungsgeschichte der Protophyten I X Der Formwechsel von Ochrosphaera neapolitana. Archiv für Protistenkunde, 77, 434–462.

    Google Scholar 

  • Seoane, S., Zapata, M., & Orive, E. (2009). Growth rates and pigment patterns of haptophytes isolated from estuarine waters. Journal of Sea Research, 62, 286–294.

    Article  Google Scholar 

  • Shalchian-Tabrizi, K., Reier-Røberg, K., Ree, D. K., Klaveness, D., & Brate, J. (2011). Marine-freshwater colonizations of haptophytes inferred from phylogeny of environmental 18S rDNA sequences. Journal of Eukaryotic Microbiology, 58, 315–318.

    Article  PubMed  Google Scholar 

  • Shi, X. L., Marie, D., Jardillier, L., Scanlan, D. J., & Vaulot, D. (2009). Groups without cultured representatives dominate eukaryotic picophytoplankton in the oligotrophic South East Pacific Ocean. Plos One, 4, e7657.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shilo, M. (1981). The toxic principles of Prymnesium parvum. In W. W. Carmichael (Ed.), The water environment (pp. 37–47). New York: Plenum.

    Chapter  Google Scholar 

  • Sieburth, J. M. (1961). Antibiotic properties of acrylic acid, a factor in the gastro-intestinal antibiosis of polar marine animals. Journal of Bacteriology, 82, 72–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siesser, W. G. (1994). Historical background of coccolithophore studies. In Coccolithophores (pp. 1–11). Cambridge: Cambridge Univiversity Press.

    Google Scholar 

  • Sikes, C. S., Roer, R. D., & Wilbur, K. M. (1980). Photosynthesis and coccolith formation: Inorganic carbon sources and net inorganic reaction of deposition. Limnology and Oceanography, 25, 248–261.

    Article  CAS  Google Scholar 

  • Silva, P. C., Throndsen, J., & Eikrem, W. (2007). Revisiting the nomenclature of haptophytes. Phycologia, 46, 471–475.

    Article  Google Scholar 

  • Southard, G. M., Fries, L. T., & Barkoh, A. (2010). Prymnesium parvum: The Texas experience. Journal of the American Water Resources Association, 46, 14–23.

    Article  Google Scholar 

  • Stefels, J. (2000). Physiological aspects of the production and conversion of DMSP in marine algae and higher plants. Journal of Sea Research, 43, 183–197.

    Article  CAS  Google Scholar 

  • Stefels, J., & van Boekel, W. (1993). Production of DMS from dissolved DMSP in axenic cultures of the marine phytoplankton species Phaeocystis sp. Marine Ecology Progress Series, 97, 11–18.

    Article  CAS  Google Scholar 

  • Stoll, H. M., & Ziveri, P. (2004). Coccolithophorid-based geochemical paleoproxies. In H. R. Thierstein & J. R. Young (Eds.), Coccolithophores: From molecular processes to global impact (pp. 529–562). Berlin: Springer.

    Chapter  Google Scholar 

  • Suffrian, K., Schulz, K. G., Gutowska, M. A., Riebesell, U., & Bleich, M. (2011). Cellular pH measurements in Emiliania huxleyi reveal pronounced membrane proton permeability. New Phytologist, 190, 595–608.

    Article  CAS  PubMed  Google Scholar 

  • Sukhanova, I., & Flint, M. (1998). Anomalous blooming of coccolithophorids over the eastern Bering Sea shelf. Oceanology, 38, 502–505.

    Google Scholar 

  • Sun, Q., Chu, G., Liu, G., Li, S., & Wang, X. (2007). Calibration of alkenone unsaturation index with growth temperature for a lacustrine species, Chrysotila lamellosa (Haptophyceae). Organic Geochemistry, 38, 1226–1234.

    Article  CAS  Google Scholar 

  • Sunda, W., Kieber, D. J., Kiene, R. P., & Huntsman, S. (2002). An antioxidant function for DMSP and DMS in marine algae. Nature, 418, 317–320.

    Article  CAS  PubMed  Google Scholar 

  • Sym, S., & Kawachi, M. (2000). Ultrastructure of Calyptrosphaera radiata, sp. nov. (Prymnesiophyceae, Haptophyta). European Journal of Phycology, 35, 283–293.

    Article  Google Scholar 

  • Sym, S. D., Pienaar, R. N., Edvardsen, B., & Egge, E. S. (2011). Fine structure and systematics of Prymnesium radiatum sp. nov. (Prymnesiophyceae) from False Bay and Franskraal, South Africa. European Journal of Phycology, 46, 229–248.

    Article  Google Scholar 

  • Takahashi, E. (1981). Floristic study of ice algae in the sea ice of a lagoon, Lake Saroma, Hokkaido, Japan (Biology and Medical Science). Memoirs of National Institute of Polar Research. Series E, Biology and medical science, 34, 49–63.

