Skip to main content

Bacillariophyta

  • Reference work entry
  • First Online:

Abstract

The diatoms (Bacillariophyta) are the most species-rich group of autotrophic algae, found in fresh, brackish, and marine waters worldwide, and also in damp terrestrial habitats. They are well represented in marine phytoplankton and may account for 20% of global photosynthetic carbon fixation. However, the vast majority of the estimated 100,000 species are benthic, living attached to surfaces or gliding over sediments using a unique organelle, the raphe system. Flagellate cells are absent, except in the sperm of some lineages. Diatoms possess a similar photosynthetic apparatus to that present in several other stramenopile lineages (with fucoxanthin and chlorophyll c as the principal accessory pigments) but are easily recognized by the unique construction and composition of their cell wall, which is usually strongly silicified and consists of two overlapping halves (thecae); these in turn consist of a larger end piece (valve) and a series of narrow strips (girdle bands). Expansion of the cell occurs by sliding apart of the thecae and addition of new bands to the inner, overlapped theca. At cell division, each daughter cell inherits one of the thecae of the parent and forms a new theca internally. Hence, because the silicified wall is inelastic, average cell size usually declines during vegetative growth and has to be restored through expansion of a special cell, the auxospore, usually after sexual reproduction. A few diatoms have lost their plastids and are osmotrophic. Classification has traditionally relied on details of valve structure. There is a rich fossil record.

Frank E. Round: deceased.

Richard M. Crawford has retired.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In the case that the eight informally named groups (leptocylindrids to proboscids) together comprise a monophyletic taxon (see “Taxonomy”), this is called the Coscinodiscophytina, containing a single class, Coscinodiscophyceae.

References

  • Adl, S. M., Simpson, A. G. B., Farmer, M. A., Andersen, R. A., Anderson, R. A., Barta, J., Bowser, S., Brugerolle, G., Fensome, R., Fredericq, S., James, T. Y., Karpov, S., Kugrens, P., Krug, J., Lane, C., Lewis, L. A., Lodge, J., Lynn, D. H., Mann, D. G., McCourt, R. M., Mendoza, L., Moestrup, Ø., Mozeley-Standridge, S. E., Nerad, T. A., Shearer, C., Spiegel, F., & Taylor, F. J. R. M. (2005). The new higher level classification of eukaryotes and taxonomy of protists. Journal of Eukaryotic Microbiology, 52, 399–451.

    Article  PubMed  Google Scholar 

  • Agardh, C. A. (1824). Systema Algarum. Lund: Literis Berlingianis.

    Google Scholar 

  • Agardh, C. A. (1830–1832). Conspectus criticus diatomacearum. Lund: Literis Berlingianis.

    Google Scholar 

  • Allen, A. E., Dupont, C. L., Obornik, M., Horàk, A., Nunes-Nesi, A., McCrow, J. P., Zheng, H., Johnson, D. A., Hu, H., Fernie, A. R., & Bowler, C. (2011). Evolution and metabolic significance of the urea cycle in photosynthetic diatoms. Nature, 473, 203–207.

    Article  CAS  PubMed  Google Scholar 

  • Alexander, H., Jenkins, B. D., Rynearson, T. A., & Dyrham, S. T. (2015). Metatranscriptome analyses indicate resource partitioning between diatoms in the field. Proceedings of the National Academy of Sciences of the United States of America, 112, E2182–E2190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alverson, A. J. (2014). Timing marine–freshwater transitions in the diatom order Thalassiosirales. Paleobiology, 40, 91–101.

    Article  Google Scholar 

  • Alverson, A. J., Jansen, R. K., & Theriot, E. C. (2007). Bridging the Rubicon: Phylogenetic analysis reveals repeated colonizations of marine and fresh waters by thalassiosiroid diatoms. Molecular Phylogenetics and Evolution, 45, 193–210.

    Article  CAS  PubMed  Google Scholar 

  • Amato, A., Kooistra, W. H. C. F., Levialdi Ghiron, J. H., Mann, D. G., Pröschold, T., & Montresor, M. (2007). Reproductive isolation among sympatric cryptic species in marine diatoms. Protist, 158, 193–207.

    Article  CAS  PubMed  Google Scholar 

  • Andersen, R. A. (2004). Biology and systematics of heterokont and haptophyte algae. American Journal of Botany, 91, 1508–1522.

    Article  PubMed  Google Scholar 

  • Andersen, R. A. (Ed.). (2005). Algal culturing techniques. Amsterdam: Elsevier Academic.

    Google Scholar 

  • Anonymous. (1703). Two letters from a gentleman in the country, relating to Mr. Leuwenhoeck’s letter in Transaction, No. 283. Philosophical Transactions of the Royal Society, 23(288), 1494.

    Google Scholar 

  • Anonymous. (1987). Obituary. Hans-Adolf von Stosch 1908–1987. Diatom Research, 2, 289–294.

    Article  Google Scholar 

  • Armbrust, E. V., Berges, J. A., Bowler, C., Green, B. R., Martinez, D., Putnam, N. H., Zhou, S., Allen, A. E., Apt, K. E., Bechner, M., Brzezinski, M. A., Chaal, B. K., Chiovitti, A., Davis, A. K., Demarest, M. S., Detter, J. C., Glavina, T., Goodstein, D., Hadi, M. Z., Hellsten, U., Hildebrand, M., Jenkins, B. D., Jurka, J., Kapitonov, V. V., Kröger, N., Lau, W. W., Lane, T. W., Larimer, F. W., Lippmeier, J. C., Lucas, S., Medina, M., Montsant, A., Obornik, M., Parker, M. S., Palenik, B., Pazour, G. J., Richardson, P. M., Rynearson, T. A., Saito, M. A., Schwartz, D. C., Thamatrakoln, K., Valentin, K., Vardi, A., Wilkerson, F. P., & Rokhsar, D. S. (2004). The genome of the diatom Thalassiosira pseudonana: Ecology, evolution, and metabolism. Science, 306, 79–86.

    Article  CAS  PubMed  Google Scholar 

  • Ashworth, M. P., Ruck, E. C., Lobban, C. S., Romanovicz, D. K., & Theriot, E. C. (2012). A revision of the genus Cyclophora and description of Astrosyne gen. nov. (Bacillariophyta), two genera with the pyrenoids contained within pseudosepta. Phycologia, 51, 684–699.

    Article  Google Scholar 

  • Ashworth, M. P., Nakov, T., & Theriot, E. C. (2013). Revisiting Ross and Sims (1971): Toward a molecular phylogeny of the Biddulphiaceae and Eupodiscaceae (Bacillariophyceae). Journal of Phycology, 49, 1207–1222.

