Skip to main content

Rhodophyta

  • Reference work entry
  • First Online:
Handbook of the Protists

Abstract

Rhodophyta, or red algae, comprises a monophyletic lineage within Archaeplastida that includes glaucophyte algae and green algae plus land plants. Rhodophyta has a long fossil history with evidence of Bangia-like species in ca. 1.2 billion-year-old deposits. Red algal morphology varies from unicellular, filamentous, to multicellular thalloid forms, some of which are sources of economically important products such as agar and carrageenan. These species live primarily in marine environments from the intertidal zone to deep waters. Freshwater (e.g., Batrachospermum) and terrestrial lineages also occur. One of the major innovations in the Rhodophyta is a triphasic life cycle that includes one haploid and two diploid phases with the carposporophyte borne on female gametophytes. Red algae are also well known for their contribution to algal evolution with ecologically important chlorophyll-c containing lineages such as diatoms, dinoflagellates, haptophytes, and phaeophytes all containing a red algal-derived plastid of serial endosymbiotic origin. Analysis of red algal nuclear genomes shows that they have relatively small gene inventories of 6,000–10,000 genes when compared to other free-living eukaryotes. This is likely explained by a phase of massive genome reduction that occurred in the red algal ancestor living in a highly specialized environment. Key traits that have been lost in all red algae include flagella and basal body components, light-sensing phytochromes, and the glycosylphosphatidylinositol (GPI)-anchor biosynthesis and macroautophagy pathways. Research into the biology and evolution of red algae is accelerating and will provide exciting insights into the diversification of this unique group of photosynthetic eukaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackland, J. C., West, J. A., & Pickett-Heaps, J. (2007). Actin and myosin regulate pseudopodia of Porphyra pulchella (Rhodophyta) archeospores. Journal of Phycology, 43(1), 129–138.

    Article  CAS  Google Scholar 

  • Adey, W. H. (1998). Coral reefs: Algal structured and mediated ecosystems in shallow, turbulent, alkalinewaters. Journal of Phycology, 34(3), 393–406.

    Article  Google Scholar 

  • Adey, W. H., & Hayek, L.-A. C. (2011). Elucidating marine biogeography with macrophytes: Quantitative analysis of the North Atlantic supports the thermogeographic model and demonstrates a distinct subarctic region in the northwestern Atlantic. Northeastern Naturalist, 18(8), 1–128.

    Article  Google Scholar 

  • Adey, W. H., & Steneck, R. S. (2001). Thermogeography over time creates biogeographic regions: A temperature/space/time-integrated model and an abundance-weighted test for benthic marine algae. Journal of Phycology, 37(5), 677–698.

    Article  Google Scholar 

  • Adey, W. H., Lindstrom, S. C., Hommersand, M. H., & Müller, K. M. (2008). The biogeographic origin of Arctic endemic seaweeds: A thermogeographic view. Journal of Phycology, 44(6), 1384–1394.

    Article  PubMed  Google Scholar 

  • Adey, W., Halfar, J., Humphreys, A., Suskiewicz, T., Belanger, D., Gagnon, P., & Fox, M. (2015). Subarctic rhodolith beds promote longevity of crustose coralline algal buildups and their climate archiving potential. Palaios, 30, 281–293.

    Article  Google Scholar 

  • Adl, S. M., Simpson, A. G., Farmer, M. A., Andersen, R. A., Anderson, O. R., Barta, J. R., et al. (2005). The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. Journal of Eukaryotic Microbiology, 52(5), 399–451.

    Article  PubMed  Google Scholar 

  • Aguirre, J., Riding, R., & Braga, J. C. (2000). Diversity of coralline red algae: Origination and extinction patterns from the early Cretaceous to the Pleistocene. Paleobiology, 26(04), 651–667.

    Article  Google Scholar 

  • Aguirre, J., Perfecti, F., & Braga, J. C. (2010). Integrating phylogeny, molecular clocks, and the fossil record in the evolution of coralline algae (Corallinales and Sporolithales, Rhodophyta). Paleobiology, 36(4), 519–533.

    Article  Google Scholar 

  • Amado-Filho, G. M., Moura, R. L., Bastos, A. C., Salgado, L. T., Sumida, P. Y., Guth, A. Z., et al. (2012). Rhodolith beds are major CaCO3 bio-factories in the tropical South West Atlantic. PloS One, 7, e35171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amsler, C. D., Iken, K., McClintock, J. B., & Baker, B. J. (2009). Defenses of polar macroalgae against herbivores and biofoulers. Botanica Marina, 52(6), 535–545.

    Article  CAS  Google Scholar 

  • Andreakis, N., Procaccini, G., Maggs, C., & Kooistra, W. H. C. F. (2007). Phylogeography of the invasive seaweed Asparagopsis (Bonnemaisoniales, Rhodophyta) reveals cryptic diversity. Molecular Ecology, 16(11), 2285–2299.

    Article  CAS  PubMed  Google Scholar 

  • Andreakis, N., Kooistra, W. H. C. F., & Procaccini, G. (2009). High genetic diversity and connectivity in the polyploid invasive seaweed Asparagopsis taxiformis (Bonnemaisoniales) in the Mediterranean, explored with microsatellite alleles and multilocus genotypes. Molecular Ecology, 18(2), 212–226.

    Article  PubMed  Google Scholar 

  • Araujo, R., Violante, J., Pereira, R., Abreu, H., Arenas, F., & Sousa-Pinto, I. (2011). Distribution and population dynamics of the introduced seaweed Grateloupia turuturu (Halymeniaceae, Rhodophyta) along the Portuguese coast. Phycologia, 50(4), 392–402.

    Article  Google Scholar 

  • Babuka, S. J., & Pueschel, C. M. (1998). A freeze-substitution ultrastructural study of the cytoskeleton of the red alga Antithamnion kylinii (Ceramiales). Phycologia, 37(4), 251–258.

    Article  Google Scholar 

  • Barbera, C., Bordehore, C., Borg, J. A., Glémarec, M., Grall, J., Hall-Spencer, J. M., et al. (2003). Conservation and management of northeast Atlantic and Mediterranean maërl beds. Aquatic Conservation: Marine and Freshwater Ecosystems, 13(S1), S65–S76.

    Article  Google Scholar 

  • Basso, D. (2012). Carbonate production by calcareous red algae and global change. Geodiversitas, 34(1), 13–33.

    Article  Google Scholar 

  • Bhattacharya, D., Yoon, H. S., & Hackett, J. D. (2004). Photosynthetic eukaryotes unite: Endosymbiosis connects the dots. Bioessays, 26(1), 50–60.

    Article  PubMed  Google Scholar 

  • Bhattacharya, D., Price, D. C., Chan, C. X., Qiu, H., Rose, N., Ball, S., et al. (2013). Genome of the red alga Porphyridium purpureum. Nature Communications, 4, 1941.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bischof, K., & Steinhoff, F. S. (2012). Impact of stratospheric ozone depletion and solar UVB radiation on seaweeds. In C. Wiencke & K. Bischof (Eds.), Seaweed biology: Novel insights into ecophysiology, ecology and utilization (pp. 433–448). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Bischoff-Bäsmann, B., & Wiencke, C. (1996). Temperature requirements for growth and survival of Antarctic Rhodophyta. Journal of Phycology, 32, 525–535.

    Article  Google Scholar 

  • Bischoff-Bäsmann, B., Bartsch, I., Xia, B. M., & Wiencke, C. (1997). Temperature responses of macroalgae from the tropical island Hainan (P. R. China). Phycological Research, 45(2), 91–104.

    Article  Google Scholar 

  • Blunt, J. W., Copp, B. R., Munro, M. H. G., Northcote, P. T., & Prinsep, M. R. (2011). Marine natural products. Natural Product Reports, 28, 196–268.

    Article  CAS  PubMed  Google Scholar 

  • Boo, G. H., Hwang, I. K., Ha, D. S., Miller, K. A., Cho, G. Y., Kim, J. Y., & Boo, S. M. (2016a). Phylogeny and distribution of the genus Pikea (Rhodophyta) with a special reference to P. yoshizakii from Korea. Phycologia, 55, 3–11.

    Article  Google Scholar 

  • Boo, G. H., Nelson, W. A., Preuss, M., Kim, J. Y., & Boo, S. M. (2016b). Genetic segregation and differentiation of a common subtidal red alga Pterocladia lucida (Gelidiales, Rhodophyta) between Australia and New Zealand. Journal of Applied Phycology, 28, 2027–2034.