    Google Scholar 

  • Takayama, T. (1993). Notes on Neogene calcareous nannofossil biostratography of the Ontong Java Plateau and size variations of Reticulofenestra coccoliths. In W. H. Berger, L. W. Kroenke, L. A. Mayer, et al. (Eds.), Proceedings of the ocean drilling program, scientific results (Vol. 130, pp. 179229).

    Google Scholar 

  • Takezaki, N., Rzhetsky, A., & Nei, M. (1995). Phylogenetic test of the molecular clock and linearized trees. Molecular Biology and Evolution, 12, 823–833.

    CAS  PubMed  Google Scholar 

  • Tappan, H. (1980). Paleobiology of plant protists. San Francisco: W H Freeman.

    Google Scholar 

  • Taylor, A. R., Chrachi, A., Wheeler, G., Goddard, H., & Brownlee, C. (2011). A voltage-gated H+ channel underlying pH homeostasis in calcifying coccolithophores. PLoS Biology, 9, e1001085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thierstein, H. R., Geitzenauer, K. R., Molfino, B., & Shackleton, N. J. (1977). Global synchroneity of late Quaternary coccolith datum levels: Validation by oxygen isotopes. Geology, 5, 400–404.

    Article  CAS  Google Scholar 

  • Thompson, A. W., Foster, R. A., Krupke, A., Carter, B. J., Musat, N., Vaulot, D., Kuypers, M. M. M., & Zehr, J. P. (2012). Unicellular cyanobacterium symbiotic with a single-celled eukaryotic alga. Science, 337, 1546–1550.

    Article  CAS  PubMed  Google Scholar 

  • Thomsen, H. (1986). A survey of the smallest eukaryotic organisms of the marine phytoplankton. In T. Platt, & W. Li (Eds.), Photosynthetic Picoplankton. Canadian Bulletin of Fisheries and Aquatic Sciences. 214, 121–158.

    Google Scholar 

  • Thomsen, H., Bjørn, P., Højlund, L., Olensen, J., & Pedersen, J. (1995). Ericiolus gen. nov. (Prymnesiophyceae), a new coccolithophorid genus from polar and temperate regions. European Journal of Phycology, 30, 29–34.

    Article  Google Scholar 

  • Thomsen, H. A., Buck, K. R., & Chavez, F. P. (1994). Haptophytes as components of marine phytoplankton. In J. C. Green & B. S. C. Leadbeater (Eds.), The Haptophyte algae (Vol. 51, pp. 187–208). Oxford: Clarendon.

    Google Scholar 

  • Thomsen, H. A., Østergaard, J. B., & Hansen, L. E. (1991). Heteromorphic life histories in arctic coccolithophorids (Prymnesiophyceae). Journal of Phycology, 27, 634–642.

    Article  Google Scholar 

  • Tillmann, U. (1998). Phagotrophy by a plastidic haptophyte, Prymnesium patelliferum. Aquatic Microbial Ecology, 14, 155–160.

    Article  Google Scholar 

  • Townsend, D. W., Keller, M. D., Holligan, P. M., Ackleson, S. G., & Balch, W. M. (1994). Blooms of the coccolithophore Emiliania huxleyi with respect to hydrography in the Gulf of Maine. Continental Shelf Research, 14, 979–1000.

    Article  Google Scholar 

  • Trimborn, S., Langer, G., & Rost, B. (2007). Effect of varying calcium concentrations and light intensities on calcification and photosynthesis in Emiliania huxleyi. Limnology and Oceanography, 52, 2285–2293.

    Article  CAS  Google Scholar 

  • Tyrrell, T., Holligan, P., & Mobley, C. (1999). Optical impacts of oceanic coccolithophore blooms. Journal of Geophysical Research, Oceans, 104, 3223–3241.

    Article  Google Scholar 

  • Ulitzur, S., & Shilo, M. (1966). Mode of action of Prymnesium parvum ichtyotoxin. Journal of Protozoology, 13, 332–336.

    Article  CAS  Google Scholar 

  • Ulitzur, S., & Shilo, M. (1970). Procedure for purification and separation of Prymnesium parvum toxins. Biochimica et Biophysica Acta, 201, 350–363.

    Article  CAS  PubMed  Google Scholar 

  • Van der Meer, M. T. J., Baas, M., Rijpstra, W. I. C., Marino, G., Rohling, E. J., Sinninghe Damsté, J. S., & Schouten, S. (2007). Hydrogen isotopic compositions of long-chain alkenones record freshwater flooding of the Eastern Mediterranean at the onset of sapropel deposition. Earth and Planetary Science Letters, 262, 594–600.