    Article  PubMed  Google Scholar 

  • Aumeier, C., Polinski, E., & Menzel, D. (2015). Actin, actin-related proteins and profilin in diatoms: A comparative genomic analysis. Marine Genomics, 23, 133–142.

    Article  PubMed  Google Scholar 

  • Ax, P., & Apelt, G. (1965). Die “Zooxanthellen” von Convoluta convoluta (Turbellaria, Acoela) entstehen aus Diatomeen. Erster Nachweis einer Endosymbiose zwischen Tieren und Kieselalgen. Naturwissenschaften, 52, 444–446.

    Article  Google Scholar 

  • Barber, H. G., & Haworth, E. Y. (1981). A guide to the morphology of the diatom frustule with a key to the British freshwater genera, Freshwater biological association, scientific publication (Vol. 44). Ambleside: Freshwater Biological Association.

    Google Scholar 

  • Behre, K. (1956). Die Algenbesiedlung Seen um Bremen und Bremerhaven. Veröffentlichung des Instituts für Meeresforschung Bremerhaven, 4, 221–383.

    Google Scholar 

  • Beraldi, H., Mann, D. G., & Cevallos-Ferriz, S. R. S. (2015). Life cycle of 70 Ma-old non-marine pennate diatoms. Cretaceous Research, 56, 662–672.

    Article  Google Scholar 

  • Berger, W. H. (2007). Cenozoic cooling, Antarctic nutrient pump, and the evolution of whales. Deep-Sea Research Part II, 54, 2399–2421.

    Article  Google Scholar 

  • Bondoc, K. G. V., Heuschele, J., Gillard, J., Vyverman, W., & Pohnert, G. (2016). Selective silicate-directed motility in diatoms. Nature Communications, 7, 10540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Booth, B. C., & Marchant, H. J. (1987). Parmales, a new order of marine chrysophytes, with descriptions of three new genera and seven new species. Journal of Phycology, 23, 245–260.

    Article  Google Scholar 

  • Bothwell, M. L., Taylor, B. W., & Kilroy, C. (2014). The Didymo story: The role of low dissolved phosphorus in the formation of Didymosphenia geminata blooms. Diatom Research, 29, 229–236.

    Article  Google Scholar 

  • Bowler, C., Allen, A. E., Badger, J. H., Grimwood, J., Jabbari, K., Kuo, A., Maheswari, U., Martens, C., Maumus, F., Otillar, R. P., Rayko, E., Salamov, A., Vandepoele, K., Beszteri, B., Gruber, A., Heijde, M., Katinka, M., Mock, T., Valentin, K., Verret, F., Berges, J. A., Brownlee, C., Cadoret, J. P., Chiovitti, A., Choi, C. J., Coesel, S., De Martino, A., Detter, J. C., Durkin, C., Falciatore, A., Fournet, J., Haruta, M., Huysman, M. J., Jenkins, B. D., Jiroutova, K., Jorgensen, R. E., Joubert, Y., Kaplan, A., Kroger, N., Kroth, P. G., La Roche, J., Lindquist, E., Lommer, M., Martin-Jezequel, V., Lopez, P. J., Lucas, S., Mangogna, M., McGinnis, K., Medlin, L. K., Montsant, A., Oudot-Le Secq, M. P., Napoli, C., Obornik, M., Parker, M. S., Petit, J. L., Porcel, B. M., Poulsen, N., Robison, M., Rychlewski, L., Rynearson, T. A., Schmutz, J., Shapiro, H., Siaut, M., Stanley, M., Sussman, M. R., Taylor, A. R., Vardi, A., von Dassow, P., Vyverman, W., Willis, A., Wyrwicz, L. S., Rokhsar, D. S., Weissenbach, J., Armbrust, E. V., Green, B. R., de Peer, Y., & Grigoriev, I. V. (2008). The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature, 456, 239–244.

    Article  CAS  PubMed  Google Scholar 

  • Boyd, C. M., & Gradmann, D. (2002). Impact of osmolytes on buoyancy of marine phytoplankton. Marine Biology, 141, 605–618.

    Article  Google Scholar 

  • Bruder, K., & Medlin, L. K. (2007). Molecular assessment of phylogenetic relationships in selected species/genera in the naviculoid diatoms (Bacillariophyta). I. The genus Placoneis. Nova Hedwigia, 85, 331–352.

    Article  Google Scholar 

  • Calvert, S. E. (1977). Marine mineralogy: Mineralogy of silica phases in deep-sea cherts and porcelanites. Philosophical Transactions of the Royal Society of London, ser. A, 239–252.

    Google Scholar 

  • Canter, H. M., & Jaworski, G. H. M. (1983). A further study on parasitism of the diatom Fragilaria crotonensis Kitton by chytridiaceous fungi in culture. Annals of Botany, 52, 549–563.

    Article  Google Scholar 

  • Carpenter, E. J., Montoya, J. P., Burns, J., Mulholland, M. R., Subramaniam, A., & Capone, D. G. (1999). Extensive bloom of a N2-fixing diatom/cyanobacterial association in the tropical Atlantic Ocean. Marine Ecology Progress Series, 185, 273–283.

    Article  CAS  Google Scholar 

  • Cassie, V. (1989). A contribution to the study of New Zealand diatoms. Bibliotheca Diatomologica, 17, 1–266.

    Google Scholar 

  • Cassie, V., & Cooper, R. C. (1989). Algae of New Zealand thermal areas. Bibliotheca Phycologica, 78, 1–159.

    Google Scholar 

  • Chepurnov, V. A., Mann, D. G., Sabbe, K., & Vyverman, W. (2004). Experimental studies on sexual reproduction in diatoms. International Review of Cytology, 237, 91–154.

    Article  CAS  PubMed  Google Scholar 

  • Chepurnov, V. A., Chaerle, P., Roef, L., van Meirhaeghe, A., & Vanhoutte, K. (2011). Classical breeding in diatoms: Scientific background and practical perspectives. In J. Seckbach & J. P. Kociolek (Eds.), The diatom world (pp. 171–194). Dordrecht: Springer.

    Google Scholar 

  • Chesnick, J. M., Kooistra, W. H. C. F., Wellbrock, U., & Medlin, L. K. (1997). Ribosomal RNA analysis indicates a benthic pennate diatom ancestry for the endosymbionts of the dinoflagellates Peridinium foliaceum and Peridinium balticum (Pyrrhophyta). Journal of Eukaryotic Microbiology, 44, 314–320.

