Skip to main content

Retortamonadida (with Notes on Carpediemonas-Like Organisms and Caviomonadidae)

  • Reference work entry
  • First Online:
Book cover Handbook of the Protists

Abstract

Retortamonadida (retortamonads) is a group of bacterivor ous metamonads belonging to Fornicata, currently represented by the single family Retortamonadidae, with two genera, Retortamonas and Chilomastix, and about 60 species. They are adapted to low-oxygen environments and live predominantly as endocommensals in intestines of animal hosts, including humans. Two species were reported to be potential pathogens causing diarrhea in humans (C. mesnili) or unadapted avian hosts (C. gallinarum). One species (C. cuspidata) is free-living in hypoxic water sediments. Retortamonads are typical excavates with a single karyomastigont possessing four basal bodies and two or four flagella. One flagellum is recurrent, has two or three lateral vanes, and is associated with a ventral feeding groove. Double-membrane-bounded organelles without cristae, assumed to be mitochondrial derivatives, were found in Chilomastix. Retortamonads reproduce by binary division and produce a resistant cyst stage. The cysts of endobiotic species are discharged with feces and serve to spread the infection. Recent phylogenetic analysis and ultrastructural observations indicate that Retortamonas species from insects are close relatives of Chilomastix, while species from vertebrates appear to be relatives of Diplomonads and should be excluded from this genus. Carpediemonas-like organisms (CLOs) comprise a few species of small, free-living Fornicata. They are typical excavates and are biflagellated, though usually possess three or four basal bodies in the mastigont. CLOs form a paraphyletic grade in phylogenetic trees, having retortamonads, diplomonads, and Caviomonadidae (i.e., the rest of Fornicata) nested within them. Caviomonadidae is a group of morphologically reduced uniflagellates that were thought to belong to Diplomonadida until recently. Instead, they are closely related to the CLO genera Hicanonectes and Aduncisulcus. Caviomonadidae includes three endobiotic species and one undescribed free-living, marine isolate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adl, S. M., Simpson, A. G. B., Lane, C. L., et al. (2012). The revised classification of eukaryotes. Journal of Eukaryotic Microbiology, 59, 429–493.

    Article  PubMed  PubMed Central  Google Scholar 

  • Alexeieff, A. (1912). Sur quelques noms de genres des flagellés qui doivent disparaitre de la nomenclature pour cause de synonymie ou pour cause autre raison. Diagnoses de quelques genres récemment étudiés. Zoologischer Anzeiger, 39, 674–680.

    Google Scholar 

  • Alexeieff, A. (1917). Mitochondries et corps parabasal chez les Flagellés. Comptes Rendus des Seances de la Societe de Biologie et de Filiales, 80, 358–361.

    Google Scholar 

  • Ansari, M. A. R. (1955). The genus Retortamonas Grassi (Mastigophora, Retortamonadidae). Biologia Lahore, 1, 40–69.

    Google Scholar 

  • Barnham, M. (1977). Is Chilomastix harmless? The Lancet, 2, 1077–1078.

    Article  CAS  Google Scholar 

  • Bernard, C., Simpson, A. G. B., & Patterson, D. J. (1997). An ultrastructural study of a free-living retortamonad Chilomastix cuspidata (Larsen & Patterson, 1990) n. comb. (Retortamonadida, Protista). European Journal of Protistology, 33, 254–265.

    Article  Google Scholar 

  • Bernard, C., Simpson, A. G. B., & Patterson, D. J. (2000). Some free-living flagellates (Protista) from anoxic habitats. Ophelia, 52, 113–142.

    Article  Google Scholar 

  • Bělař, K. (1921). Protozoenstüdien III. Archiv für Protistenkunde, 43, 431–462.

    Google Scholar 

  • Bishop, A. (1931). A description of Embadomonas n. spp. from Blatta orientalis, Rana temporaria, Bufo vulgaris, Salamandra maculosa; with a note upon the “cyst” of Trichomonas batrachorum. Parasitology, 23, 286–300.

    Article  Google Scholar 

  • Bishop, A. (1934). Observations upon Embadomonas intestinalis in culture. Parasitology, 26, 17–25.

    Article  Google Scholar 

  • Bishop, A. (1935). Observations upon Chilomastix from Bufo vulgaris, with notes on Chilomastix aulastomi. Parasitology, 27, 507–518.