    Article  CAS  Google Scholar 

  • Briand, X. (1991). Seaweed harvesting in Europe. In M. D. Guiry & G. Blunden (Eds.), Seaweed resources in Europe: Uses and potential (pp. 293–308). London: Wiley.

    Google Scholar 

  • Broadwater, S. T., & Scott, J. L. (1994). Ultrastructure of unicellular red algae. In J. Sechback (Ed.), Evolutionary pathways and enigmatic algae: Cyanidium caldarium (Rhodophyta) and related cells (pp. 215–230). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Broadwater, S. T., Scott, J. L., & Garbary, D. J. (1992). Cytoskeleton and mitotic spindle in red algae. In D. Menzel (Ed.), The cytoskeleton of the algae (pp. 93–112). Boca Raton: CRC Press.

    Google Scholar 

  • Brodie, J., Williamson, C. J., Smale, D. A., Kamenos, N. A., et al. (2014). The future of the northeast Atlantic benthic flora in a high CO2 world. Ecology and Evolution, 4, 2787–2798.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brooke, C., & Riding, R. (1998). Ordovician and Silurian coralline red algae. Lethaia, 31(3), 185–195.

    Article  Google Scholar 

  • Broom, J. E. S., Farr, T. J., & Nelson, W. A. (2004). Phylogeny of the Bangia flora of New Zealand suggests a southern origin for Porphyra and Bangia (Bangiales, Rhodophyta). Molecular Phylogenetics and Evolution, 31(3), 1197–1207.

    Article  CAS  PubMed  Google Scholar 

  • Buchholz, C. M., Krause, G., & Buck, B. H. (2012). Chapter 22. Seaweed and Man. In C. Wiencke & K. Bischof (Eds.), Seaweed biology: Novel insights into ecophysiology, ecology and utilization (pp. 471–493). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Burki, F., Kaplan, M., Tikhonenkov, D. V., Zlatogursky, V., Minh, B. Q., Radaykina, L. V., et al. (2016). Untangling the early diversification of eukaryotes: A phylogenomic study of the evolutionary origins of Centrohelida, Haptophyta and Cryptista. Proceedings of the Royal Society B, 283(1823), 20152802. The Royal Society.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Butterfield, N. J. (2000). Bangiomorpha pubescens n. gen., n. sp.: Implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology, 26, 386–404.

    Article  Google Scholar 

  • Cecere, E., Petrocelli, A., & Verlaque, M. (2011). Vegetative reproduction by multicellular propagules in Rhodophyta: An overview. Marine Ecology, 32, 419–437.

    Article  Google Scholar 

  • Chan, C. X., Yang, E. C., Banerjee, T., Yoon, H. S., Martone, P. T., Estevez, J. M., et al. (2011). Red and green algal monophyly and extensive gene sharing found in a rich repertoire of red algal genes. Current Biology, 21, 328–333.

    Article  CAS  PubMed  Google Scholar 

  • Chopin, T., Robinson, S. M. C., Troell, M., Neori, A., Buschmann, A. H., & Fang, J. (2008). Multitrophic integration for sustainable marine aquaculture. In S. E. Jørgensen & B. D. Fath (Eds.), Encyclopedia of ecology (Ecological engineering, Vol. 3, pp. 2463–2475). Oxford: Elsevier.

    Chapter  Google Scholar 

  • Ciniglia, C., Yoon, H. S., Pollio, A., Pinto, G., & Bhattacharya, D. (2004). Hidden biodiversity of the extremophilic Cyanidiales red algae. Molecular Ecology, 13, 1827–1838.

    Article  CAS  PubMed  Google Scholar 

  • Ciniglia, C., Yang, E. C., Pinto, G., Iovinella, M., Vitale, L., & Yoon, H. S. (2014). Cyanidiophyceae in Iceland: Plastid rbcL gene elucidates origin and dispersal of extremophilic Galdieria sulphuraria and G. maxima (Galdieriaceae, Rhodophyta). Phycologia, 53, 542–551.

    Article  CAS  Google Scholar 

  • Collén, J. (2015). Win some, lose some: Genome evolution in red algae. Journal of Phycology, 51, 621–623.

    Article  PubMed  Google Scholar 

  • Collén, J., Porcel, B., Carre, W., Ball, S. G., Chaparro, C., Tonon, T., et al. (2013). Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida. Proceedings of the National Academy of Sciences of the United States of America, 110, 5247–5252.

    Article  PubMed  PubMed Central  Google Scholar 

  • Condon, D., Zhu, M., Bowring, S., Wang, W., Yang, A., & Jin, Y. (2005). U-Pb ages from the Neoproterozoic Doushantuo Formation, China. Science, 308, 95–98.

    Article  CAS  PubMed  Google Scholar 

  • Cowles, A., Hewitt, J. E., & Taylor, R. B. (2009). Density, biomass and productivity of small mobile invertebrates in a wide range of coastal habitats. Marine Ecology Progress Series, 384, 175–185.

    Article  Google Scholar 

  • D’Archino, R., Nelson, W. A., & Zuccarello, G. C. (2007). Invasive marine red alga introduced to New Zealand waters: First record of Grateloupia turuturu (Halymeniaceae, Rhodophyta). New Zealand Journal of Marine and Freshwater Research, 41, 35–42.

    Article  Google Scholar 

  • Das, S., Traynor-Kaplan, A., Kachintorn, U., Aley, S. B., & Gillin, F. D. (1994). GP49, an invariant GPI-anchored antigen of Giardia lamblia. Brazilian Journal of Medical and Biological Research, 27, 463–469.

    CAS  PubMed  Google Scholar 

  • Davidson, A. D., Campbell, M. L., Hewitt, C. L., & Schaffelke, B. (2015). Assessing the impacts of nonindigenous marine macroalgae: An update of current knowledge. Botanica Marina, 58, 55–79.

    Google Scholar 

  • Derelle, E., Ferraz, C., Rombauts, S., Rouzé, P., Worden, A. Z., Robbens, S., et al. (2006). Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proceedings of the National Academy of Sciences of the United States of America, 103, 11647–11652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz-Pulido, G., McCook, L. J., Larkum, A. W. D., Lotze, H. K., & Raven, J. A. (2007). Vulnerability of macroalgae of the Great Barrier Reef to climate change. In J. Johnson & P. Marshall (Eds.), Climate change and the Great Barrier Reef: A vulnerability assessment (pp. 151–192). Townsville: Great Barrier Reef Marine Park Authority and Australian Greenhouse Office.

    Google Scholar 

  • Dixon, P. S. (1973). Biology of the Rhodophyta. New York: Hafner Press.

    Google Scholar 

  • Donaldson, S. L., Chopin, T., & Saunders, G. W. (2000). An assessment of the AFLP method for investigating population structure in the red alga Chondrus crispus Stackhouse (Gigartinales, Florideophycidae). Journal of Applied Phycology, 12, 25–35.

    Article  CAS  Google Scholar 

  • Dufresne, A., Salanoubat, M., Partensky, F., Artiguenave, F., Axmann, I. M., Barbe, V., et al. (2003). Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genome. Proceedings of the National Academy of Sciences of the United States of America, 100, 10020–10025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dworjanyn, S. A., de Nys, R., & Steinberg, P. D. (2006). Chemically mediated antifouling in the red alga Delisea pulchra. Marine Ecology Progress Series, 318, 153–163.

    Article  CAS  Google Scholar 

  • Engel, C. R., Wattier, R., Destombe, C., & Valero, M. (1999). Performance of non-motile male gametes in the sea: Analysis of paternity and fertilization success in a natural population of a red seaweed, Gracilaria gracilis. Proceedings of the Royal Society London, Biology, 266, 1879–1886.

    Article  Google Scholar 

  • Engel, C. R., Destombe, C., & Valero, M. (2004). Mating system and gene flow in the red seaweed Gracilaria gracilis: Effect of haploid– diploid life history and intertidal rocky shore landscape on fine-scale genetic structure. Heredity, 92, 289–298.

    Article  CAS  PubMed  Google Scholar 

  • FAO. (2014). The State of World Fisheries and Aquaculture 2014. Rome: FAO Fisheries and Aquaculture Department. Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Farris, J. (1977). Phylogenetic analysis under Dollo’s law. Systematic Zoology, 26, 77–88.

    Article  Google Scholar 

  • Fierst, J., terHorst, C., Kubler, J. E., & Dudgeon, S. (2005). Fertilization success can drive patterns of phase dominance in complex life histories. Journal of Phycology, 41, 238–249.

