Skip to main content

Chlorarachniophytes

  • Reference work entry
  • First Online:
Handbook of the Protists

Abstract

The chlorarachniophytes are a group of single-celled phototrophic, mixotrophic eukaryotes in marine environments. They are most common in tropical and temperate seas. The group is primarily studied due to their evolutionary history. Chlorarachniophytes acquired photosynthesis by secondary endosymbiosis, where an amoeboflagellate host took up a green algal symbiont and retained it. The symbiont is distinguished by having retained a relict nucleus, or nucleomorph, which has been intensively studied to help elucidate the process of organelle origins by endosymbiosis. Historically, work on the nucleomorph was an important clue suggesting that secondary endosymbiosis played a role in the distribution of photosynthesis and plastids in eukaryotes. More recently, a number of genomic and cell biological studies, in particular focusing on gene flow within the cell and protein targeting, have further contributed to our understanding of organelle integration during endosymbiosis. The host component is now known to be a member of the Cercozoa and can include amoeboid, flagellate, and cyst stages, various species having any combination of one or more stages in the life cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Archibald, J. M. (2007). Nucleomorph genomes: Structure, function, origin and evolution. Bioessays, 29, 392–402.

    Article  CAS  PubMed  Google Scholar 

  • Archibald, J. M., & Keeling, P. J. (2002). Recycled plastids: A green movement in eukaryotic evolution. Trends in Genetics, 18, 577–584.

    Article  CAS  PubMed  Google Scholar 

  • Archibald, J. M., Longet, D., Pawlowski, J., & Keeling, P. J. (2002). A novel polyubiquitin structure in Cercozoa and Foraminifera: Evidence for a new eukaryotic supergroup. Molecular Biology and Evolution, 20, 62–66.

    Article  Google Scholar 

  • Archibald, J. M., Rogers, M. B., Toop, M., Ishida, K., & Keeling, P. J. (2003). Lateral gene transfer and the evolution of plastid-targeted proteins in the secondary plastid-containing alga Bigelowiella natans. Proceedings of the National Academy of Sciences of the United States of America, 100, 7678–7683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharya, D., Helmchen, T., & Melkonian, M. (1995). Molecular evolutionary analyses of nuclear-encoded small subunit ribosomal RNA identify an independent rhizopod lineage containing the Euglyphidae and the Chlorarachniophyta. The Journal of Eukaryotic Microbiology, 42, 64–68.

    Article  Google Scholar 

  • Burki, F., Shalchian-Tabrizi, K., Minge, M., Skjaeveland, A., Nikolaev, S. I., Jakobsen, K. S., & Pawlowski, J. (2007). Phylogenomics reshuffles the eukaryotic supergroups. PLoS One, 2, e790.

    Article  PubMed  PubMed Central  Google Scholar 

  • Burki, F., Okamoto, N., Pombert, J.-F., & Keeling, P. J. (2012). Phylogenomic evidence for a polyphyletic origin of the cryptophytes, haptophytes, and associated heterotrophic lineages. Proceedings of the Royal Society B, 279, 2246–2254.

    Article  PubMed  PubMed Central  Google Scholar 

  • Calderon-Saenz, E., & Schnetter, R. (1987). Cryptochlora perforans, a new genus and species of alga (Chlorarachniophyta), capable of penetrating dead algal filaments. Plant Systematics and Evolution, 158, 69–71.

    Article  Google Scholar 

  • Calderon-Saenz, E., & Schnetter, R. (1989). Morphology, biology and systematics of Cryptochlora perforans (Chlorarachniophyta), a phagotropic marine alga. Plant Systematics and Evolution, 163, 165–176.

    Article  Google Scholar 

  • Cavalier-Smith, T. (1982). The origins of plastids. Biological Journal of the Linnean Society, 17, 289–306.

    Article  Google Scholar 

  • Cavalier-Smith, T. (1999). Principles of protein and lipid targeting in secondary symbiogenesis: Euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. The Journal of Eukaryotic Microbiology, 46, 347–366.

    Article  CAS  PubMed  Google Scholar 

  • Cavalier-Smith, T. (2002). Nucleomorphs: Enslaved algal nuclei. Current Opinion in Microbiology, 5, 612–619.