    Article  Google Scholar 

  • Boeck, W. C. (1921). Chilomastix mesnili and a method for its culture. Journal of Experimental Medicine, 33, 147–175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boeck, W. C., & Drbohlav, J. (1925). The cultivation of Entamoeba histolytica. American Journal of Hygiene, 5, 371–407.

    Google Scholar 

  • Boeck, W. C., & Tanabe, M. (1926). Chilomastix gallinarum, morphology, division and cultivation. American Journal of Hygiene, 6, 319–336.

    Google Scholar 

  • Brug, S. L. (1922). Quelques observations sur les protozoaires parasites intestinaux de l’homme et des animaux. Bulletin de la Societe de Pathologie Exotique, 15, 132–139.

    Google Scholar 

  • Brugerolle, G. (1973). Ètude ultrastructurale du trophozoite et du kyste chez le genre Chilomastix Alexeieff, 1910 (Zoomastigophorea, Retortamonadida Grassé, 1952). Journal of Protozoology, 20, 574–585.

    Article  Google Scholar 

  • Brugerolle, G. (1974). Contribution à l’étude cytologique et phylétique des Diplozoaires (Zoomastigophorea, Diplozoa, Dangeard 1910). III. Ètude ultrastructurale du genre Hexamita (Dujardin 1838). Protistologica, 10, 83–90.

    Google Scholar 

  • Brugerolle, G. (1977). Ultrastructure du genre Retortamonas Grassi 1879 (Zoomastigophorea, Retortamonadida, Wenrich 1932). Protistologica, 13, 233–240.

    Google Scholar 

  • Brugerolle, G. (1991). Flagellar and cytoskeletal systems in amitochondrial flagellates: Archamoeba, Metamonada and Parabasala. Protoplasma, 164, 70–90.

    Google Scholar 

  • Brugerolle, G. (2006). The symbiotic fauna of the African termite Hodotermes mossambicus identification of four flagellate species of the genera Spironympha, Trichomonoides and Retortamonas. Parasitology Research, 98, 257–263.

    Article  PubMed  Google Scholar 

  • Brugerolle, G., & Lee, J. J. (2000). Order Retortamonadida, Grassé. In J. J. Lee, G. F. Leedale, & P. Bradbury (Eds.), The illustrated guide to the protozoa (Vol. 2, 2nd ed., pp. 1250–1253). Lawrence: The Society of Protozoologists/Allen Press.

    Google Scholar 

  • Brugerolle, G., & Mignot, J. P. (1990). Phylum Zoomastigina, Class Retortamonadida. In L. Margulis, J. O. Corliss, M. Melkonian, & D. J. Chapman (Eds.), Handbook of Protoctista (1st ed., pp. 259–265). Boston: Jones and Bartlett.

    Google Scholar 

  • Brugerolle, G., & Regnault, J. P. (2001). Ultrastructure of the enteromonad flagellate Caviomonas mobilis. Parasitology Research, 87, 662–665.

    Article  CAS  PubMed  Google Scholar 

  • Cavalier-Smith, T. (1983). A 6-kinkdom classification and a united phylogeny. In H. E. A. Schen-g & W. S. Schwemmler (Eds.), Endocytobiology II. Intracellular Space as Oligogenetic Ecosystem. Berlin: Walter de Gruiter.

    Google Scholar 

  • Cavalier-Smith, T. (1987). Eukaryotes with no mitochondria. Nature, 326, 332–333.

    Article  CAS  Google Scholar 

  • Cavalier-Smith, T. (1998). A revised six-kingdom system of life. Biological Reviews of the Cambridge Philosophical Society, 73, 203–266.

    Google Scholar 

  • Cavalier-Smith, T. (2003). The excavate protozoan phyla Metamonada Grassé emend. (Anaeromonadea, Parabasalia, Carpediemonas, Eopharyngia) and Loukozoa emend. (Jakobea, Malavimonas): their evolutionary affinities and new higher taxa. International Journal of Systematic and Evolutionary Microbiology, 53, 1741–1758.

    Article  CAS  PubMed  Google Scholar 

  • Cavalier-Smith, T. (2013). Early evolution of eukaryote feeding modes, cell structural diversity, and classification of the protozoan phyla Loukozoa, Sulcozoa, and Choanozoa. European Journal of Protistology, 49, 115–178.