    Article  Google Scholar 

  • Fietzke, J., Ragazzola, F., Halfar, J., Dietze, H., Foster, L. C., Hansteen, T. H., Eisenhauer, A., & Steneck, R. S. (2015). Century-scale trends and seasonality in pH and temperature for shallow zones of the Bering Sea. Proceedings of the National Academy of Sciences of the United States of America, 112, 2960–2965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foster, M. S. (2001). Rhodoliths: Between rocks and soft places. Journal of Phycology, 37, 659–667.

    Article  Google Scholar 

  • Frantz, B. R., Kashgarian, M., Coale, K. H., & Foster, M. S. (2000). Growth rate and potential climate record from a rhodolith using 14C accelerator mass spectrometry. Limnology and Oceanography, 45, 1773–1777.

    Article  Google Scholar 

  • Frantz, B. R., Foster, M. S., & Riosmena-Rodríguez, R. (2005). Clathromorphum nereostratum (Corallinales, Rhodophyta): The oldest alga? Journal of Phycology, 41, 770–773.

    Article  Google Scholar 

  • Freshwater, D. W., Fredericq, S., Butler, B. S., Hommersand, M. H., & Chase, M. W. (1994). A gene phylogeny of the red algae (Rhodophyta) based on plastid rbcL. Proceedings of the National Academy of Sciences of the United States of America, 91, 7281–7285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabrielson, P. W., Garbary, D. J., & Scagel, R. F. (1985). The nature of the ancestral red alga: Inferences from a cladistic analysis. BioSystems, 18, 335–346.

    Article  CAS  PubMed  Google Scholar 

  • Gabrielson, P. W., Garbary, D. J., Sommerfeld, M. R., Townsend, R. A., & Tyler, P. L. (1990). Phylum Rhodophyta. In L. Margulis, J. O. Corliss, M. Melkonian, & D. J. Chapman (Eds.), Handbook of protoctista: The structure, cultivation, habitats and life histories of the eukayotic microorganisms and their descendants exclusive of animals, plants and fungi (p. 914). Boston: Jones and Bartlett Publishers.

    Google Scholar 

  • Galloway, A. W. E., Britton-Simmons, K. H., Duggins, D. O., Gabrielson, P. W., & Brett, M. T. (2012). Fatty acid signatures differentiate marine macrophytes at ordinal and family ranks. Journal of Phycology, 48, 956–965.

    Article  PubMed  Google Scholar 

  • Garbary, D. J., & McDonald, A. R. (1996). Actin rings in cytokinesis of apical cells in red algae. Canadian Journal of Botany, 74, 971–974.

    Article  Google Scholar 

  • Gavio, B., & Fredericq, S. (2002). Grateloupia turuturu (Halymeniaceae, Rhodophyta) is the correct name of the non-native species in the Atlantic known as Grateloupia doryphora. European Journal of Phycology, 37, 349–359.

    Article  Google Scholar 

  • Grall, J., & Hall-Spencer, J. M. (2003). Problems facing maërl conservation in Brittany. Aquatic Conservation: Marine and Freshwater Ecosystems, 13(S1), S55–S64.

    Article  Google Scholar 

  • Gross, W., Heilmann, I., Lenze, D., & Schnarrenberger, C. (2001). Biogeography of the Cyanidiaceae (Rhodophyta) based on 18S ribosomal RNA sequence data. European Journal of Phycology, 36(03), 275–280.

    Article  Google Scholar 

  • Guillemin, M.-L., Faugeron, S., Destombe, C., Viard, F., Correa, J. A., & Valero, M. (2008). Genetic variation in wild and cultivated populations of the haploid-diploid red alga Gracilaria chilensis: How farming practices favor asexual reproduction and heterozygosity. Evolution, 62, 1500–1519.

    Article  PubMed  Google Scholar 

  • Guillemin, M.-L., Sepúlveda, R. D., Correa, J. A., & Destombe, C. (2012). Differential ecological responses to environmental stress in the life history phases of the isomorphic red alga Gracilaria chilensis (Rhodophyta). Journal of Applied Phycology, 25(1), 215–224.

    Article  Google Scholar 

  • Guillemin, M.-L., Valero, M., Faugeron, S., Nelson, W., & Destombe, C. (2014). Tracing the trans-Pacific evolutionary history of a domesticated seaweed (Gracilaria chilensis) with archaeological and genetic data. PloS One, 9(12), e114039.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gurgel, C. F. D., & Fredericq, S. (2004). Systematics of the Gracilariaceae (Gracilariales, Rhodophyta): A critical assessment based on rbcL sequence analysis. Journal of Phycology, 40(1), 138–159.

    Article  CAS  Google Scholar 

  • Gurgel, C. F. D., Fredericq, S., & Norris, J. N. (2004). Phylogeography of Gracilaria tikvahiae (Gracilariaceae, Rhodophyta): A study of genetic discontinuity in a continuously distributed species based on molecular evidence. Journal of Phycology, 40, 748–758.

    Article  CAS  Google Scholar 

  • Hackett, J. D., Yoon, H. S., Li, S., Reyes-Prieto, A., Rummele, S. E., & Bhattacharya, D. (2007). Phylogenomic analysis supports the monophyly of cryptophytes and haptophytes and the association of Rhizaria with chromalveolates. Molecular Biology and Evolution, 24(8), 1702–1713.

    Article  CAS  PubMed  Google Scholar 

  • Halfar, J., Zach, T., Kronz, A., & Zachos, J. C. (2000). Growth and high resolution paleoenvironmental signals of rhodoliths (coralline red algae): A new biogenic archive. Journal of Geophysical Research, 105(C9), 22107–22116.

    Article  CAS  Google Scholar 

  • Halfar, J., Steneck, R., Schöne, B., Moore, G. W. K., Joachimski, M., Kronz, A., et al. (2007). Coralline alga reveals first marine record of subarctic North Pacific climate change. Geophysical Research Letters, 34, L07702.

    Article  Google Scholar 

  • Halfar, J., Steneck, R. S., Joachimski, M., Kronz, A., & Wanamaker, A. D., Jr. (2008). Coralline red algae as high-resolution climate recorders. Geology, 36, 463–466.

    Article  CAS  Google Scholar 

  • Halfar, J., Williams, B., Hetzinger, S., Steneck, R. S., Lebednik, P., Winsborough, C., et al. (2011). 225 years of Bering Sea climate and ecosystem dynamics revealed by coralline algal growth-increment widths. Geology, 39, 579–582.

    Article  Google Scholar 

  • Harley, C. D. G., & Paine, R. T. (2009). Contingencies and compounded rare perturbations dictate sudden distributional shifts during periods of gradual climate change. Proceedings of the National Academy of Sciences of the United States of America, 106, 11172–11176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harley, C. D. G., Anderson, K. M., Demes, K. W., Jorve, J. P., Kordas, R. L., Coyle, T. A., et al. (2012). Effects of climate change on global seaweed communities. Journal of Phycology, 48, 1064–1078.

    Article  CAS  PubMed  Google Scholar 

  • Harper, J. T., & Garbary, D. J. (1997). Marine algae of northern Senegal: The flora and its biogeography. Botanica Marina, 40, 129–138.

    Article  Google Scholar 

  • Harvey, W. H. (1836). Algae. In J. T. Mackay (Ed.), Flora Hibernica (pp. 157–254). Dublin: William Curry Jun and Company.

    Google Scholar 

  • Hawkes, M. W. (1978). Sexual reproduction in Porphyra gardneri (Smith and Hollenberg) Hawkes (Bangiales, Rhodophyta). Phycologia, 17, 326–350.

    Article  Google Scholar 

  • Hawkes, M. W. (1988). Evidence of sexual reproduction in Smithora naiadum (Erythropeltidales, Rhodophyta) and its evolutionary significance. British Phycological Journal, 23(4), 327–336.

    Article  Google Scholar 

  • Haxo, F. T., & Blinks, L. R. (1950). Photosynthetic action spectra of marine algae. Journal of General Physiology, 33, 389–422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hepburn, C. D., Pritchard, D. W., Cornwall, C. E., McLeod, R. J., Beardall, J., Raven, J. A., et al. (2011). Diversity of carbon use strategies in a kelp forest community: Implications for a high CO2 ocean. Global Change Biology, 17, 2488–2497.