    Article  CAS  PubMed  Google Scholar 

  • Cavalier-Smith, T., & Chao, E. E. (1997). Sarcomonad ribosomal RNA sequences, rhizopod phylogeny, and the origin of euglyphid amoebae. Archiv für Protistenkunde, 147, 227–236.

    Article  Google Scholar 

  • Cavalier-Smith, T., Allsopp, M. T., & Chao, E. E. (1994). Chimeric conundra: Are nucleomorphs and chromists monophyletic or polyphyletic? Proceedings of the National Academy of Sciences of the United States of America, 91, 11368–11372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curtis, B. A., Tanifuji, G., Burki, F., Gruber, A., Irimia, M., Maruyama, S., Arias, M. C., Ball, S. G., Gile, G. H., Hirakawa, Y., Hopkins, J. F., Kuo, A., Rensing, S. A., Schmutz, J., Symeonidi, A., Elias, M., Eveleigh, R. J., Herman, E. K., Klute, M. J., Nakayama, T., Oborník, M., Reyes-Prieto, A., Armbrust, E. V., Aves, S. J., Beiko, R. G., Coutinho, P., Dacks, J. B., Durnford, D. G., Fast, N. M., Green, B. R., Grisdale, C. J., Hempel, F., Henrissat, B., Höppner, M. P., Ishida, K., Kim, E., KoÅ™ený, L., Kroth, P. G., Liu, Y., Malik, S. B., Maier, U. G., McRose, D., Mock, T., Neilson, J. A., Onodera, N. T., Poole, A. M., Pritham, E. J., Richards, T. A., Rocap, G., Roy, S. W., Sarai, C., Schaack, S., Shirato, S., Slamovits, C. H., Spencer, D. F., Suzuki, S., Worden, A. Z., Zauner, S., Barry, K., Bell, C., Bharti, A. K., Crow, J. A., Grimwood, J., Kramer, R., Lindquist, E., Lucas, S., Salamov, A., McFadden, G. I., Lane, C. E., Keeling, P. J., Gray, M. W., Grigoriev, I. V., & Archibald, J. M. (2012). Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature, 492, 59–65.

    Article  CAS  PubMed  Google Scholar 

  • Deane, J. A., Fraunholz, M., Su, V., Maier, U.-G., Martin, W., Durnford, D. G., & McFadden, G. (2000). Evidence for nucleomorph to host nucleus gene transfer: Light-harvesting complex proteins from cryptomonads and chlorarachniophytes. Protist, 151, 239–252.

    Article  CAS  PubMed  Google Scholar 

  • del Campo, J., Not, F., Forn, I., Sieracki, M. E., & Massana, R. (2013). Taming the smallest predators of the oceans. The ISME Journal, 7, 351–8.

    Article  PubMed  Google Scholar 

  • Dietz, C., Ehlers, K., Wilhelm, C., Gil-Rodriguez, M. C., & Schnetter, R. (2003). Lotharella polymorpha sp. nov. (Chlorarachniophyta) from the coast of Portugal. Phycologia, 42, 582–593.

    Article  Google Scholar 

  • Geitler, L. (1930). Ein grünes Filarplamodium und andere neue Protisten. Archiv für Protistenkunde, 69, 221–230.

    Google Scholar 

  • Gile, G. H., & Keeling, P. J. (2008). Nucleus-encoded periplastid-targeted EFL in chlorarachniophytes. Molecular Biology and Evolution, 25(9), 1967–1977.

    Google Scholar 

  • Gile, G. H., Stern, R. F., James, E. R., & Keeling, P. J. (2010). DNA barcoding of chlorarachniophytes using nucleomorph ITS. Journal of Phycology, 46, 743–750.

    Article  CAS  Google Scholar 

  • Gilson, P. R. (2001). Nucleomorph genomes: Much ado about practically nothing. Genome Biol, 2, R1022.

    Google Scholar 

  • Gilson, P. R., & McFadden, G. I. (1997). Good things in small packages: The tiny genomes of chlorarachniophyte endosymbionts. Bioessays, 19, 167–173.