    Article  CAS  PubMed  Google Scholar 

  • Cleve, P. T., & Grunow, A. (1880). Beiträge zur Kenntniss der arctischen Diatomeen. Kongliga Svenska Vetenskaps-Akademiens Handlingar, 17, 1–121.

    Google Scholar 

  • Coleman, A. W. (1985). Diversity of plastid DNA configuration among classes of eukaryote algae. Journal of Phycology, 21, 1–16.

    Article  Google Scholar 

  • Coste, M., & Ector, L. (2000). Diatomées invasives exotiques ou rares en France: Principales observations effectuées au cours des dernières décennies. Systematics and Geography of Plants, 70, 373–340.

    Article  Google Scholar 

  • Crawford, R. M. (1974a). The structure and formation of the siliceous wall of the diatom Melosira nummuloides (Dillw.) Ag. Nova Hedwigia. Beiheft, 45, 131–141.

    Google Scholar 

  • Crawford, R. M. (1974b). The auxospore wall of the marine diatom Melosira nummuloides (Dillw.) C. Ag. and related species. British Phycological Journal, 9, 9–20.

    Article  Google Scholar 

  • Crawford, R. M. (1981). Some considerations of size reduction in diatom cell walls. In R. Ross (Ed.), Proceedings of the 6th symposium on recent and fossil diatoms (pp. 253–265). Koenigstein: Otto Koeltz.

    Google Scholar 

  • Crawford, R. M. (1995). The role of sex in the sedimentation of a marine diatom bloom. Limnology and Oceanography, 40, 200–204.

    Article  Google Scholar 

  • Crawford, R. M., Canter, H. M., & Jaworski, G. H. M. (1985). A study of two morphological variants of the diatom Fragilaria crotonensis Kitton using electron microscopy. Annals of Botany, 55, 473–485.

    Article  Google Scholar 

  • Crawford, R. M., Hinz, F., & Honeywill, C. (1998). Three species of the diatom genus Corethron Castracane: Structure, distribution and taxonomy. Diatom Research, 13, 1–28.

    Article  Google Scholar 

  • D’Alelio, D., & Ruggiero, M. V. (2015). Interspecific plastidial recombination in the diatom genus Pseudo-nitzschia. Journal of Phycology, 51, 1024–1028.

    Article  PubMed  CAS  Google Scholar 

  • D’Alelio, D., Ribera d’Alcala, M., Dubroca, L., Sarno, D., Zingone, A., & Montresor, M. (2010). The time for sex: A biennial life cycle in a marine planktonic diatom. Limnology and Oceanography, 55, 106–114.

    Article  Google Scholar 

  • Daniel, G. F., Chamberlain, A. H. L., & Jones, E. B. G. (1987). Cytological and electron microscopical observations on the adhesive mat of marine fouling diatoms. British Phycological Journal, 22, 101–118.

    Article  Google Scholar 

  • Darley, W. M., & Volcani, B. E. (1971). Synchronized cultures: Diatoms. In A. San Pietro (Ed.), Methods in Enzymology 23A (pp. 85–96). New York: Academic.

    Google Scholar 

  • Davidovich, N. A., Kaczmarska, I., Karpov, S. A., Davidovich, O. I., MacGillivary, M. L., & Mather, L. (2012). Mechanism of male gamete motility in araphid pennate diatoms from the genus Tabularia (Bacillariophyta). Protist, 163, 480–494.

    Article  PubMed  Google Scholar 

  • Denys, L., & De Smet, W. H. (2010). Epipellis oiketis (Bacillariophyta) on harbor porpoises from the North Sea Channel (Belgium). Polish Botanical Journal, 65, 175–182.

    Google Scholar 

  • Derelle, R., López-García, P., Timpano, H., & Moreira, D. (2016). A phylogenomic framework to study the diversity and evolution of stramenopiles (= heterokonts). Molecular Biology and Evolution, 33, 2890–2898.

    Google Scholar 

  • Diaz, J., Ingall, E., Benitez-Nelson, C., Paterson, D., de Jonge, M. D., McNulty, I., & Brandes, J. A. (2008). Marine polyphosphate: A key player in geologic phosphorus sequestration. Science, 320, 652–655.

    Article  CAS  PubMed  Google Scholar 

  • Droop, S. J. M., Mann, D. G., & Lokhorst, G. M. (2000). Spatial and temporal stability of demes in Diploneis smithii/D. fusca (Bacillariophyta) supports a narrow species concept. Phycologia, 39, 527–546.

    Article  Google Scholar 

  • Edgar, L. A., & Pickett-Heaps, J. D. (1984). Diatom locomotion. Progress in Phycological Research, 3, 47–88.

    Google Scholar 

  • Edwards, A. R. (Ed.). (1991). The Oamaru diatomite, New Zealand Geological Survey paleontological bulletin (Vol. 64). Lower Hutt: DSIR Geology & Geophysics.

    Google Scholar 

  • Egeland, E. S. (2016). Carotenoids. In M. A. Borowitzka, J. Beardall, & J. A. Raven (Eds.), The physiology of microalgae (pp. 507–563). Cham: Springer.

    Chapter  Google Scholar 

  • Ehrenberg, C. G. (1838). Die Infusionsthierchen als vollkommene Organismen. Ein Blick in das tiefere Leben der Natur. Leipzig: Leopold Voss.

    Book  Google Scholar 

  • Ehrenberg, C. G. (1854). Mikrogeologie. Das Erden und Felsen schaffende Wirken des unsichtbar kleinen selbstständigen Lebens auf der Erde. Leipzig: Leopold Voss.

    Google Scholar 

  • Ehrlich, A. (1975). The diatoms from the surface sediments of the Bardawil Lagoon (Northern Sinai) – Paleoecological significance. Nova Hedwigia. Beiheft, 53, 253–277.

    Google Scholar 

  • Evans, K. M., & Mann, D. G. (2009). A proposed protocol for nomenclaturally effective DNA barcoding of microalgae. Phycologia, 48, 70–74.

    Article  CAS  Google Scholar 

  • Evans, K. M., Wortley, A. H., Simpson, G. E., Chepurnov, V. A., & Mann, D. G. (2008). A molecular systematic approach to explore diversity within the Sellaphora pupula species complex (Bacillariophyta). Journal of Phycology, 44, 215–231.