    Article  Google Scholar 

  • Hernández-Kantún, J., Riosmena-Rodríguez, R., López-vivas, J. M., & Pacheco-Ruíz, I. (2010). Range extension for Kallymenia spp. (Kallymeniaceae: Rhodophyta) associated with rhodolith beds, new records from the Gulf of California, Mexico. Marine Biodiversity Records, 3(e84), 1–5.

    Google Scholar 

  • Hommersand, M. H. (2007). Global biogeography and relationships of the Australian marine macroalgae. In P. M. McCarthy & A. E. Orchard (Eds.), Algae of Australia – Introduction (pp. 511–542). Melbourne: ABRS/CSIRO Publishing.

    Google Scholar 

  • Hommersand, M. H., & Fredericq, S. (1990). Sexual reproduction and cystocarp development. In K. M. Cole & R. G. Sheath (Eds.), Biology of the red algae (pp. 305–345). New York: Cambridge University Press.

    Google Scholar 

  • Hommersand, M. H., Fredericq, S., & Freshwater, D. W. (1994). Phylogenetic systematics and biogeography of the Gigartinaceae (Gigartinales, Rhodophyta) based on sequence analysis of rbcL. Botanica Marina, 37, 193–203.

    Article  Google Scholar 

  • Hommersand, M. H., Moe, R. L., Amsler, C. D., & Fredericq, S. (2009). Notes on the systematics and biogeographical relationships of Antarctic and sub-Antarctic Rhodophyta with descriptions of four new genera and five new species. Botanica Marina, 52, 509–534.

    Article  Google Scholar 

  • Hsieh, C.-J., Zhan, S. H., Lin, Y., Tang, S.-L., & Liu, S.-L. (2015). Analysis of rbcL sequences reveals the global biodiversity, community structure, and biogeographical pattern of thermoacidophilic red algae (Cyanidiales). Journal of Phycology, 51, 682–694.

    Article  PubMed  Google Scholar 

  • Hu, Z.-M., Guiry, M. D., Critchley, A. T., & Duan, D. L. (2010). Phylogeographic patterns indicate transatlantic migration from Europe to North America in the red seaweed Chondrus crispus (Gigartinales, Rhodophyta). Journal of Phycology, 46, 889–900.

    Article  Google Scholar 

  • Jackson, C. J., & Reyes-Prieto, A. (2014). The mitochondrial genomes of the glaucophytes Gloeochaete wittrockiana and Cyanoptyche gloeocystis: Multilocus phylogenetics suggests a monophyletic archaeplastida. Genome Biology and Evolution, 6(10), 2774–2785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janiak, D. S., & Whitlach, R. B. (2012). Epifaunal and algal assemblages associated with the native Chondrus crispus (Stackhouse) and the non-native Grateloupia turuturu (Yamada) in eastern Long Island Sound. Journal of Experimental Marine Biology and Ecology, 413, 38–44.

    Article  Google Scholar 

  • Judson, B. L., & Pueschel, C. M. (2002). Ultrastructure of trichocyte (hair cell) complexes in Jania adhaerens (Corallinales, Rhodophyta). Phycologia, 41, 68–78.

    Article  Google Scholar 

  • Kamenos, N. A., Moore, P. G., & Hall-Spencer, J. M. (2004a). Small-scale distribution of juvenile gadoids in shallow inshore waters; what role does maërl play? ICES Journal of Marine Science: Journal du Conseil, 61(3), 422–429.

    Article  Google Scholar 

  • Kamenos, N. A., Moore, P. G., & Hall-Spencer, J. M. (2004b). Maerl grounds provide both refuge and high growth potential for juvenile queen scallops (Aequipecten opercularis L.). Journal of Experimental Marine Biology and Ecology, 313(2), 241–254.

    Article  Google Scholar 

  • Kamenos, N. A., Cusack, M., & Moore, P. G. (2008). Coralline algae are global palaeothermometers with bi-weekly resolution. Geochimica et Cosmochimica Acta, 72(3), 771–779.

    Article  CAS  Google Scholar 

  • Karsten, U., West, J. A., Zuccarello, G. C., Engbrodt, R., Yokoyama, A., Hara, Y., et al. (2003). Low molecular weigh carbohydrates of the Bangiophycidae (Rhodophyta). Journal of Phycology, 39(3), 584–589.

    Article  CAS  Google Scholar 

  • Kawagoe, K., Kitamura, D., Okabe, M., Taniuchi, I., Ikawa, M., Watanabe, T., et al. (1996). Glycosylphosphatidylinositol-anchor-deficient mice: Implications for clonal dominance of mutant cells in paroxysmal nocturnal hemoglobinuria. Blood, 87(9), 3600–3606.

    CAS  PubMed  Google Scholar 

  • Keeling, P. J., & Slamovits, C. H. (2005). Causes and effects of nuclear genome reduction. Current Opinion in Genetics and Development, 15, 601–608.

    Article  CAS  PubMed  Google Scholar 

  • Keeling, P. J., Burki, F., Wilcox, H. M., Allam, B., Allen, E. E., Amaral-Zettler, L. A., et al. (2014). The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): Illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biology, 12(6), e1001889.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kelaher, B. P., Castilla, J. C., & Seed, R. (2004). Intercontinental test of generality for spatial patterns among diverse molluscan assemblages in coralline algal turf. Marine Ecology Progress Series, 271, 221–231.

    Article  Google Scholar 

  • Kim, G. H., & Kim, S.-H. (1999). The role of F-actin during fertilization in the red alga Aglaothamnion oosumiense (Rhodophyta). Journal of Phycology, 35, 806–814.

    Article  Google Scholar 

  • Kim, S. Y., Weinberger, F., & Boo, S. M. (2010). Genetic diversity hints at a common donor region of the invasive Atlantic and Pacific populations of Gracilaria vermiculophylla (Rhodophyta). Journal of Phycology, 46, 1346–1349.

    Article  Google Scholar 

  • Klochkova, N. G., & Klochkova, T. A. (2001). Floristics and biogeography of marine benthic algae on the coast of Kamchatka and Commander Islands. Algae, 16, 19–128.

    Google Scholar 

  • Knoll, A. H. (2011). The multiple origins of complex multicellularity. Annual Review of Earth Planet Sciences, 39, 217–239.

    Article  CAS  Google Scholar 

  • Kollars, N. M., Krueger-Hadfield, S. A., Byers, J. E., Greig, T. W., Strand, A. E., Weinberger, F., & Sotka, E. E. (2015). Development and characterization of microsatellite loci for the haploid-diploid red seaweed Gracilaria vermiculophylla. PeerJ, 3, e1159.

    Article  PubMed  PubMed Central  Google Scholar 

  • Konar, B., Riosmena-Rodriguez, R., & Katrin, I. (2006). Rhodolith bed: A newly discovered habitat in the North Pacific Ocean. Botanica Marina, 49, 355–359.

    Article  Google Scholar 

  • Krayesky, D. M., Norris, J. N., Gabrielson, P. W., Gabriel, D., & Fredericq, S. (2009). A new order of crustose red algae based on the Peyssonneliaceae with an evaluation of the ordinal classification of the Florideophyceae (Rhodophyta). Proceedings of the Biology Society of Washington, 123, 364–391.

    Article  Google Scholar 

  • Krueger-Hadfield, S. A., Collén, J., Daguin-Thiebaut, C., & Valero, M. (2011). Genetic population structure and mating system in Chondrus crispus (Rhodophyta). Journal of Phycology, 47, 440–450.

    Article  PubMed  Google Scholar 

  • Kylin, H. (1956). Die Gattungen der Rhodophyceen. Lund: CWK Gleerups Forlag.

    Google Scholar 

  • Le Gall, L., & Saunders, G. W. (2007). A nuclear phylogeny of the Florideophyceae (Rhodophyta) inferred from combined EF2, small subunit and large subunit ribosomal DNA: Establishing the new red algal subclass Corallinophycidae. Molecular Phylogenetics Evolution, 43(3), 1118–1130.

    Article  PubMed  CAS  Google Scholar 

  • Li, L. (2003). OrthoMCL: Identification of ortholog groups for eukaryotic genomes. Genome Research, 13, 2178–2189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lillico, S., Field, M. C., Blundell, P., Coombs, G. H., & Mottram, J. C. (2003). Essential roles for GPI-anchored proteins in African trypanosomes revealed using mutants deficient in GPI8. Molecular Biology of the Cell, 14, 1182–1194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindstrom, S. C. (2006). Biogeography of Alaskan seaweeds. Journal of Applied Phycology, 18, 637–641.