    Article  CAS  Google Scholar 

  • Van der Veer, J. (1979). Pavlova and the taxonomy of flagellates especially the chrysomonads. Thesis, State University at Groningen. 146.

    Google Scholar 

  • Van Der Wal, P., De Jong, E., Westbroek, P., De Bruijn, W., & Mulder-Stapel, A. (1983). Polysaccharide localization, coccolith formation, and golgi dynamics in the coccolithophorid Hymenomonas carterae. Journal of Ultrastructure Research, 85, 139–158.

    Article  PubMed  Google Scholar 

  • Van Emburg, P., De Jong, E., & Daems, W. T. (1986). Immunochemical localization of a polysaccharide from biomineral structures (coccoliths) of Emiliania huxleyi. Journal of Ultrastructure and Molecular Structure Research, 94, 246–259.

    Article  Google Scholar 

  • Van Lenning, K., Latasa, M., Estrada, M., Saez, A. G., Medlin, L., Probert, I., Veron, B., & Young, J. (2003). Pigment signatures and phylogenetic relationships of the pavlovophyceae (Haptophyta). Journal of Phycology, 39, 379–389.

    Article  Google Scholar 

  • Van Lenning, K., Probert, I., Latasa, M., Estrada, M., & Young, J. R. (2004). Pigment diversity of coccolithophores in relation to taxonomy, phylogeny and ecological preferences. In H. R. Thierstein & J. R. Young (Eds.), Coccolithophores: From molecular processes to global impact (pp. 51–73). Berlin: Springer.

    Chapter  Google Scholar 

  • Veldhuis, M. J. W., Colijn, F., & Venekamp, L. A. H. (1986). The spring bloom of Phaeocystis pouchetii (Haptophyceae) in Dutch coastal waters. Netherlands Journal of Sea Research, 20, 37–48.

    Article  Google Scholar 

  • Vergroeben, H. Marcelino & Costa J. F. (2014). Evolutionary dynamics of algal traits and diversity. Perspectives in Phycology 1: 53–60.

    Article  Google Scholar 

  • Von Dassow, P., Ogata, H., Probert, I., Wincker, P., Da Silva, C., Audic, S., Claverie, J.-M., & de Vargas, C. (2009). Transcriptome analysis of functional differentiation between haploid and diploid cells of Emiliania huxleyi, a globally significant photosynthetic calcifying cell. Genome Biology, 10, R114.

    Article  CAS  Google Scholar 

  • Vårum, K., Kvam, B. J., Myklestad, S., & Paulsen, B. S. (1986). Structure of a food-reserve β-d-glucan produced by the haptophyte alga Emiliania huxleyi (Lohmann) Hay et Mohler. Carbohydrate Research, 152, 243–248.

    Article  Google Scholar 

  • Westbroek, P., Brown, C. W., Bleijswijk, J. v., Brownlee, C., Brummer, G. J., Conte, M., Egge, J., Fernández, E., Jordan, R., Knappertsbusch, M., Stefels, J., Veldhuis, M., van der Wal, P., & Young, J. (1993). A model system approach to biological climate forcing. The example of Emiliania huxleyi. Global and Planetary Change, 8, 27–46.

    Article  Google Scholar 

  • Wilbur, K. M., & Watabe, N. (1963). Experimental studies on calcification in molluscs and the alga Coccolithus huxleyi. Annals of the New York Academy of Sciences, 109, 82–112.

    Article  CAS  PubMed  Google Scholar 

  • Winter, A., Henderiks, J., Beaufort, L., Rickaby, R. E., & Brown, C. W. (2014). Poleward expansion of the coccolithophore Emiliania huxleyi. Journal of Plankton Research, 36, 316–325.

    Article  Google Scholar 

  • Winter, A., Jordan, R. W., & Roth, P. H. (1994). Biogeography of living coccolithophores in ocean waters. In A. Winter & W. G. Siesser (Eds.), Coccolithophores (pp. 161–177). Cambridge: Cambridge University Press.

    Google Scholar 

  • Wolf-Gladrow, D. A., Riebesell, U., Burkhardt, S., & Bijma, J. (1999). Direct effects of CO2 concentration on growth and isotopic composition of marine plankton. Tellus Series B: Chemical and Physical Meteorology, 51, 461–476.

    Article  Google Scholar 

  • Wollast, R. (1994). The relative importance of biomineralization and dissolution of CaCO3 in the global carbon cycle. Bulletin de l’Institut océanographique, Monaco, 13, 13–35.

    Google Scholar 

  • Xu, Y., Boucher, J. M., & Morel, F. M. M. (2010). Expression and diversity of alkaline phosphatase EHAP1 in Emiliania huxleyi (Prymnesiophyceae). Journal of Phycology, 46, 85–92.