    Article  CAS  PubMed  Google Scholar 

  • Evans, K. M., Chepurnov, V. A., Sluiman, H. J., Thomas, S. J., Spears, B. M., & Mann, D. G. (2009). Highly differentiated populations of the freshwater diatom Sellaphora capitata suggest limited dispersal and opportunities for allopatric speciation. Protist, 160, 386–396.

    Article  PubMed  Google Scholar 

  • Falkowski, P. G., & Knoll, A. H. (Eds.). (2007). Evolution of primary producers in the sea. Burlington: Elsevier Academic Press.

    Google Scholar 

  • Finkel, Z. V. (2016). Silicification in the microalgae. In M. A. Borowitzka, J. Beardall, & J. A. Raven (Eds.), The physiology of microalgae (pp. 289–297). Cham: Springer.

    Chapter  Google Scholar 

  • Fleming, W. D. (1954). Naphrax: A synthetic mounting medium of high refractive index. New and improved methods of preparation. Journal of the Royal Microscopical Society, 74, 42–44.

    Article  CAS  PubMed  Google Scholar 

  • Foster, R. A., Kuypers, M. M. M., Vagner, T., Paerl, R. W., Musat, N., & Zehr, J. P. (2011). Nitrogen fixation and transfer in open ocean diatom-cyanobacterial symbioses. ISME Journal, 65, 1484–1493.

    Article  CAS  Google Scholar 

  • Fryxell, G. A. (1975). Diatom collections. Nova Hedwigia. Beiheft, 53, 355–365.

    Google Scholar 

  • Gallagher, J. C. (1982). Physiological variation and electrophoretic banding patterns of genetically different seasonal populations of Skeletonema costatum (Bacillariophyceae). Journal of Phycology, 18, 148–162.

    Article  CAS  Google Scholar 

  • Gaul, U., Geissler, U., Henderson, M., Mahoney, R., & Reimer, C. W. (1993). Bibliography on the fine-structure of diatom frustules (Bacillariophyceae). Proceedings of the Academy of Natural Sciences of Philadelphia, 144, 69–238.

    Google Scholar 

  • Geitler, L. (1932). Der Formwechsel der pennaten Diatomeen (Kieselalgen). Archiv für Protistenkunde, 78, 1–226.

    Google Scholar 

  • Geitler, L. (1977). Zur Entwicklungsgeschichte der Epithemiaceen Epithemia, Rhopalodia und Denticula (Diatomophyceae) und ihre vermutlich symbiotischen Sphäroidkörper. Plant Systematics and Evolution, 128, 259–275.

    Article  Google Scholar 

  • Gersonde, R., & Harwood, D. M. (1990). Lower Cretaceous diatoms from ODP Leg 113 site 693 (Weddell Sea) Part 1: Vegetative cells. Proceeding of the Ocean Drilling Program, Scientific Results, 113, 365–402.

    Google Scholar 

  • Gillard, J., Frenkel, J., Devos, V., Sabbe, K., Paul, C., Rempt, M., Inz, D., Pohnert, G., Vuylsteke, M., & Vyverman, W. (2013). Metabolomics enables the structure elucidation of a diatom sex pheromone. Angewandte Chemie, International Edition, 52, 854–857.

    Article  CAS  Google Scholar 

  • Glezer, Z. I., Zhuse, A. P., Makarova, I. V., Proshkina-Lavrenko, A. I., & Sheshukova-Poretzkaya, V. S. (1974). Diatomovye vodorosli SSSR iskopaemye I sovremennye, vol. 1. Leningrad: Izdatel’stvo “Nauka”.

    Google Scholar 

  • Girard, V., Saint Martin, S., Saint Martin, J.-P., Schmidt, A. R., Struwe, S., Perricht, V., Breton, G., & Néraudeau, D. (2009). Exceptional preservation of marine diatoms in upper Albian amber. Geology, 37, 83–86.

    Google Scholar 

  • Godhe, A., Egardt, J., Kleinhans, D., Sundqvist, L., Hordoir, R., & Jonsson, P. R. (2013). Seascape analysis reveals regional gene flow patterns among populations of a marine planktonic diatom. Proceedings of the Royal Society of London, B 280: 20131599.

    Google Scholar 

  • Gollerbakh, M. M., & Krasavina, L. K. (1971). Vodorosli. Svodnyj ukazatel’ k otechestvennym bibliografiyam po vodoroslyam za 1737–1960 gg. Leningrad: Izdatel’skij otdel Biblioteki AN SSSR.

    Google Scholar 

  • Gómez, F., & Souissi, S. (2010). The diatoms Odontella sinensis, Coscinodiscus wailesii and Thalassiosira punctigera in the European Atlantic: Recent introductions or overlooked in the past? Fresenius Environmental Bulletin, 19, 1424–1433.

    Google Scholar 

  • Gügi, B., Le Costaouec, T., Burel, C., Lerouge, P., Helbert, W., & Bardor, M. (2015). Diatom-specific oligosaccharide and polysaccharide structures help to unravel biosynthetic capabilities in diatoms. Marine Drugs, 13, 5993–6018.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guillard, R. R. L., & Lorenzen, C. L. (1972). Yellow-green algae with chlorophyllide c. Journal of Phycology, 8, 10–14.

    CAS  Google Scholar 

  • Guillou, L., Chrétiennot-Dinet, M.-J., Medlin, L. K., Claustre, H., Loiseaux-de Goër, S., & Vaulot, D. (1999). Bolidomonas: A new genus with two species belonging to a new algal class, the Bolidophyceae (Heterokonta). Journal of Phycology, 35, 368–381.

    Article  Google Scholar 

  • Hajós, M. (1986). Stratigraphy of Hungary’s Miocene diatomaceous earth deposits. Geologica Hungarica, ser. Palaeontologica, 49, 1–339.

    Google Scholar 

  • Hamels, I., Mussche, H., Sabbe, K., Muylaert, K., & Vyverman, W. (2004). Evidence for constant and highly specific active food selection by benthic ciliates in mixed diatoms assemblages. Limnology and Oceanography, 49, 58–68.

    Article  Google Scholar 

  • Hamm, C. E., Merkel, R., Springer, O., Jukojc, P., Maier, C., Prechtel, K., & Smetacek, V. (2003). Architectural and material properties of diatom shells provides effective mechanical protection. Nature, 421, 841–843.

    Article  CAS  PubMed  Google Scholar 

  • Hamsher, S. E., & Saunders, G. W. (2014). A floristic survey of marine tube-forming diatoms reveals unexpected diversity and extensive co-habitation among genetic lines of the Berkeleya rutilans complex (Bacillariophyceae). European Journal of Phycology, 49, 47–59.