    Article  Google Scholar 

  • Lindstrom, S. C. (2009). The biogeography of seaweeds in Southeast Alaska. Journal of Biogeography, 36, 401–409.

    Article  Google Scholar 

  • Lindstrom, S. C., Olsen, J. L., & Stam, W. T. (1997). Postglacial recolonization and the biogeography of Palmaria mollis (Rhodophyta) along the northeast Pacific coast. Canadian Journal of Botany, 75, 1887–1896.

    Article  Google Scholar 

  • Lindstrom, S. C., Hughey, J. R., & Martone, P. T. (2011). New, resurrected and redefined species of Mastocarpus (Phyllophoraceae, Rhodophyta) from the northeast Pacific. Phycologia, 50, 661–683.

    Article  Google Scholar 

  • Littler, M. M., & Littler, D. (2007). Assessment of coral reefs using herbivory/nutrient assays and indicator groups of benthic primary producers: A critical synthesis, proposed protocols, and a critique of management strategies. Aquatic Conservation: Marine & Freshwater Ecosystems, 17, 195–215.

    Article  Google Scholar 

  • Ma, J. H., & Miura, A. (1984). Observations of the nuclear division in the conchospores and their germlings in Porphyra yezoensis Ueda. Japanese Journal of Phycology (Sorui), 32, 373–378.

    Google Scholar 

  • Macaya, E. C., Riosmena-Rodríguez, R., Melzer, R. R., Meyer, R., Försterra, G., & Häussermann, V. (2015). Rhodolith beds in the south-east Pacific. Marine Biodiversity, 45, 153–154.

    Article  Google Scholar 

  • Magallόn, S., Hilu, K. W., & Quandt, D. (2013). Land plant evolutionary timeline: Gene effects are secondary to fossil constraints in relaxed clock estimation of age and substitution rates. American Journal of Botany, 100(3), 556–573.

    Article  CAS  Google Scholar 

  • Maggs, C. A., & Pueschel, C. M. (1989). Morphology and development of Ahnfeltia plicata (Rhodophyta); Proposal of Ahnfeltiales ord. nov. Journal of Phycology, 25(2), 333–351.

    Article  Google Scholar 

  • Magne, F. (1960). Le Rhodochaete parvula Thuret (Bangioidée) et sa reproduction sexuée. Cahiers de Biologie Marine, 1, 407–420.

    Google Scholar 

  • Magne, F. (1990). Reproduction sexuée chez Erythrotrichia carnea (Rhodophyceae, Erythropeltidales). Cryptogamie Algologie, 11(3), 157–170.

    Google Scholar 

  • Magne, F. (1991). Classification and phylogeny in the lower Rodophyta: A new proposal. Journal of Phycology, 27(Suppl).

    Google Scholar 

  • Martone, P. T., Estevez, J. M., Lu, F., Ruel, K., Denny, M. W., Somerville, C., & Ralph, J. (2009). Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture. Current Biology, 19(2), 169–175.

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki, M., Misumi, O., Shin, I. T., Maruyama, S., Takahara, M., Miyagishima, S. Y., et al. (2004). Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature, 428, 653–657.

    Article  CAS  PubMed  Google Scholar 

  • McCoy, S. J., & Kamenos, N. A. (2015). Coralline algae (Rhodophyta) in a changing world: Integrating ecological, physiological and geochemical responses to global change. Journal of Phycology, 51, 6–24.

    Article  PubMed  PubMed Central  Google Scholar 

  • McCutcheon, J. P., & Moran, N. A. (2012). Extreme genome reduction in symbiotic bacteria. Nature Reviews Microbiology, 10, 13–26.

    CAS  Google Scholar 

  • Miller, K. A., Aguilar-Rosas, L. E., & Pedroche, F. F. (2011). A review of non-native seaweeds from California, USA and Baja California, Mexico. Hidrobiológica, 21, 365–379.

    Google Scholar 

  • Miyagishima, S.-Y., Nishida, K., Mori, T., Matsuzaki, M., Higashiyama, T., Kuroiwa, H., et al. (2003). A plant-specific dynamin-related protein forms a ring at the chloroplast division site. Plant Cell, 15, 655–665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizushima, N., & Levine, B. (2010). Autophagy in mammalian development and differentiation. Nature Cell Biology, 12, 823–830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montecinos, A., Broitman, B. R., Faugeron, S., Haye, P. A., Tellier, F., & Guillemin, M.-L. (2012). Species replacement along a linear coastal habitat: Phylogeography and speciation in the red alga Mazzaella laminarioides along the south east Pacific. BMC Evolutionary Biology, 12(1), 1.

    Article  Google Scholar 

  • Moran, N. A. (2002). Microbial minimalism: Genome reduction in bacterial pathogens. Cell, 108, 583–586.

    Article  CAS  PubMed  Google Scholar 

  • Moreira, D., Le Guyader, H., & Phillippe, H. (2000). The origin of red algae and the evolution of chloroplasts. Nature, 405, 69–72.

    Article  CAS  PubMed  Google Scholar 

  • Morse, A. N. C., Iwao, K., Baba, M., Shimoike, K., Hayashibara, T., & Omori, M. (1996). An ancient chemosensory mechanism brings new life to coral reefs. The Biological Bulletin, 191(2), 149–154.

    Article  Google Scholar 

  • Müller, K. M., Oliveira, M. C., Sheath, R. G., & Bhattacharya, D. (2001). Ribosomal DNA phylogeny of the Bangiophycidae (Rhodophyta) and the origin of secondary plastids. American Journal of Botany, 88(8), 1390–1400.

    Article  PubMed  Google Scholar 

  • Nakamura, Y., Sasaki, N., Kobayashi, M., Ojima, N., Yasuike, M., Shigenobu, Y., et al. (2013). The first symbiont-free genome sequence of marine red alga, Susabi-nori (Pyropia yezoensis). PloS One, 8(3), e57122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neill, K. F., Nelson, W. A., D’Archino, P., Leduc, D., & Farr, T. J. (2015). Northern New Zealand rhodoliths: Assessing faunal and flora diversity in physically contrasting beds. Marine Biodiversity, 45, 63–75.

    Article  Google Scholar 

  • Nelson, W. A. (1999). A revised checklist of marine algae naturalised in New Zealand. New Zealand Journal of Botany, 37, 355–359.

    Article  Google Scholar 

  • Nelson, W. A. (2009). Calcified macroalgae – Critical to coastal ecosystems and vulnerable to change: A review. Marine and Freshwater Research, 60(8), 787–801.

    Article  CAS  Google Scholar 

  • Nelson, W. A., & Dalen, J. L. (2015). Marine macroalgae of the Kermadec Islands. Bulletin of the Auckland Museum, 20, 125–140.

    Google Scholar 

  • Nelson, W. A., Brodie, J., & Guiry, M. D. (1999). Terminology used to describe reproduction and life history stages in the genus Porphyra (Bangiales, Rhodophyta). Journal of Applied Phycology, 11, 407–410.

    Article  Google Scholar 

  • Nelson, W. A., Broom, J. E., & Farr, T. J. (2003). Pyrophyllon and Chlidophyllon (Erythropeltidales, Rhodophyta): Two new genera for obligate epiphytic species previously placed in Porphyra, and a discussion of the orders Erythropeltidales and Bangiales. Phycologia, 42, 308–315.

    Article  Google Scholar 

  • Nelson, W. A., Leister, G. L., & Hommersand, M. H. (2011). Psilophycus alveatus gen. et comb. nov., a basal taxon in the Gigartinaceae (Rhodophyta) from New Zealand. Phycologia, 50(3), 219–231.

    Article  Google Scholar 

  • Newton, C., Bracken, E. S., McConville, M., Rodrigue, K., & Thornber, C. S. (2013). Invasion of the red seaweed Heterosiphonia japonica spans biogeographic provinces in the western North Atlantic Ocean. PloS One, 8(4), e62261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nylund, G. M., Enge, S., & Pavia, H. (2013). Costs and benefits of chemical defence in the red alga Bonnemaisonia hamifera. PloS One, 8(4), e61291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oates, B. R., & Cole, K. M. (1994). Comparative studies on hair cells of two agarophyte red algae, Gelidium vagum (Gelidiales, Rhodophyta) and Gracilaria pacifica (Gracilariales, Rhodophyta) 1. Phycologia, 33(6), 420–433.