    Article  CAS  PubMed  Google Scholar 

  • Gilson, P., & McFadden, G. (1999). Molecular, morphological and phylogenetic characterization of six chlorarachniophyte strains. Phycological Research, 47, 7–19.

    Article  Google Scholar 

  • Gilson, P. R., & McFadden, G. I. (2002). Jam packed genomes – A preliminary, comparative analysis of nucleomorphs. Genetica, 115, 13–28.

    Article  CAS  PubMed  Google Scholar 

  • Gilson, P. R., Maier, U. G., & McFadden, G. I. (1997). Size isn’t everything: Lessons in genetic miniaturisation from nucleomorphs. Current Opinion in Genetics and Development, 7, 800–806.

    Article  CAS  PubMed  Google Scholar 

  • Gilson, P. R., Su, V., Slamovits, C. H., Reith, M. E., Keeling, P. J., & McFadden, G. I. (2006). Complete nucleotide sequence of the chlorarachniophyte nucleomorph: Nature’s smallest nucleus. Proceedings of the National Academy of Sciences of the United States of America, 103, 9566–9571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grell, K. G. (1990). Some light microscope observations on Chlorarachnion reptans Geitler. Archiv für Protistenkunde, 138, 271–290.

    Article  Google Scholar 

  • Hempel, F., Bullmann, L., Lau, J., Zauner, S., & Maier, U. G. (2009). ERAD-derived preprotein transport across the second outermost plastid membrane of diatoms. Molecular Biology and Evolution, 26, 1781–1790.

    Article  CAS  PubMed  Google Scholar 

  • Hibberd, D. J. (1990). Phylum Chlorarachnida. In L. Margulis, J. O. Corliss, M. Melkonian, & D. J. Chapman (Eds.), Handbook of protoctista (pp. 288–292). Boston: Jones and Bartlett Publishers.

    Google Scholar 

  • Hibberd, D. J., & Norris, R. E. (1984). Cytology and ultrastructure of Chlorarachnion reptans (Chlorarachniophyta divisio nova, Chlorarachniophyceae classis nova). Journal of Phycology, 20, 310–330.

    Article  Google Scholar 

  • Hirakawa, Y., & Ishida, K. (2010). Internal plastid-targeting signal found in a RubisCO small subunit protein of a chlorarachniophyte alga. The Plant Journal, 64, 402–410.

    Article  CAS  PubMed  Google Scholar 

  • Hirakawa, Y., & Ishida, K. (2014). Polyploidy of endosymbiotically derived genomes in complex algae. Genome Biology and Evolution, 6, 974–80.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hirakawa, Y., Nagamune, K., & Ishida, K. (2009). Protein targeting into secondary plastids of chlorarachniophytes. Proceedings of the National Academy of Sciences of the United States of America, 106, 12820–12825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirakawa, Y., Gile, G. H., Ota, S., Keeling, P. J., & Ishida, K. I. (2010). Characterization of periplastidal compartment targeting signals in chlorarachniophytes. Molecular Biology and Evolution, 27, 1538–1545.

    Article  CAS  PubMed  Google Scholar 

  • Hirakawa, Y., Burki, F., & Keeling, P. J. (2011a). Nucleus- and nucleomorph-targeted histone proteins in a chlorarachniophyte alga. Molecular Microbiology, 80, 1339–1449.

    Article  Google Scholar 

  • Hirakawa, Y., Howe, A., James, E. R., & Keeling, P. J. (2011b). Morphological diversity between culture strains of a chlorarachniophyte, Lotharella globosa. PLoS One, 6, e23193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirakawa, Y., Burki, F., & Keeling, P. J. (2012a). Genome-based reconstruction of the protein import machinery in the secondary plastid of a chlorarachniophyte alga. Eukaryotic Cell, 11, 324–333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirakawa, Y., Burki, F., & Keeling, P. J. (2012b). Dual targeting of aminoacyl-tRNA synthetases to the mitochondrion and complex plastids of chlorarachniophytes. Journal of Cell Science, 125, 6176–6184.