    Article  PubMed  Google Scholar 

  • Cepicka, I., Kostka, M., Uzlíková, M., Kulda, J., & Flegr, J. (2008). Non-monophyly of Retortamonadida and high genetic diversity of the genus Chilomastix suggested by analysis of SSU rDNA. Molecular Phylogenetics and Evolution, 48, 770–775.

    Article  CAS  PubMed  Google Scholar 

  • Collier, J., & Boeck, W. C. (1926). The morphology and cultivation of Embadomonas cuniculi n. sp. Journal of Parasitology, 12, 131–140.

    Article  Google Scholar 

  • Červa, L., & Větrovská, G. (1958). Towards the question of pathogenic character of the flagellate Chilomastix mesnili. Czechoslovac Epidemiology Microbiology and Immunology, 7, 125–185.

    Google Scholar 

  • Davis, D. E., Schwartz, L. D., & Jordan, H. E. (1964). A case report: Chilomastix sp. infection in pen-raised quail. Avian Diseases, 8, 465–470.

    Article  Google Scholar 

  • Diamond, L. S. (1982). A new liquid medium for xenic cultivation of Entamoeba histolytica and other lumen dwelling protozoa. Journal of Parasitology, 68, 958–959.

    Article  CAS  PubMed  Google Scholar 

  • Dobell, C. (1935). Researches on the intestinal protozoa of monkeys and man VII. On the Enteromonas of macaques and Embadomonas intestinalis. Parasitology, 27, 564–592.

    Article  Google Scholar 

  • Dobell, C., & Laidlaw, P. P. (1926). On the cultivation of Entamoeba histolytica and some other entozoic amoebae. Parasitology, 18, 283–318.

    Article  Google Scholar 

  • Doflein, F., & Reichenow, E. (1952). Lehrbuch der Protozoenkunde, Spezielle Naturgeschichte der Protozoen (Vol. 2). Jena: Fischer Verlag.

    Google Scholar 

  • Ekebom, J., Patterson, D. J., & Vors, N. (1996). Heterotrophic flagellates from coral reef sediments (Great Barrier Reef, Australia). Archiv für Protistenkunde, 146, 251–272.

    Article  Google Scholar 

  • Felsenfeld, O., & Young, V. M. (1946). The correlation of intestinal protozoa and enteric microorganisms of known and doubtful pathogenicity. The American Journal of Digestive Diseases, 13, 233–234.

    Article  Google Scholar 

  • Fenchel, T., Bernard, C., Esteban, G., Finlay, B. J., Hansen, P. J., & Iversen, N. (1995). Microbial diversity and activity in a Danish fjord with anoxic deep water. Ophelia, 43, 45–100.

    Article  Google Scholar 

  • Geiman, W. M. (1935). Cytological studies of the Chilomastix (Protozoa, Flagellata) of man and other mammals. Journal of Morphology, 57, 429–459.

    Article  Google Scholar 

  • Grassé, P. P. (1952). Ordre des Retortamonadines nov. In Traité de Zoologie. Phylogénie. Protozoaires: Généralités. Flagellés (Vol. 1, pp. 824–835). Paris: Masson and Cie.

    Google Scholar 

  • Grassi, B. (1879). Dei protozoi parassiti e specialmente di quelli che sono nell’uomo. Gazzetta Medica Italiana Lombardia, 39, 445–448.

    Google Scholar 

  • Hampl, V., & Simpson, A. G. B. (2008). Possible mitochondria-related organelles in poorly studied “amitochondriate” eukaryotes. In J. Tachezy (Ed.), Hydrogenosomes and Mitosomes: the Mitochondria of Anaerobic Eukaryotes (pp. 265–282). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Hegner, R. W., & Schumaker, E. (1928). Some intestinal amoebae and flagellates from the chimpanzee, three-toed sheep, and guinea-pig. Journal of Parasitology, 15, 31–37.

    Article  Google Scholar 

  • Hogue, M. J. (1921). Waskia intestinalis: its cultivation and cyst formation. Journal of the American Medical Association, 77, 112–113.

    Article  Google Scholar 

  • Jacobsen, K. H., Ribeiro, P. S., Quist, B. K., & Rydbeck, B. V. (2007). Prevalence of intestinal parasites in young Quichua children in the highlands of rural Ecuador. Journal of Health, Population and Nutrition, 25, 399–405.

    Google Scholar 

  • Kessel, J. F. (1924). The experimental transfer of certain intestinal protozoa from man to monkeys. Proceedings of the Society for Experimental Biology and Medicine, 22, 206–208.