    Article  CAS  Google Scholar 

  • Yariv, J., & Hestrin, S. (1961). Toxicity of the extracellular phase of Prymnesium parvum cultures. The Journal of General Microbiology, 24, 165–175.

    Article  CAS  PubMed  Google Scholar 

  • Yasumoto, T., Underdal, B., Aune, T., Hormazabal, V., Skulberg, O. M., & Oshima, Y. (1990). Screening for hemolytic and ichthyotoxic components of Chrysochromulina polylepis and Gyrodinium aureolum from Norwegian coastal waters. In E. Granéli, B. Sundström, L. Edler, & D. M. Anderson (Eds.), Toxic marine phytoplankton (pp. 436–440). New York: Elsevier.

    Google Scholar 

  • Yoshida, M., Noel, M. H., Nakayama, T., Naganuma, T., & Inouye, I. (2006). A haptophyte bearing siliceous scales: Ultrastructure and phylogenetic position of Hyalolithus neolepis gen. et sp. nov. (Prymnesiophyceae, Haptophyta). Protist, 157, 213–234.

    Article  CAS  PubMed  Google Scholar 

  • Young, J., & Ziveri, P. (2000). Calculation of coccolith volume and its use in calibration of carbonate flux estimates. Deep-Sea Research II, 47, 1679–1700.

    Article  Google Scholar 

  • Young, J. R. (1994). Functions of coccoliths. In A. Winter & W. G. Seisser (Eds.), Coccolithophores (pp. 63–82). Cambridge: Cambridge University Press.

    Google Scholar 

  • Young, J. R., Bergen, J. A., Bown, P. R., Burnett, J. A., Fiorentino, A., Jordan, R. W., Kleijne, A., Van Niel, B., Romein, A. T., & Von Salts, K. (1997). Guidelines for coccolith and calcareous nannofossil terminology. Palaeontology, 40, 875–912.

    Google Scholar 

  • Young, J. R., Davis, S. A., Bown, P. R., & Mann, S. (1999). Coccolith ultrastructure and biomineralization. Journal of Structural Biology, 126, 195–215.

    Article  CAS  PubMed  Google Scholar 

  • Young, J. R., Didymus, J. M., Brown, P. R., Prins, B., & Mann, S. (1992). Crystal assembly and phylogenetic evolution in heterococcoliths. Nature, 356, 516–518.

    Article  Google Scholar 

  • Young, J. R., Geisen, M., & Probert, I. (2005). A review of selected aspects of coccolithophore biology with implications for paleobiodiversity estimation. Micropaleontology, 51, 267–288.

    Article  Google Scholar 

  • Zapata, M., Edvardsen, B., Rodríguez, F., Maestro, M. A., & Garrido, J. L. (2001). Chlorophyll c(2) monogalactosyldiacylglyceride ester (chl c(2)-MGDG). A novel marker pigment for Chrysochromulina species (Haptophyta). Marine Ecology Progress Series, 219, 85–98.

    Article  CAS  Google Scholar 

  • Zapata, M., Jeffrey, S. W., Wright, S. W., Rodriguez, F., Garrido, J. L., & Clementson, L. (2004). Photosynthetic pigments in 37 species (65 strains) of Haptophyta: Implications for oceanography and chemotaxonomy. Marine Ecology-Progress Series, 270, 83–102.

    Article  CAS  Google Scholar 

  • Zingone, A., Forlani, G., Percopo, I., & Montresor, M. (2011). Morphological characterization of Phaeocystis antarctica (Prymnesiophyceae). Phycologia, 50, 650–660.

    Article  Google Scholar 

  • Ziveri, P., de Bernardi, B., Baumann, K.-H., Stoll, H. M., & Mortyn, P. G. (2007). Sinking of coccolith carbonate and potential contribution to organic carbon ballasting in the deep ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 54, 659–675.

    Article  Google Scholar 

  • Zondervan, I. (2007). The effects of light, macronutrients, trace metals and CO2 on the production of calcium carbonate and organic carbon in coccolithophores – A review. Deep Sea Research Part II: Topical Studies in Oceanography, 54, 521–537.

    Article  Google Scholar 

  • Zondervan, I., Rost, B., & Riebesell, U. (2002). Effect of CO2 concentration on the PIC/POC ratio in the coccolithophore Emiliania huxleyi grown under light-limiting conditions and different daylengths. Journal of Experimental Marine Biology and Ecology, 272, 55–70.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Grateful thanks are due to those authors and publishers (acknowledged in the legends) who have given permission for the reproduction of published and unpublished material. The present article is based on Green et al. (1990).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenche Eikrem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Eikrem, W. et al. (2017). Haptophyta. In: Archibald, J., Simpson, A., Slamovits, C. (eds) Handbook of the Protists. Springer, Cham. https://doi.org/10.1007/978-3-319-28149-0_38

Download citation

Publish with us

Policies and ethics