    Article  CAS  PubMed  Google Scholar 

  • Hopkins, J. F., Spencer, D. F., Laboissiere, S., Neilson, J. A., Eveleigh, R. J., Durnford, D. G., Gray, M. W., & Archibald, J. M. (2012). Proteomics reveals plastid- and periplastid-targeted proteins in the chlorarachniophyte alga Bigelowiella natans. Genome Biology and Evolution, 4, 1391–406.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ishida, K., & Cavalier-Smith, T. (1999). Diversification of a chimerica algal group, the chlorarachniophytes: Phylogeny of nuclear and nucleomorph encoded small-subunit rRNA genes. Molecular Biology and Evolution, 16, 321–331.

    Article  CAS  Google Scholar 

  • Ishida, K., & Hara, Y. (1994). Taxonomic studies on the Chlorarachniophyta. I. Chlorarachnion globosum sp. nov. Phycologia, 33, 351–358.

    Article  Google Scholar 

  • Ishida, K., Nakayama, T., & Hara, Y. (1996). Taxonomic studies on the Chlorarachniophyta. II. Generic delimination of the chlorarachniophytes and description of Gynmochlora stellata gen. et sp. nov. Phycological Research, 44, 37–45.

    Article  Google Scholar 

  • Ishida, K., Cao, Y., Hasegawa, M., Okada, N., & Hara, Y. (1997). The origin of chlorarachniophyte plastids, as inferred from phylogenetic comparisons of amino acid sequences of EF-Tu. Journal of Molecular Evolution, 45, 682–687.

    Article  CAS  PubMed  Google Scholar 

  • Ishida, K., Ishida, N., & Hara, Y. (2000). Lotharella amoeboformis sp. nov.: A new species of chlorarachniophyte from Japan. Phycological Research, 48, 221–229.

    Article  Google Scholar 

  • Ishida, K., Yabuki, A., & Ota, S. (2007). The chlorarachniophytes: Evolution and classification. In J. Brodie & J. Lewis (Eds.), Unravelling the algae – The past, present, and future of algal systematics. Boca Raton: CRC Press.

    Google Scholar 

  • Ishida, K., Endo, H., & Koike, S. (2011a). Partenskyella glossopodia (Chlorarachniophyceae) possesses a nucleomorph genome of approximately 1Mbp. Phycological Research, 59, 120–122.

    Article  CAS  Google Scholar 

  • Ishida, K., Yabuki, A., & Ota, S. (2011b). Amorphochlora amoebiformis gen. et comb. nov. (Chlorarachniophyceae). Phycological Research, 59, 52–53.

    Article  Google Scholar 

  • Keeling, P. J. (2001). Foraminifera and Cercozoa are related in actin phylogeny: Two orphans find a home? Molecular Biology and Evolution, 18, 1551–1557.

    Article  CAS  PubMed  Google Scholar 

  • Keeling, P. J., Deane, J. A., & McFadden, G. I. (1998). The phylogenetic position of alpha- and beta-tubulins from the Chlorarachnion host and Cercomonas (Cercozoa). The Journal of Eukaryotic Microbiology, 45, 561–570.

    Article  CAS  PubMed  Google Scholar 

  • Leblond, J. D., Dahmen, J. L., Seipelt, R. L., Elrod-Erickson, M. J., Kincaid, R., Howard, J. C., Evens, T. J., & Chapman, P. J. (2005). Lipid composition of chlorarachniophytes (Chlorarachniophyceae) from the genera Bigelowiella, Gymnochlora, and Lotharella. Journal of Phycology, 41, 311–321.

    Article  CAS  Google Scholar 

  • Longet, D., Archibald, J. M., Keeling, P. J., & Pawlowski, J. (2003). Foraminifera and Cercozoa share a common origin according to RNA polymerase II phylogenies. International Journal of Systematic and Evolutionary Microbiology, 53, 1735–1739.

    Article  CAS  PubMed  Google Scholar 

  • Ludwig, M., & Gibbs, S. P. (1989). Evidence that the nucleomorphs of Chlorarachnion reptans (chlorarachniophyceae) are vestigial nuclei: Morphology, division and DNA-DAPI fluorescence. Journal of Phycology, 25, 385–394.