    Article  Google Scholar 

  • Oliveira, M. C., & Bhattacharya, D. (2000). Phylogeny of the Bangiophycidae (Rhodophyta) and the secondary endosymbiotic origin of algal plastids. American Journal of Botany, 87, 482–492.

    Article  CAS  PubMed  Google Scholar 

  • Oliveira, A. S., Sudatti, D. B., Fujii, M. T., Rodrigues, S. V., & Pereira, R. C. (2013). Inter- and intrapopulation variation in the defensive chemistry of the red seaweed Laurencia dendroidea (Ceramiales, Rhodophyta). Phycologia, 52(2), 130–136.

    Article  CAS  Google Scholar 

  • Pakker, H., & Breeman, A. M. (1996). Temperature responses of tropical to warm temperate seaweeds. II. Evidence for ecotypic differentiation in amphi-Atlantic tropical-Mediterranean species. European Journal of Phycology, 31(2), 133–141.

    Article  Google Scholar 

  • Paradas, W. C., Crespo, T. M., Salgado, L. T., de Andrade, L. R., Soares, A. R., Hellio, C., et al. (2015). Mevalonosomes: Specific vacuoles containing the mevalonate pathway in Plocamium brasiliense cortical cells (Rhodophyta). Journal of Phycology, 51(2), 225–235.

    Article  CAS  PubMed  Google Scholar 

  • Parfrey, L. W., Grant, J., Tekle, Y. I., Lasek-Nesselquist, E., Morrison, H. G., Sogin, M. L., et al. (2010). Broadly sampled multigene analyses yield a well-resolved eukaryotic tree of life. Systematic Biology, 59(5), 518–533.

    Article  PubMed  PubMed Central  Google Scholar 

  • Parfrey, L., Lahr, D., Knoll, A. H., & Katz, L. A. (2011). Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proceeding of the National Academy of Sciences of the United States of America, 108(33), 13624–13629.

    Article  CAS  Google Scholar 

  • Paul, N. A., Cole, L., DeNys, R., & Steinberg, P. D. (2006). Ultrastructure of the gland cells of the red alga Asparagopsis armata (Bonnemaisoniaceae). Journal of Phycology, 42(3), 637–645.

    Article  Google Scholar 

  • Peña, V., & Bárbara, I. (2008a). Biological importance of an Atlantic european maerl bed off Benencia Island (northwest Iberian Peninsula). Botanica Marina, 51(6), 493–505.

    Article  Google Scholar 

  • Peña, V., & Bárbara, I. (2008b). Maërl community in the north-western Iberian Peninsula: A review of floristic studies and long term changes. Aquatic Conservation: Marine and Freshwater Ecosystems, 18(4), 339–366.

    Article  Google Scholar 

  • Pereira, R., Yarish, C., & Critchley, A. (2012). Seaweed aquaculture for human foods, land based. In B. A. Costa-Pierce (Ed.), Ocean farming and sustainable aquaculture science and technology. Encyclopedia of sustainability science and technology. New York: Springer Science.

    Google Scholar 

  • Pereira-Filho, G. H., Amado-Filho, G. M., de Moura, R. L., Bastos, A. C., Guimarães, S. M. P. B., Salgado, L. T., et al. (2012). Extensive rhodolith beds cover the summits of southwestern Atlantic Ocean seamounts. Journal of Coastal Research, 28(1), 261–269.

    Article  CAS  Google Scholar 

  • Pickett-Heaps, J. D., West, J. A., Wilson, S. M., & McBride, D. L. (2001). Time-lapse videomicroscopy of cell (spore) movement in red algae. European Journal of Phycology, 36(01), 9–22.

    Article  Google Scholar 

  • Pinto, G., Albertano, P., Ciniglia, C., Cozzolino, S., Pollio, A., Yoon, H. S., et al. (2003). Comparative approaches to the taxonomy of the genus Galdieria Merola (Cyanidiales, Rhodophyta). Cryptogamie-Algologie, 24(1), 13–32.

    Google Scholar 

  • Price, D. C., Chan, C. X., Yoon, H. S., Yang, E. C., Qiu, H., Weber, A. P. M., et al. (2012). Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants. Science, 335(6070), 843–847.

    Article  CAS  PubMed  Google Scholar 

  • Provan, J., Wattier, R. A., & Maggs, C. A. (2005). Phylogeographic analysis of the red seaweed Palmaria palmata reveals a Pleistocene marine glacial refugium in the English Channel. Molecular Ecology, 14(3), 793–803.

    Article  CAS  PubMed  Google Scholar 

  • Pueschel, C. M. (1990). Cell structure. In K. M. Cole & R. G. Sheath (Eds.), Biology of the red algae (pp. 7–41). New York: Cambridge University Press.

    Google Scholar 

  • Pueschel, C. M. (1992). An ultrastructural survey of the diversity of crystalline, proteinaceous inclusions in red algal cells. Phycologia, 31(6), 489–499.

    Article  Google Scholar 

  • Pueschel, C. M. (1995). Calcium oxalate crystals in the red alga Antithamnion kylinii (Ceramiales): Cytoplasmic and limited to indeterminate axes. Protoplasma, 189(1–2), 73–80.

    Article  CAS  Google Scholar 

  • Pueschel, C. M., & Cole, K. M. (1982). Rhodophycean pit plugs: An ultrastructural survey with taxonomic implications. American Journal of Botany, 69, 703–720.

    Article  Google Scholar 

  • Pueschel, C. M., & West, J. A. (2007). Effects of ambient calcium concentration on the deposition of calcium oxalate crystals in Antithamnion (Ceramiales, Rhodophyta). Phycologia, 46(4), 371–379.

    Article  Google Scholar 

  • Pueschel, C. M., Miller, T. J., & McCausland, B. B. (1996). Development of epithallial cells in Corallina officinalis and Lithophyllum impressum (Corallinales, Rhodophyta). Phycologia, 35(2), 161–169.

    Article  Google Scholar 

  • Qiu, H., Price, D., Weber, A. P., Reeb, V., Yang, E. C., Lee, J. M., et al. (2013). Adaptation through horizontal gene transfer in the cryptoendolithic red alga Galdieria phlegrea. Current Biology, 23(19), R865–R866.

    Article  CAS  PubMed  Google Scholar 

  • Qiu, H., Price, D., Yang, E. C., Yoon, H. S., & Bhattacharya, D. (2015). Evidence of ancient genome reduction in red algae (Rhodophyta). Journal of Phycology, 51(4), 624–636.

    Article  CAS  PubMed  Google Scholar 

  • Ragan, M. A., Bird, C. J., Rice, E. L., Gutell, R. R., Murphy, C. A., & Singh, R. K. (1994). A molecular phylogeny of the marine red algae (Rhodophyta) based on the nuclear small-subunit rRNA gene. Proceedings of the National Academy of Sciences of the United States of America, 91, 7276–7280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reeb, V., & Bhattacharya, D. (2010). The thermo-acidophilic Cyanidiophyceae (Cyanidiales). In J. Seckbach & D. Chapman (Eds.), Red algae in the genomic age (pp. 409–426). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Reis, V. M., Oliveira, L. S., Passos, R. M. F., Viana, N. B., Mermelstein, C., Sant’Anna, C., et al. (2013). Traffic of secondary metabolites to cell surface in the red alga Laurencia dendroidea depends on a two-step transport by the cytoskeleton. PloS One, 8(5), e63929.

    Article  PubMed  PubMed Central  Google Scholar 

  • Reyes-Prieto, A., & Bhattacharya, D. (2007). Phylogeny of nuclear-encoded plastid-targeted proteins supports an early divergence of glaucophytes within Plantae. Molecular Biology and Evolution, 24(11), 2358–2361.

    Article  CAS  PubMed  Google Scholar 

  • Riul, P., Targino, C. H., Da Nóbrega Farias, J., Visscher, P. T., & Horta, P. A. (2008). Decrease in Lithothamnion sp. (Rhodophyta) primary production due to the deposition of a thin sediment layer. Journal of the Marine Biological Association of the United Kingdom, 88(01), 17–19.

    Article  Google Scholar 

  • Roberts, R. (2001). A review of settlement cues for larval abalone (Haliotis spp.). Journal of Shellfish Research, 20(2), 571–586.

    Google Scholar 

  • Rodriguez-Ezpeleta, N., Brinkmann, H., Burey, S. C., Roure, B., Burger, G., Löffelhardt, W., et al. (2005). Monophyly of primary photosynthetic eukaryotes: Green plants, red algae, and glaucophytes. Current Biology, 15(14), 1325–1330.