    Article  Google Scholar 

  • Harwood, D. M., & Gersonde, R. (1990). Lower Cretaceous diatoms from ODP Leg 113 Site 693 (Weddell Sea). Part 2: Resting spores, chrysophycean cysts, an endoskeletal dinoflagellate, and notes on the origin of diatoms. Proceeding of the Ocean Drilling Program, Scientific Results, 113, 403–425.

    Google Scholar 

  • Harwood, D. M., Nikolaev, V. A., & Winter, D. M. (2007). Cretaceous records of diatom evolution, radiation, and expansion. Paleontological Society Papers, 13, 33–59.

    Google Scholar 

  • Hasle, G. R., & Syvertsen, E. E. (1996). Marine diatoms. In C. Tomas (Ed.), Identifying marine diatoms and dinoflagellates (pp. 5–385). San Diego: Academic.

    Google Scholar 

  • Hasle, G. R., von Stosch, H. A., & Syvertsen, E. E. (1983). Cymatosiraceae, a new diatom family. Bacillaria, 6, 9–156.

    Google Scholar 

  • Heiden, H., & Kolbe, R. W. (1928). Die marinen Diatomeen der Deutschen Südpolar-Expedition 1901–03. Deutsche Südpolar Expedition, 8(5), 450–714.

    Google Scholar 

  • Helmcke, J. D., & Krieger, W. (1953–1977). Diatomeenschalen im electronen-mikroskopischen Bild. Parts I–X. Weinheim: J. Cramer.

    Google Scholar 

  • Henderson, M. V., & Reimer, C. W. (2003). Bibliography on the fine structure of diatom frustules (Bacillariophyceae). II (+ deletions, addenda and corrigenda for Bibliography I). In A. Witkowski (Ed.), Diatom Monographs (Vol. 3). Ruggell: A.R.G. Gantner.

    Google Scholar 

  • Hildebrand, M. (2008). Diatoms, biomineralization processes, and genomics. Chemical Reviews, 108, 4855–4874.

    Article  CAS  PubMed  Google Scholar 

  • Hildebrand, M., & Lerch, S. J. L. (2015). Diatom silica biomineralization: Parallel development of appraoches and understanding. Seminars in Cell and Developmental Biology, 46, 27–35.

    Article  CAS  PubMed  Google Scholar 

  • Hoagland, K. D., Rosowski, J. R., Gretz, M. R., & Roemer, S. C. (1993). Diatom extracellular polymeric substances: Function, fine structure, chemistry, and physiology. Journal of Phycology, 29, 537–566.

    Article  CAS  Google Scholar 

  • Hofmann, G., Werum, M., & Lange-Bertalot, L. (2013). Diatomeen im Süßwasser-Benthos von Mitteleuropa. Bestimmungsflora Kieselalgen für die ökologische Praxis. Über 700 der häufigsten Arten und ihre Ökologie. 2nd corrected edition. Koenigstein: Koeltz Scientific Books.

    Google Scholar 

  • Holmes, R. W. (1985). The morphology of diatoms epizoic on cetaceans and their transfer from Cocconeis to two new genera, Bennettella and Epipellis. British Phycological Journal, 20, 43–57.

    Article  Google Scholar 

  • Holmes, R. W., & Croll, D. A. (1984). Initial observations on the composition of dense diatom growths in the body feathers of three species of diving seabirds. In D. G. Mann (Ed.), Proceedings of the 7th international diatom symposium (pp. 265–278). Koenigstein: O. Koeltz.

    Google Scholar 

  • Hünken, M., Harder, J., & Kirst, G. O. (2008). Epiphytic bacteria on the Antarctic ice diatom Amphiprora kufferathii Manguin cleave hydrogen peroxide produced during algal photosynthesis. Plant Biology, 10, 519–526.

    Article  PubMed  CAS  Google Scholar 

  • Hustedt, F. (1927–1966). Die Kieselalgen Deutschlands, Österreichs und der Schweiz. 3 vols. Leipzig: Akademische Verlagsgesellschaft.

    Google Scholar 

  • Hustedt, F. (1942). Süßwasser-Diatomeen des indomalayischen Archipels und der Hawaii-Inseln. Nach dem Material der Wallacea-Expedition. International Revue der gesamten Hydrobiologie und Hydrographie, 42, 1–252.

    Article  Google Scholar 

  • Hustedt, F. (1955). Marine littoral diatoms of Beaufort, North Carolina. Bulletin of the Duke University Marine Station, 6, 1–67.

    Google Scholar 

  • Hustedt, F. (1959). Die Diatomeenflora des Salzlackengebietes im österreichischen Burgenland. Sitzungsberichte. Österreichische Akademie der Wissenschaften, Math.–Naturwiss. Klasse, Abt. 1, 168, 387–452.

    Google Scholar 

  • Ichinomiya, M., Yoshikawa, S., Kamiya, M., Ohki, K., Takaichi, S., & Kuwata, A. (2011). Isolation and characterization of Parmales (Heterokonta/Heterokontophyta/Stramenopiles) from the Oyashio region, western North Pacific. Journal of Phycology, 47, 144–151.

    Article  PubMed  Google Scholar 

  • Idei, M., Sato, S., Watanabe, T., Nagumo, T., & Mann, D. G. (2013b). Sexual reproduction and auxospore structure in Diploneis papula (Bacillariophyta). Phycologia, 52, 295–308.

    Article  Google Scholar 

  • Idei, M., Osada, K., Sato, S., Nagumo, T., & Mann, D. G. (2012). Gametogenesis and auxospore development in Actinocyclus (Bacillariophyta). PLoSOne, 7, e41890.

    Article  CAS  Google Scholar 

  • Idei, M., Osada, K., Sato, S., Nakayama, T., Nagumo, T., & Mann, D. G. (2013a). Sperm ultrastructure in the diatoms Melosira and Thalassiosira and the significance of the 9+0 configuration. Protoplasma, 250, 833–850.

    Article  CAS  PubMed  Google Scholar 

  • Imanian, B., & Keeling, P. J. (2014). Horizontal gene transfer and redundancy of tryptophan biosynthetic enzymes in dinotoms. Genome Biology and Evolution, 6, 333–343.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Janson, S., Rai, A. N., & Bergman, B. (1995). Intracellular cyanobiont Richelia intracellularis: Ultrastructure and immuno-localisation of phycoerythrin, nitrogenase, Rubisco and glutamine synthetase. Marine Biology, 124, 1–8.