    Article  Google Scholar 

  • Kessel, J. F. (1928). Intestinal protozoa of the domestic pig. American Journal of Tropical Medicine, 8, 481–497.

    Article  Google Scholar 

  • Kirby, H., & Honigberg, B. M. (1950). Intestinal flagellates from a wallaroo, Macropus robustus Gould. University of California Publications in Zoology, 55, 35–66.

    Google Scholar 

  • Kofoid, C. A., & Swezy, O. (1920). On the morphology and mitosis of Chilomastix mesnili (Wenyon), a common flagellate of the human intestine. University of California Publications in Zoology, 20, 117–144.

    Google Scholar 

  • Kolisko, M., Silberman, J. D., Cepicka, I., Yubuki, N., Takishita, K., Yabuki, A., Leander, B. S., Inouye, I., Inagaki, Y., Roger, A. J., & Simpson, A. G. B. (2010). A wide diversity of previously undetected free-living relatives of diplomonads isolated from marine saline habitats. Environmental Microbiology, 12, 2700–2710.

    CAS  PubMed  Google Scholar 

  • Kulda, J., & Nohýnková, E. (1978). Flagellates of the human intestine and of intestines of other species. In J. P. Kreier (Ed.), Parasitic Protozoa (Vol. 2, pp. 1–138). New York: Academic Press.

    Google Scholar 

  • Kulda, J., Nohýnková, E.: Dientamoeba fragilis and other intestinal flagellates. In: Topley & Wilson’s microbiology and microbial infections 10th ed. Parasitology (Cox, F.E.G., Wakelin, D., Gillespie, S. H., Despommier, D.D., eds.), pp. 266–274. London: Hodder Arnold (2006).

    Google Scholar 

  • Larsen, J., & Patterson, D. J. (1990). Some flagellates (Protista) from tropical marine sediments. Journal of Natural History, 24, 801–937.

    Article  Google Scholar 

  • Lavier, G. (1936). Sur quelques flagellés intestinaux de poissons marins. Annales de Parasitologie Humaine et Comparee, 14, 278–289.

    Google Scholar 

  • Lee, W. J., & Patterson, D. J. (2000). Heterotrophic flagellates (Protista) from marine sediments of Botany Bay, Australia. Journal of Natural History, 34, 483–662.

    Article  Google Scholar 

  • Levine, N. D. (1973). Protozoan parasites of domestic animals and of man (2nd ed.). Minneapolis: Burgess.

    Google Scholar 

  • Lindmark, D. G., & Müller, M. (1973). Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate Tritrichomonas foetus, and its role in pyruvate metabolism. Journal of Biological Chemistry, 248, 7724–7728.

    CAS  PubMed  Google Scholar 

  • Mackinnon, D. L. (1915). Studies on parasitic protozoa III. (a) Notes on the flagellates Embadomonas. (b) The multiplication cysts of a trichomastigine. Quarterly Journal of Microscopical Science, 61, 105–118.

    Google Scholar 

  • Martínez-Díaz, R., Castro, T. A., Herrera, S., & Ponce, F. (2001). First report of the genus Retortamonas (Sarcomastigophora: Retortamonadidae) in birds. Memórias do Instituto Oswaldo Cruz, 96, 96–963.

    Google Scholar 

  • McDowell, S. (1953). A morphological and taxonomy study of the caecal Protozoa of the common fowl, Gallus gallus L. Journal of Morphology, 92, 337–400.

    Article  Google Scholar 

  • Moskowitz, N. (1951). Observations on some intestinal flagellates from reptilian host (Squamata). Journal of Morphology, 89, 257–321.

    Article  Google Scholar 

  • Nasiri, V., Esmailnia, K., Karim, G., Nasir, M., & Akhavan, O. (2009). Intestinal parasitic infections among inhabitants of Karaj City, Tehran province, Iran 2006-2008. Korean Journal of Parasitology, 47, 265–268.

    Article  PubMed  PubMed Central  Google Scholar 

  • Navarathnam, E. S. (1970). Intestinal flagellates of the common Indian rat Rattus rattus frugivorous. Acta Protozoologica, 8, 155–165.

    Google Scholar 

  • Nie, D. (1948). The structure and division of Chilomastix intestinalis Kuczynski, with notes on similar forms in man and other vertebrates. Journal of Morphology, 82, 287–318.