    Article  Google Scholar 

  • McFadden, G. I., & Gilson, P. R. (1995). Something borrowed, something green: Lateral transfer of chloroplasts by secondary endosymbiosis. Trends in Ecology & Evolution, 10, 12–17.

    Article  CAS  Google Scholar 

  • McFadden, G. I., Gilson, P. R., Hofmann, C. J., Adcock, G. J., & Maier, U. G. (1994). Evidence that an amoeba acquired a chloroplast by retaining part of an engulfed eukaryotic alga. Proceedings of the National Academy of Sciences of the United States of America, 91, 3690–3694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McFadden, G. I., Gilson, P. R., Douglas, S. E., Cavalier-Smith, T., Hofmann, C. J., & Maier, U. G. (1997a). Bonsai genomics: Sequencing the smallest eukaryotic genomes. Trends in Genetics, 13, 46–49.

    Article  CAS  PubMed  Google Scholar 

  • McFadden, G. I., Gilson, P. R., & Sims, I. M. (1997b). Preliminary characterization of carbohydrate stores from chlorarachniophytes (Division: Chlorarachniophyta). Phycological Research, 45, 145–151.

    Article  CAS  Google Scholar 

  • Moestrup, Ø., & Sengco, M. (2001). Ultrastructural studies on Bigelowiella natans, gen. et sp. nov., a chlorarachniophyte flagellate. Journal of Phycology, 37, 624–646.

    Article  Google Scholar 

  • Nikolaev, S. I., Berney, C., Fahrni, J. F., Bolivar, I., Polet, S., Mylnikov, A. P., Aleshin, V. V., Petrov, N. B., & Pawlowski, J. (2004). The twilight of Heliozoa and rise of Rhizaria, an emerging supergroup of amoeboid eukaryotes. Proceedings of the National Academy of Sciences of the United States of America, 101, 8066–8071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ota, S., & Vaulot, D. (2012). Lotharella reticulosa sp. nov.: A highly reticulated network forming chlorarachniophyte from the Mediterranean Sea. Protist, 163, 91–104.

    Article  PubMed  Google Scholar 

  • Ota, S., Ueda, K., & Ishida, K. (2005). Lotharella vacuolata sp nov., a new species of chlorarachniophyte algae, and time-lapse video observations on its unique post-cell division behavior. Phycological Research, 53, 275–286.

    Article  Google Scholar 

  • Ota, S., Ueda, K., & Ishida, K. (2007a). Norrisiella sphaerica gen. et sp. nov., a new coccoid chlorarachniophyte from Baja california, Mexico. Journal of Plant Research, 120, 661–670.

    Article  PubMed  Google Scholar 

  • Ota, S., Ueda, K., & Ishida, K. (2007b). Taxonomic study of Bigelowiella longifila sp. nov. (Chlorarachniophyta) and time-lapse video observation of the unique migration of amoeboid cells. Journal of Phycology, 43, 333–343.

    Article  Google Scholar 

  • Ota, S., Vaulot, D., & Gall, F. L. (2009a). Yabuki, and K. Ishida: Partenskyella glossopodia gen et ap. nov., the first report of a chlorarachniophyte that lacks a pyrenoid. Protist, 160, 137–150.

    Article  PubMed  Google Scholar 

  • Ota, S., Sikver, T. D., Archibald, J. M., & Ishida, K. (2009b). Lotharella oceanica sp. nov.-a new planktonic chlorarachniophyte studied by light and electron microscopy. Phycologia, 48, 315–323.

    Article  Google Scholar 

  • Ota, S., Kudo, A., & Ishida, K. (2011). Gymnochlora dimorpha sp. nov., a chlorarachniophyte with unique daughter cell behavior. Phycologia, 50, 317–326.

    Article  Google Scholar 

  • Rogers, M. B., Archibald, J. M., Field, M. A., Li, C., Striepen, B., & Keeling, P. J. (2004). Plastid-targeting peptides from the chlorarachniophyte Bigelowiella natans. The Journal of Eukaryotic Microbiology, 51, 529–535.

    Article  CAS  PubMed  Google Scholar 

  • Rogers, M. B., Gilson, P. R., Su, V., McFadden, G. I., & Keeling, P. J. (2007). The complete chloroplast genome of the chlorarachniophyte Bigelowiella natans: Evidence for independent origins of chlorarachniophyte and euglenid secondary endosymbionts. Molecular Biology and Evolution, 24, 54–62.