    Article  CAS  PubMed  Google Scholar 

  • Roleda, M. Y., & Hurd, C. L. (2012). Seaweed responses to ocean acidification. In C. Wiencke & K. Bischof (Eds.), Seaweed biology: Novel insights into ecophysiology, ecology and utilization (pp. 407–431). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Russell, C. A., Guiry, M. D., McDonald, A. R., & Garbary, D. J. (1996). Actin-mediated chloroplast movement in Griffithsia pacifica (Ceramiales, Rhodophyta). Phycological Research, 44, 57–61.

    Article  CAS  Google Scholar 

  • Salgado, L. T., Viana, N. B., Andrade, L. R., Leal, R. N., da Gama, B. A. P., Attias, M., et al. (2008). Intra-cellular storage, transport and exocytosis of halogenated compounds in marine red alga Laurencia obtusa. Journal of Structural Biology, 162(2), 345–355.

    Article  CAS  PubMed  Google Scholar 

  • Saunders, G. W., & Hommersand, M. H. (2004). Assessing red algal supraordinal diversity and taxonomy in the context of contemporary systematic data. American Journal of Botany, 91(10), 1494–1507.

    Article  PubMed  Google Scholar 

  • Schneider, C. W. (2010). Report of a new invasive alga in the Atlantic United States: “Heterosiphonia” japonica in Rhode Island. Journal of Phycology, 46(4), 653–657.

    Article  Google Scholar 

  • Schneider, C. W., & Wynne, M. J. (2007). A synoptic review of the classification of red algal genera a half century after Kylin’s “Die Gattunger der Rhodophyceen.”. Botanica Marina, 50, 197–249.

    Google Scholar 

  • Schneider, C. W., & Wynne, M. J. (2013). Second addendum to the synoptic review of red algal genera. Botanica Marina, 56, 111–118.

    Article  Google Scholar 

  • Schönknecht, G., Chen, W. H., Ternes, C. M., Barbier, G. G., Shrestha, R. P., Stanke, M., et al. (2013). Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote. Science, 339(6124), 1207–1210.

    Article  PubMed  CAS  Google Scholar 

  • Scott, J., & Broadwater, S. (1990). Cell division. In K. M. Cole & R. G. Sheath (Eds.), Biology of the red algae (pp. 123–145). New York: Cambridge University Press.

    Google Scholar 

  • Scott, J., Thomas, J., & Saunders, B. (1988). Primary pit connections in Compsopogon coeruleus (Balbis) Montagne (Compsopogonales, Rhodophyta). Phycologia, 27(3), 327–333.

    Article  Google Scholar 

  • Scott, J. L., Broadwater, S. T., Saunders, B. D., Thomas, J. P., & Gabrielson, P. W. (1992). Ultrastucture of vegetative organization and cell division in the unicellular red alga Dixoniella grisea gen. nov. (Rhodophyta) and a consideration of the genus Rhodella. Journey of Phycology, 28(5), 649–660.

    Article  Google Scholar 

  • Scott, J., Yang, E. C., West, J. A., Yokoyama, A., Kim, H. J., Loiseaux de Goër, S., et al. (2011). On the genus Rhodella, the emended orders Dixoniellales and Rhodellales with a new order Glaucosphaerales (Rhodellophyceae, Rhodophyta). Algae, 26(4), 277–288.

    Article  Google Scholar 

  • Scrosati, R., & DeWreede, R. E. (1999). Demographic models to simulate the stable ratio between ecologically similar gametophytes and tetrasporophytes in populations of the Gigartinaceae (Rhodophyta). Phycological Research, 47(3), 153–157.

    Article  Google Scholar 

  • Selivanova, O. N., & Zhigadlova, G. G. (1997a). Marine algae of the Commander Islands preliminary remarks on the revision of the Flora. I. Chlorophyta. Botanica Marina, 40(1–6), 1–8.

    Article  Google Scholar 

  • Selivanova, O. N., & Zhigadlova, G. G. (1997b). Marine algae of the Commander Islands preliminary remarks on the revision of the flora. II. Phaeophyta. Botanica Marina, 40(1–6), 9–13.

    Google Scholar 

  • Selivanova, O. N., & Zhigadlova, G. G. (1997c). Marine algae of the Commander Islands preliminary remarks on the revision of the flora. III. Rhodophyta. Botanica Marina, 40(1–6), 15–24.

    Google Scholar 

  • Seo, Y. B., Lee, Y. W., Lee, C. H., & You, H. C. (2010). Red algae and their use in papermaking. Bioresource Technology, 101(7), 2549–2553.

    Article  CAS  PubMed  Google Scholar 

  • Sjøtun, K., Husa, V., & Peña, V. (2008). Present distribution and possible vectors of introductions of the alga Heterosiphonia japonica (Ceramiales, Rhodophyta) in Europe. Aquatic Invasions, 3(4), 377–394.

    Article  Google Scholar 

  • Skorupa, D. J., Reeb, V., Castenholz, R. W., Bhattacharya, D., & McDermott, T. R. (2013). Cyanidiales diversity in Yellowstone National Park. Letters in Applied Microbiology, 57(5), 459–466.

    Article  CAS  PubMed  Google Scholar 

  • Soltis, P. S., Soltis, D. E., Savolainen, V., Crane, P. R., & Barraclough, T. G. (2002). Rate heterogeneity among lineages of tracheophytes: Integration of molecular and fossil data and evidence for molecular living fossils. Proceedings of the National Academy of Sciences of the United States of America, 99(7), 4430–4435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steller, D. L., Riosmena-Rodriguez, R., Foster, M. S., & Roberts, C. A. (2003). Rhodolith bed diversity in the Gulf of California: The importance of rhodolith structure and consequences of disturbance. Aquatic Conservation: Marine and Freshwater Ecosystems, 13(S1), S5–S20.

    Article  Google Scholar 

  • Sutherland, J. E., Lindstrom, S. C., Nelson, W. A., Brodie, J., Lynch, M. D. J., Hwang, M. S., Choi, H.-G., Miyata, M., Kikuchi, N., Oliveira, M. C., Farr, T., Neefus, C., Mols-Mortensen, A., Milstein, D., & Müller, K. M. (2011). A new look at ancient order: Generic revision of the Bangiales (Rhodophyta). Journal of Phycology, 47(5), 1131–1151.

    Article  PubMed  Google Scholar 

  • Suzuki, K., Kawazu, T., Mita, T., Takahashi, H., Itoh, R., Toda, K., et al. (1995). Cytokinesis by a contractile ring in the primitive red alga Cyanidium caldarium RK-1. European Journal of Cell Biology, 67(2), 170–178.

    CAS  PubMed  Google Scholar 

  • Takeda, J., & Kinoshita, T. (1995). GPI-anchor biosynthesis. Trends in Biochemical Sciences, 20(9), 367–371.

    Article  CAS  PubMed  Google Scholar 

  • Tebben, J., Motti, C. A., Siboni, N., Tapiolas, D. M., Negri, A. P., Schupp, P. J., Kitamura, M., Hatta, M., Steinberg, P. D., & Harder, T. (2015). Chemical mediation of coral larval settlement by crustose coralline algae. Scientific Reports, 5, 10803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teichert, S. (2014). How rhodoliths increase Svalbard’s shelf biodiversity. Scientific Reports, 4, 6972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teichert, S., Woelkerling, W., Rüggeberg, A., Wisshak, M., Piepenburg, D., Meyerhöfer, M., et al. (2012). Rhodolith beds (Corallinales, Rhodophyta) and their physical and biological environment at 80° 13’ N in Nordkappbukta (Nordaustlandet, Svalbard Archipelago, Norway). Phycologia, 51(4), 371–390.

    Article  Google Scholar 

  • Thornber, C. S., & Gaines, S. D. (2004). Population demographics in species with biphasic life cycles. Ecology, 85(6), 1661–1674.

    Article  Google Scholar 

  • Toplin, J. A., Norris, T. B., Lehr, C. R., McDermott, T. R., & Castenholz, R. W. (2008). Biogeographic and phylogenetic diversity of thermoacidophilic Cyanidiophyceae in Yellowstone National Park, Japan, and New Zealand. Applied and Environmental Microbiology, 74(9), 2822–2833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verbruggen, H., Maggs, C. A., Saunders, G. W., Le Gall, L., Yoon, H. S., & De Clerck, O. (2010). Data mining approach identifies research priorities and data requirements for resolving the red algal tree of life. BMC Evolutionary Biology, 10(1), 16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verlaque, M., Brannock, P. M., Komatsu, T., Villalard-Bohnsack, M., & Marston, M. (2005). The genus Grateloupia C. Agardh (Halymeniaceae, Rhodophyta) in the Thau Lagoon (France, Mediterranean): A case study of marine plurispecific introductions. Phycologia, 44(5), 477–496.