    Article  CAS  PubMed  Google Scholar 

  • Nie, D. (1950). Morphology and taxonomy of the intestinal protozoa of the guinea-pig, Cavia porcella. Journal of Morphology, 86, 381–493.

    Article  CAS  PubMed  Google Scholar 

  • Nohýnková, E., Tůmová, P., & Kulda, J. (2006). Cell division of Giardia intestinalis: flagellar developmental cycle involves transformation and exchange of flagella between mastigonts of a diplomonad cell. Eukaryotic Cell, 5, 753–761.

    Article  PubMed  PubMed Central  Google Scholar 

  • Oyofo, B. A., Peruski, I. F., Ismail, T. F., el-Etr, S. H., Churilla, A. M., Wasfy, M. O., Petruccelli, B. F., & Gabriel, M. E. (1997). Enteropathogens associated with diarrhea among military personel during Operation Bright Star 96, in Alexandria, Egypt. Military Medicine, 162, 396–400.

    CAS  PubMed  Google Scholar 

  • Park, J. S., Kolisko, M., & Simpson, A. G. B. (2010). Cell morphology and formal description of Ergobibamus cyprinoides n.g., n.sp., another Carpediemonas-like relative of diplomonads. Journal of Eukaryotic Microbiology, 57, 520–528.

    Article  PubMed  Google Scholar 

  • Park, J. S., Kolisko, M., Heiss, A. A., & Simpson, A. G. B. (2009). Light microscopic observations, ultrastructure, and molecular phylogeny of Hicanonectes teleskopos n.g., n.sp., a deep-branching relative of diplomonads. Journal of Eukaryotic Microbiology, 56, 373–384.

    Article  PubMed  Google Scholar 

  • Ruinen, J. (1938). Notizen über Salzflagellaten II. Über die Verbreitung der Salzflagellaten. Archiv für Protistenkunde, 90, 210–258.

    CAS  Google Scholar 

  • Russel Gabel, J. (1954). The morphology and taxonomy of the intestinal protozoa of the American woodchuck Marmota monax Linnaeus. Journal of Morphology, 94, 473–449.

    Article  Google Scholar 

  • Silberman, J. D., Simpson, A. G. B., Kulda, J., Cepicka, I., Hampl, V., Johnson, P. J., & Roger, A. J. (2002). Retortamonad flagellates are closely related to diplomonads – Implications for the mitochondrial function in eukaryote evolution. Molecular Biology and Evolution, 19, 777–786.

    Article  CAS  PubMed  Google Scholar 

  • Simpson, A. G. B. (2003). Cytoskeletal organization, phylogenetic affinities and systematics in the contentious taxon Excavata (Eukaryota). International Journal of Systematic and Evolutionary Microbiology, 53, 1759–1777.

    Article  PubMed  Google Scholar 

  • Simpson, A. G. B., & Patterson, D. J. (1999). The ultrastructure od Carpediemonas membranifera (Eukaryota) with reference to the “Excavate hypothesis”. European Journal of Protistology, 35, 353–370.

    Article  Google Scholar 

  • Simpson, A. G. B., & Roger, A. J. (2004). Excavata and origin of amitochondriate eukaryotes. In R. P. Hirt & D. S. Horner (Eds.), Organelles, genomes, and eukaryote phylogeny: an evolutionary synthesis in the age of genomics (pp. 27–53). Boca Raton: CRC Press.

    Chapter  Google Scholar 

  • Simpson, A. G. B., Roger, A. J., Silberman, J. D., Leipe, D. D., Edgcomb, V. P., Jermiin, L. S., Patterson, D. J., & Sogin, M. L. (2002). Evolutionary history of early “early-diverging” eukaryotes: the excavate taxon Carpediemonas is a close relative od Giardia. Molecular Biology and Evolution, 19, 1782–1791.

    Article  CAS  PubMed  Google Scholar 

  • Tachezy, J., & Šmíd, O. (2007). Mitosomes in parasitic protists. In J. Tachezy (Ed.), Hydrogenosomes and mitosomes: mitochondria of anaerobic eukaryotes. Berlin/Heidelberg: Springer-Verlag.