    Article  CAS  Google Scholar 

  • Jeffrey, S. W., Wright, S. W., & Zapata, M. (2011). Microalgal classes and their signature pigments. In S. Roy, C. A. Llewellyn, E. S. Egeland, & G. Johnsen (Eds.), Phytoplankton characterization, chemotaxonomy and applications in oceanography (pp. 3–77). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Jewson, D. H. (1992). Life cycle of a Stephanodiscus sp. (Bacillariophyta). Journal of Phycology, 28, 856–866.

    Article  Google Scholar 

  • Jewson, D. H., & Granin, N. G. (2015). Cyclical size change and population dynamics of a planktonic diatom, Aulacoseira baicalensis, in Lake Baikal. European Journal of Phycology, 50, 1–19.

    Article  CAS  Google Scholar 

  • Jones, H. M., Simpson, G. E., Stickle, A. J., & Mann, D. G. (2005). Life history and systematics of Petroneis (Bacillariophyta), with special reference to British waters. European Journal of Phycology, 40, 43–71.

    Article  Google Scholar 

  • Kaczmarska, I., Poulíčková, A., Sato, S., Edlund, M. B., Idei, M., Watanabe, T., & Mann, D. G. (2013). Proposals for a terminology for diatom sexual reproduction, auxospores and resting stages. Diatom Research, 28, 263–294.

    Article  Google Scholar 

  • Kamikawa, R., Yubuki, N., Yoshida, M., Taira, M., Nakamura, N., Ishida, K., Leander, B. S., Miyashita, H., Hashimoto, T., Mayama, S., & Inagaki, Y. (2015). Multiple losses of photosynthesis in Nitzschia (Bacillariophyceae). Phycological Research, 63, 19–28.

    Article  CAS  Google Scholar 

  • Karsten, G. (1905–1907). Wissenschaftliche Ergebnisse der Deutschen Tiefsee-Expedition auf dem Dampfer “Valdivia” 1898–1899, von Carl Chun. Band II, Teil II, Das Phytoplankton des Antarktischen Meeres (pp. 1–136, plates 1–19; 1905); Das Phytoplankton des Atlantischen Oceans (pp. 137–219, plates 20–34; 1906); Das Indische Phytoplankton (pp. 223–544, plates 35–54; 1907). Jena.

    Google Scholar 

  • Karsten, G. (1912). Über die Reduktionsteilung bei der Auxosporenbildung von Surirella saxonica. Zeitschrift für Botanik, 4, 417–426.

    Google Scholar 

  • Karsten, G. (1928). Bacillariophyta (Diatomaceae). In A. Engler & K. Prantl (Eds.), Die Natürlichen Pflanzenfamilien (Vol. 2, 2nd ed., pp. 105–203). Leipzig: W. Engelmann.

    Google Scholar 

  • Kelly, M., Juggins, S., Guthrie, R., Pritchard, S., Jamieson, J., Rippey, B., Hirst, H., & Yallop, M. (2008). Assessment of ecological status in UK rivers using diatoms. Freshwater Biology, 53, 403–422.

    Google Scholar 

  • Kemp, A. E. S., & Villareal, T. A. (2013). High diatom production and export in stratified waters – A potential negative feedback to global warming. Progress in Oceanography, 119, 4–23.

    Article  Google Scholar 

  • Kermarrec, L., Franc, A., Rimet, F., Chaumeil, P., Frigerio, J.-M., Humbert, J.-F., & Bouchez, A. (2014). A next-generation sequencing approach to river biomonitoring using benthic diatoms. Freshwater Science, 33, 349–363.

    Article  Google Scholar 

  • Kociolek, J. P., & Williams, D. M. (2015). How to define a diatom genus? Notes on the creation and recognition of taxa, and a call for revisionary studies of diatoms. Acta Botanica Croatica, 74, 195–210.

    Article  CAS  Google Scholar 

  • Koeltz, S. (Ed.). (1976). Algological bibliography of the U.S.S.R. from the beginning up to 1960, Collectanea Bibliographia (Vol. 3). Koenigstein: O. Koeltz Scientific Publishers.

    Google Scholar 

  • Kooistra, W. H. C. F., & Medlin, L. K. (1996). Evolution of the diatoms (Bacillariophyta) IV. A reconstruction of their age from small subunit rRNA coding regions and the fossil record. Molecular Phylogenetics and Evolution, 6, 391–407.

    Article  CAS  PubMed  Google Scholar 

  • Kooistra, W. H. C. F., & Pohl, G. (2015). Diatom frustule morphology and its biomimetic applications in architecture and industrial design. In C. E. Hamm (Ed.), Evolution of lightweight structures: Analysis and technical applications (pp. 75–102). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Kooistra, W. H. C. F., De Stefano, M., Mann, D. G., Salma, N., & Medlin, L. K. (2003a). The phylogenetic position of Toxarium, a pennate-like lineage within centric diatoms (Bacillariophyceae). Journal of Phycology, 39, 185–197.

    Article  CAS  Google Scholar 

  • Kooistra, W. C. H. F., Gersonde, R., Medlin, L. K., & Mann, D. G. (2007). The origin and evolution of the diatoms: Their adaptation to a planktonic existence. In P. G. Falkowski & A. H. Knoll (Eds.), Evolution of primary producers in the sea (pp. 207–249). Amsterdam: Elsevier Academic Press.

    Chapter  Google Scholar 

  • Krammer, K., & Lange-Bertalot, H. (1986–1991). Bacillariophyceae. In H. Ettl, J. Gerloff, H. Heynig & D. Mollenhauer (Eds.), Süsswasserflora von Mitteleuropa, vol. 2, parts 1–5. Stuttgart and New York: G. Fischer.

    Google Scholar 

  • Krebs, W. N., Gladenkov, A. Y., & Jones, G. D. (2010). Diatoms in oil and gas exploration. In J. P. Smol & E. F. Stoermer (Eds.), The diatoms: Applications for the environmental and earth sciences (2nd ed., pp. 525–533). Cambridge: Cambridge University Press.

    Google Scholar 

  • Kröger, N. (2007). Prescribing diatom morphology: Toward genetic engineering of biological nanomaterials. Current Opinion in Chemical Biology, 11, 662–669.

    Article  PubMed  CAS  Google Scholar 

  • Kuhl, A. (1962). Inorganic phosphorus uptake and metabolism. In R. A. Lewin (Ed.), Physiology and biochemistry of algae (pp. 211–229). New York: Academic.