    Article  Google Scholar 

  • Vis, M. L., Necchi, O., Jr., Chiasson, W. B., & Entwisle, T. J. (2012). Molecular phylogeny of the genus Kumanoa (Batrachospermales, Rhodophyta). Journal of Phycology, 48(3), 750–758.

    Article  CAS  PubMed  Google Scholar 

  • Waller, R. F., & McFadden, G. I. (1995). Morphological and cytochemical analysis of an unusual nucleus-pyrenoid association in a unicellular red alga. Protoplasma, 186(3–4), 131–141.

    Article  Google Scholar 

  • Wettstein, A. (1901). Handbuch der systematischen Botanik. Leipzig/Vienna: Deuticke.

    Google Scholar 

  • Wiencke, C., Bartsch, I., Bischoff, B., Peters, A. F., & Breeman, A. M. (1994). Temperature requirements and biogeography of Antarctic, Arctic and amphiequitorial seaweeds. Botanica Marina, 37(3), 247–259.

    Article  Google Scholar 

  • Wilcox, S. J., Barr, N., Broom, J., Furneaux, R. H., & Nelson, W. A. (2007). Using gigartinine to track the distribution of an alien species of Gracilaria in New Zealand. Journal of Applied Phycology, 19(4), 313–323.

    Article  CAS  Google Scholar 

  • Williams, S. L., & Smith, J. E. (2007). A global review of the distribution, taxonomy, and impacts of introduced seaweeds. Annual Review of Ecology, Evolution, and Systematics, 38, 327–359.

    Article  Google Scholar 

  • Wilson, S. M., Pickett-Heaps, J. D., & West, J. A. (2002a). Fertilisation and the cytoskeleton in the red alga Bostrychia moritziana (Rhodomelaceae, Rhodophyta). European Journal of Phycology, 37, 509–522.

    Article  Google Scholar 

  • Wilson, S. M., West, J., Pickett-Heaps, J., Yokoyama, A., & Hara, Y. (2002b). Chloroplast rotation and morphological plasticity of the unicellular alga Rhodosorus (Rhodophyta, Stylonematales). Phycological Research, 50, 183–192.

    Article  Google Scholar 

  • Wilson, S. M., West, J. A., & Pickett-Heaps, J. D. (2003). Time-lapse videomicroscopy of fertilisation and the actin cytoskeleton in Murrayella periclados (Rhodomelaceae, Rhodophyta). Phycologia, 42, 638–645.

    Article  Google Scholar 

  • Wilson, S. M., Pickett-Heaps, J. D., & West, J. A. (2006). Vesicle transport and the cytoskeleton in the unicellular red alga Glaucosphaera vacuolata. Phycological Research, 54, 15–20.

    Article  Google Scholar 

  • Withall, R. D., & Saunders, G. W. (2006). Combining small and large subunit ribosomal DNA genes to resolve relationships among orders of Rhodymeniophycidae (Rhodophyta): Recognition of the Acrosymphytales ord. nov. and Sebdeniales ord. nov. European Journal of Phycology, 41(4), 379–394.

    Article  CAS  Google Scholar 

  • Wulff, A., Iken, K., Quartino, M. L., Al-Handal, A., Wiencke, C., & Clayton, M. N. (2009). Biodiversity, biogeography and zonation of marine benthic micro-and macrolagae in the Arctic and Antarctic. Botanica Marina, 52, 491–507.

    Article  Google Scholar 

  • Wynne, M. J., & Schneider, C. W. (2010). Addendum to the synoptic review of red algal genera. Botanica Marina, 53, 291–299.

    Article  Google Scholar 

  • Xiao, S., Zhang, Y., & Knoll, A. H. (1998). Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature, 391, 553–558.

    Article  CAS  Google Scholar 

  • Xiao, S., Knoll, A. H., Yuan, X., & Pueschel, C. M. (2004). Phosphatized multicellular algae in the Neoproterozoic Doushantuo formation, China, and the early evolution of florideophyte red algae. American Journal of Botany, 91(2), 214–227.

    Article  PubMed  Google Scholar 

  • Xiao, S., Muscente, A. D., Chen, L., Zhou, C., Schiffbauer, J. D., Wood, A. D., et al. (2014). The Weng’an biota and the Ediacaran radiation of multicellular eukaryotes. National Science Review, 1(4), 498–520.

    Article  Google Scholar 

  • Yabuki, A., Kamikawa, R., Ishikawa, S. A., Kolisko, M., Kim, E., Tanabe, A. S., et al. (2014). Palpitomonas bilix represents a basal cryptist lineage: Insight into the character evolution in Cryptista. Scientific Reports, 4, 4641.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang, E. C., Cho, G. Y., Kogame, K., Carlile, A. L., & Boo, S. M. (2008). RuBisCo cistron sequence variation and phylogeography of Ceramium kondoi (Ceramiaceae, Rhodophyta). Botanica Marina, 51, 370–377.

    Article  CAS  Google Scholar 

  • Yang, E. C., Lee, S. Y., Lee, W. J., & Boo, S. M. (2009). Molecular evidence for recolonization of Ceramium japonicum (Ceramiaceae, Rhodophyta) on the west coast of Korea after the last glacial maximum. Botanica Marina, 52, 307–315.

    Article  CAS  Google Scholar 

  • Yang, E. C., Kim, K. M., Kim, S. Y., Lee, J. M., Boo, G. H., Lee, J. H., et al. (2015). Highly conserved mitochondrial genomes among multicellular red algae of the Florideophyceae. Genome Biolology Evolution, 7, 2394–2406.

    Article  CAS  Google Scholar 

  • Yang, E. C., Boo, S. M., Bhattacharya, D., Saunders, G. W., Knoll, A. H., Fredericq, S., et al. (2016). Divergence time estimates and the evolution of major lineages in the florideophyte red algae. Scientific Reports, 6, 21361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokoyama, A., Scott, J. L., Zuccarello, G. C., Kajikawa, M., Hara, Y., & West, J. A. (2009). Corynoplastis japonica gen. et sp. nov. and Dixoniellales ord. nov. (Rhodellophyceae, Rhodophyta) based on morphological and molecular evidence. Phycological Research, 57(4), 278–289.

    Article  Google Scholar 

  • Yoon, H. S., Hackett, J. D., & Bhattacharya, D. (2002a). A single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis. Proceedings of the National Academy of Sciences of the United States of America, 99(18), 11724–11729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon, H. S., Hackett, J. D., Pinto, G., & Bhattacharya, D. (2002b). The single, ancient origin of chromist plastids. Proceedings of the National Academy of Sciences of the United States of America, 99(24), 15507–15512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon, H. S., Hackett, J. D., Ciniglia, C., Pinto, G., & Bhattacharya, D. (2004). A molecular timeline for the origin of photosynthetic eukaryotes. Molecular Biology and Evolution, 21(5), 809–818.

    Article  CAS  PubMed  Google Scholar 

  • Yoon, H. S., Müller, K. M., Sheath, R. G., Ott, F. D., & Bhattacharya, D. (2006). Defining the major lineages of red algae (Rhodophyta). Journal of Phycology, 42(2), 482–492.

    Article  CAS  Google Scholar 

  • Yoon, H. S., Grant, J., Tekle, Y. I., Wu, M., Chaon, B. C., Cole, J. C., et al. (2008). Broadly sampled multigene trees of eukaryotes. BMC Evolutionary Biology, 8(1), 14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoon, H. S., Zuccarello, G. C., & Bhattacharya, D. (2010). Evolutionary history and taxonomy of red algae. In J. Seckbach & D. J. Chapman (Eds.), Cellular origin, life in extreme habitats and astrobiology (Vol. 13, pp. 25–42). New York: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwan Su Yoon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Yoon, H.S. et al. (2017). Rhodophyta. In: Archibald, J., Simpson, A., Slamovits, C. (eds) Handbook of the Protists. Springer, Cham. https://doi.org/10.1007/978-3-319-28149-0_33

Download citation

Publish with us

Policies and ethics