    Google Scholar 

  • Takishita, K., Kolísko, M., Komatzuzaki, H., Yabuki, A., Inagaki, N., Cepicka, I., Smejkalová, P., Silberman, J. D., Hashimoto, T., Roger, A. J., & Simpson, A. G. B. (2012). Multigene phylogenies of diverse Carpediemonas-like organisms identify the closest relatives of ‘amitochondriate‘ diplomonads and retortamonads. Protist, 163, 344–355.

    Article  PubMed  Google Scholar 

  • Tovar, J., Fischer, A., & Clark, C. G. (1999). The mitosome, a novel organelle related to mitochondria in the amitochondrial parasite Entamoeba. Molecular Microbiology, 32, 1013–1021.

    Article  CAS  PubMed  Google Scholar 

  • Tovar, J., León-Avila, G., Sanchéz, L. B., Sutak, R., Tachezy, J., van der Giezen, M., Hernández, M., Müller, M., & Lucocq, J. M. (2003). Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature, 426, 172–176.

    Article  CAS  PubMed  Google Scholar 

  • Waikagul, J., Krudsood, S., Radomyos, P., Radomyos, B., Chalemrut, K., Jonsuksuntigul, P., Kojima, S., Looareesuwan, S., & Thaineau, W. (2002). A cross-sectional study of intestinal parasitic infections among schoolchildren in Nan Province, Northern Thailand. Southeast Asian Journal of Tropical Medicine and Public Health, 33, 218–223.

    CAS  PubMed  Google Scholar 

  • Weerakon, N. D., Harper, J. D. I., Simpson, A. G. B., & Patterson, D. J. (1999). Centrin in the groove: immunolocalization of centrin and microtubules in the putatively primitive protist Chilomastix cuspidata (Retortamonadida). Protoplasma, 210, 75–84.

    Article  Google Scholar 

  • Wenrich, D. H. (1932). The relation of the protozoan flagellate Retortamonas gryllotalpae (Grassi, 1879) Stiles, 1902, to the species of the genus Embadomonas Mackinnon, 1911. Transactions of the American Microscopical Society, 51, 225–237.

    Article  Google Scholar 

  • Wenrich, D. H. (1947). Culture experiments on intestinal flagellates III. Species from amphibians and reptiles. Parasitology, 33, 62–70.

    Article  CAS  Google Scholar 

  • Westphal, A. (1939). Beziehungen zwischen Infektionsstärke and “Krankheitsbild” bei Infektionen mit Chilomastix mesnili und anderen Dickdarm-flagellaten. Zeitschrift für Hygiene und Infektionskrankheiten, 122, 146–158.

    Article  Google Scholar 

  • Yubuki, N., Inagaki, Y., Nakayama, T., & Inouye, I. (2007). Ultrastructure and ribosomal RNA phylogeny of the free-living heterotrophic flagellate Dysnectes brevis n. gen., n. sp., a new member of the Fornicata. Journal of Eukaryotic Microbiology, 54, 191–200.

    Article  CAS  PubMed  Google Scholar 

  • Yubuki, N., Simpson, A. G. B., & Leander, B. S. (2013). Comprehensive ultrastructure of Kipferlia bialata provides evidence for character evolution within the Fornicata (Excavata). Protist, 164, 423–439.

    Article  CAS  PubMed  Google Scholar 

  • Yubuki, N., Huang, S. S. C., & Leander, B. S. (2016). Comparative ultrastructure of fornicate excavates, including a novel free-living relative of diplomonads: Aduncisulcus paluster gen. et sp. nov. Protist, 167, 584–596.

    Article  PubMed  Google Scholar 

  • Yubuki, N., Zadrobílková, E., Čepička, I. (2016). Ultrastructure and molecular phylogeny of Iotanema spirale gen. nov. et sp. nov., a new lineage of endobiotic Fornicata with strikingly simplified ultrastructure. Journal of Eukaryotic Microbiology. doi:10.1111/jeu.12376.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Guy Brugerolle for the kind permission to use the micrographs featured in Fig. 3ag and Naoji Yubuki for the kind permission to use the micrographs featured in Figs. 8ae and 9c, d. This work was supported by the Czech Science Foundation (project GA14-14105S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Kulda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Kulda, J., Nohýnková, E., Čepička, I. (2017). Retortamonadida (with Notes on Carpediemonas-Like Organisms and Caviomonadidae). In: Archibald, J., Simpson, A., Slamovits, C. (eds) Handbook of the Protists. Springer, Cham. https://doi.org/10.1007/978-3-319-28149-0_3

Download citation

Publish with us

Policies and ethics