    Google Scholar 

  • Kühn, S. F., & Brownlee, C. (2005). Membrane organisation and dynamics in the marine diatom Coscinodiscus wailesii (Bacillariophyceae). Botanica Marina, 48, 297–305.

    Article  Google Scholar 

  • Kühn, S. F., Drebes, G., & Schnepf, E. (1996). Five new species of the nanoflagellate Pirsonia in the German Bight, North Sea, feeding on planktic diatoms. Helgoländer Wissenschaftliche Meeresuntersuchungen, 50, 205–222.

    Article  Google Scholar 

  • Kuroiwa, T., Suzuki, T., Ogawa, K., & Kawano, S. (1981). The chloroplast nucleus: Distribution, number, size, and shape, and a model for the multiplication of the chloroplast genome during chloroplast development. Plant and Cell Physiology, 22, 381–396.

    Google Scholar 

  • Kützing, F. T. (1844). Die kieselschaligen Bacillarien oder Diatomeen. Nordhausen: W. Köhne.

    Book  Google Scholar 

  • de Lamarck, J. P. B. A., & De Candolle, A. P. (1805). Flore française (Vol. 2, 3rd ed.). Paris: Agasse.

    Google Scholar 

  • Lauterborn, R. (1896). Untersuchungen über Bau, Kernteilung und Bewegung der Diatomeen. Leipzig: Engelmann.

    Book  Google Scholar 

  • Lee, J. J. (2011). Diatoms as endosymbionts. In J. Seckbach & J. P. Kociolek (Eds.), The Diatom World (pp. 439–464). Dordrecht: Springer.

    Google Scholar 

  • Lee, J. J., McEnery, M. E., Shilo, M., & Reiss, Z. (1979). Isolation and cultivation of diatom symbionts from larger Foraminifera (Protozoa). Nature, 280, 57–58.

    Article  Google Scholar 

  • Lenoci, L., & Camp, P. J. (2008). Diatom structures templated by phase-separated fluids. Langmuir, 24, 217–223.

    Article  CAS  PubMed  Google Scholar 

  • Levkov, Z. (2009). Amphora sensu lato. In H. Lange-Bertalot (Ed.), Diatoms of Europe (Vol. 5). Ruggell: A.R.G. Gantner.

    Google Scholar 

  • Lewin, J., & Lewin, R. A. (1967). Culture and nutrition of some apochlorotic diatoms of the genus Nitzschia. Journal of General Microbiology, 46, 361–367.

    Article  CAS  Google Scholar 

  • Lewis Jr., W. M. (1983). Interruption of synthesis as a cost of sex in small organisms. American Naturalist, 121, 825–833.

    Article  Google Scholar 

  • Li, C.-W., & Volcani, B. E. (1987). Four new apochlorotic diatoms. British Phycological Journal, 22, 375–382.

    Google Scholar 

  • Li, C. L., Ashworth, M. P., Witkowski, A., Dąbek, P., Medlin, L. K., Kooistra, W. H. C. F., Sato, S., Zgłobicka, I., Kurzydłowski, K. J., Theriot, E. C., Sabir, J. S. M., Khiyami, M. A., Mutwakil, M. H. Z., Sabir, M. J., Alharbi, N. S., Hajarah, N. H., Qing, S., & Jansen, R. K. (2015). New insights into Plagiogrammaceae (Bacillariophyta) based on multigene phylogenies and morphological characteristics with the description of a new genus and three new species. PloS One, 10, e0139300.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lund, J. W. G. (1949). Studies on Asterionella. I. The origin and nature of the cells producing seasonal maxima. Journal of Ecology, 37, 389–419.

    Article  Google Scholar 

  • Lund, J. W. G. (1954). The seasonal cycle of the plankton diatom, Melosira italica (Ehr.) Kütz. subsp. subarctica O. Müll. Journal of Ecology, 42, 151–179.

    Article  Google Scholar 

  • MacDonald, J. D. (1869). On the structure of the diatomaceous frustule and its genetic cycle. Annals and Magazine of Natural History, 3, 1–8.

    Article  Google Scholar 

  • Majewska, R., Santoro, M., Bolaños, F., Chaves, G., & De Stefano, M. (2015). Diatoms and other epibionts associated with Olive Ridley (Lepidochelys olivacea) sea turtles from the Pacific coast of Costa Rica. PloS One, 10, e0130351.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Malviya, S., Scalco, E., Audic, S., Vincent, F., Veluchamy, A., Poulain, J., Winckler, P., Iudicone, D., de Vargas, C., Bittner, J., Zingone, A., & Bowler, C. (2016). Insights into global diatom distribution and diversity in the world’s ocean. Proceedings of the National Academy of Sciences of the United States of America, 113, E1516–E1525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mann, D. G. (1988). Why didn’t Lund see sex in Asterionella? A discussion of the diatom life cycle in nature. In F. E. Round (Ed.), Algae and the aquatic environment (pp. 383–412). Bristol: Biopress.

    Google Scholar 

  • Mann, D. G. (1994). The origins of shape and form in diatoms: The interplay between morphogenetic studies and systematics. In D. S. Ingram & A. J. Hudson (Eds.), Shape and form in plants and fungi (pp. 17–38). London: Academic.

    Google Scholar 

  • Mann, D. G. (1996). Chloroplast morphology, movements and inheritance in diatoms. In B. Chaudhary & S. B. Agrawal (Eds.), Cytology, genetics and molecular biology of algae (pp. 249–274). Amsterdam: SPB Academic Publishing.

    Google Scholar 

  • Mann, D. G. (1999a). Crossing the Rubicon: The effectiveness of the marine/freshwater interface as a barrier to the migration of diatom germplasm. In S. Mayama, M. Idei, & I. Koizumi (Eds.), Proceedings of the 14th international diatom symposium (pp. 1–21). Koenigstein: Koeltz Scientific Books.

    Google Scholar 

  • Mann, D. G. (1999b). The species concept in diatoms. Phycologia, 38, 437–495.

    Article  Google Scholar 

  • Mann, D. G. (2006). Specifying a morphogenetic model for diatoms: An analysis of pattern faults in the Voigt zone. Nova Hedwigia. Beiheft, 130, 97–118.

    Google Scholar 

  • Mann, D. G. (2011). Size and sex. In J. Seckbach & J. P. Kociolek (Eds.), The diatom world (pp. 147–166). Dordrecht: Springer.