    Article  CAS  PubMed  Google Scholar 

  • Sasa, T., Takaichi, S., Hatakeyama, N., & Watanabe, M. M. (1882). A novel carotenoid ester, lorozathin dodecenoate, from Pryamimonas-parkeae (Prasinophyceae) and a chlorarachniophycean alga. Plant and Cell Physiology, 33, 921–925.

    Google Scholar 

  • Sierra, R., Matz, M. V., Aglyamova, G., Pillet, L., Decelle, J., Not, F., de Vargas, C., & Pawlowski, J. (2012). Deep relationships of Rhizaria revealed by phylogenomics: A farewell to Haeckel’s Radiolaria. Molecular Phylogenetics and Evolution, 67, 53–59.

    Article  PubMed  Google Scholar 

  • Silver, T. D., Koike, S., Yabuki, A., Kofuji, R., Archibald, J. M., & Ishida, K. (2007). Phylogeny and nucleomorph karyotype diversity of chlorarachniophyte algae. The Journal of Eukaryotic Microbiology, 54, 403–410.

    Article  CAS  PubMed  Google Scholar 

  • Slamovits, C. H., & Keeling, P. J. (2009). Evolution of ultrasmall introns in highly reduced nuclear genomes. Molecular Biology and Evolution, 26, 1699–1705.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, S., Shirato, S., Hirakawa, Y., & Ishida, K. (2015). Nucleomorph genome sequences of two chlorarachniophytes, Amorphochlora amoebiformis and Lotharella vacuolata. Genome Biology and Evolution, 7, 1533–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takishita, K., Inagaki, Y., Tsuchiya, M., Sakaguchi, M., & Maruyama, T. (2005). A close relationship between Cercozoa and Foraminifera supported by phylogenetic analyses based on combined amino acid sequences of three cytoskeletal proteins (actin, alpha-tubulin, and beta-tubulin). Gene, 362, 153–160.

    Article  CAS  PubMed  Google Scholar 

  • Tanifuji, G., Onodera, N. T., Brown, M. W., Curtis, B. A., Roger, A. J., Ka-Shu Wong, G., Melkonian, M., & Archibald, J. M. (2014). Nucleomorph and plastid genome sequences of the chlorarachniophyte Lotharella oceanica: Convergent reductive evolution and frequent recombination in nucleomorph-bearing algae. BMC Genomics, 15, 374.

    Article  PubMed  PubMed Central  Google Scholar 

  • Turmel, M., Gagnon, M. C., O’Kelly, C. J., Otis, C., & Lemieux, C. (2009). the chloroplast genomes of the green algae Pyramimonas, Monomastix, and Pycnococcus shed new light on the evolutionary history of prasinophytes and the origin of secondary chloroplasts in euglenoids. Molecular Biology and Evolution, 26, 631–648.

    Article  CAS  PubMed  Google Scholar 

  • Van de Peer, Y., Rensing, S. A., Maier, U. G., & De Wachter, R. (1996). Substitution rate calibration of small subunit ribosomal RNA identifies chlorarachniophyte endosymbionts as remnants of green algae. Proceedings of the National Academy of Sciences of the United States of America, 93, 7732–7736.

    Article  PubMed  PubMed Central  Google Scholar 

  • Whatley, J. M., & Whatley, F. R. (1981). Chloroplast evolution. The New Phytologist, 87, 233–247.

    Article  CAS  Google Scholar 

  • Williams, B. A., Slamovits, C. H., Patron, N. J., Fast, N. M., & Keeling, P. J. (2005). A high frequency of overlapping gene expression in compacted eukaryotic genomes. Proceedings of the National Academy of Sciences of the United States of America, 102, 10936–10941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick J. Keeling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Keeling, P.J. (2017). Chlorarachniophytes. In: Archibald, J., Simpson, A., Slamovits, C. (eds) Handbook of the Protists. Springer, Cham. https://doi.org/10.1007/978-3-319-28149-0_34

Download citation

Publish with us

Policies and ethics