    Google Scholar 

  • Mann, D. G., & Marchant, H. (1989). The origins of the diatom and its life cycle. In J. C. Green, B. S. C. Leadbeater, & W. L. Diver (Eds.), The chromophyte algae: Problems and perspectives, Systematics association special volume (Vol. 38, pp. 305–321). Oxford: Clarendon Press.

    Google Scholar 

  • Mann, D. G., & Vanormelingen, P. (2013). An inordinate fondness? The number, distributions and origins of diatom species. Journal of Eukaryotic Microbiology, 60, 414–420.

    Article  PubMed  Google Scholar 

  • Mann, D. G., Sato, S., Trobajo, R., Vanormelingen, P., & Souffreau, C. (2010). DNA barcoding for species identification and discovery in diatoms. Cryptogamie Algologie, 31, 557–577.

    Google Scholar 

  • Mann, D. G., Sato, S., Rovira, L., & Trobajo, R. (2013). Paedogamy and auxosporulation in Nitzschia sect. Lanceolatae (Bacillariophyta). Phycologia, 52, 204–220.

    Article  Google Scholar 

  • Mayama, S., & Shihira-Ishikawa, I. (1994). Putative nucleoids scattered in chloroplast of Pinnularia nobilis (Bacillariophyceae). Japanese Journal of Phycology, 42, 437–441.

    Google Scholar 

  • Mayama, S., Mayama, N., & Shihira-Ishikawa, I. (2004). Characterization of linear-oblong pyrenoids with cp-DNA along their sides in Nitzschia sigmoidea (Bacillariophyceae). Phycological Research, 52, 129–139.

    Article  CAS  Google Scholar 

  • McQuoid, M. R., & Hobson, L. A. (1996). Diatom resting stages. Journal of Phycology, 32, 889–902.

    Article  Google Scholar 

  • Medlin, L. K. (1983). Community analysis of epiphytic diatom communities attached to selected species of macroalgae collected along the Texas coast of the Gulf of Mexico. Ph.D. dissertation. Texas A&M University, College Station. 150 pp.

    Google Scholar 

  • Medlin, L. K. (2007). Continued ideas on the evolution of silica. Diatom Research, 22, 217–226.

    Article  Google Scholar 

  • Medlin, L. K. (2011). The Permian–Triassic mass extinction forces the radiation of the modern marine phytoplankton. Phycologia, 50, 684–693.

    Article  Google Scholar 

  • Medlin, L. K. (2014). Evolution of the diatoms: VIII. Re-examination of the SSU-rRNA gene using multiple outgroups and a cladistic analysis of valve features. Journal of Biodiversity, Bioprospecting and Development, 1, 129. doi:10.4172/2376-0214.1000129.

    Article  Google Scholar 

  • Medlin, L. K. (2015). A timescale for diatom evolution based on four molecular markers: Reassessment of ghost lineages and major steps defining diatom evolution. Vie et Milieu, 65, 219–238.

    Google Scholar 

  • Medlin, L. K. (2016a). Evolution of the diatoms: Major steps in their evolution and a review of the supporting molecular and morphological evidence. Phycologia, 55, 79–103.

    Article  Google Scholar 

  • Medlin, L. K. (2016b). Opinion: Can coalescent models explain deep divergences in the diatoms and argue for the acceptance of paraphyletic taxa at all taxonomic hierarchies? Nova Hedwigia, 102, 107–128.

    Article  Google Scholar 

  • Medlin, L. K., & Desdevises, Y. (2016). Phylogeny of ‘araphid’ diatoms inferred from SSU and LSU rDNA, rbcL and psbC sequences. Vie et Milieu, 66, 129–154.

    Google Scholar 

  • Medlin, L. K., & Kaczmarska, I. (2004). Evolution of the diatoms: V. Morphological and cytological support for the major clades and a taxonomic revision. Phycologia, 43, 245–270.

    Google Scholar 

  • Medlin, L. K., Crawford, R. M., & Andersen, R. A. (1986). Histochemical and ultrastructural evidence for the function of the labiate process in the movement of centric diatoms. British Phycological Journal, 21, 297–301.

    Article  Google Scholar 

  • Medlin, L. K., Sato, S., Mann, D. G., & Kooistra, W. H. C. F. (2008). Molecular evidence confirms sister relationship of Ardissonea, Climacosphenia and Toxarium within the bipolar centric diatoms (Bacillariophyta, Mediophyceae) and cladistic analyses confirms that extremely elongated shape has arisen twice in the diatoms. Journal of Phycology, 44, 1340–1348.

    Article  CAS  PubMed  Google Scholar 

  • Mereschkowsky, C. (1902–1903). Les types de l’endochrome. Scripta Botanica Horti Universitatis Imperialialis Petropolitanae, 21, 1–193.

    Google Scholar 

  • Mereschkowsky, C. (1904). Loi de translation des stades chez les diatomées. Journal de Botanique, 18(17–29), 76–83.

    Google Scholar 

  • Metzeltin, D., & Lange-Bertalot, H. (2007). Tropical diatoms of South America II. Special remarks on biogeographic disjunction. In H. Lange-Bertalot (Ed.), Iconographia diatomologica. Annotated diatom micrographs, Diversity–taxonomy–biogeography (Vol. 18). Ruggell: A.R.G. Gantner.

    Google Scholar 

  • Moeys, S., Frenkel, J., Lembke, C., Gillard, J. T. F., Devos, V., Van den Berge, K., Bouillon, B., Huysman, M. J. J., De Decker, S., Scharf, J., Bones, A., Brembu, T., Winge, P., Sabbe, K., Vuylsteke, M., Clement, L., De Veylder, L., Pohnert, G., & Vyverman, W. (2016). A sex-inducing pheromone triggers cell cycle arrest and mate attraction in the diatom Seminavis robusta. Scientific Reports, 6, 19252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller, O. (1886). Die Zwischenbänder und Septen der Bacillariaceen. Berichte der Deutschen Botanischen Gesellschaft, 4, 306–316.

    Google Scholar 

  • Müller, O. (1889). Durchbrechungen der Zellwand in ihren Beziehungen zur Ortsbewegung der Bacillariaceen. Berichte der Deutschen Botanischen Gesellschaft, 7, 169–180.

    Google Scholar 

  • Müller, O. (1901). Kammern und Poren in der Zellwand der Bacillariaceen. IV. Berichte der Deutschen Botanischen Gesellschaft, 19, 195–210.

    Google Scholar 

  • Nakayama, T., Ikegami, Y., Nakayama, T., Ishida, K., Inagaki, Y., & Inouye, I. (2011). Spheroid bodies in rhopalodiacean diatoms were derived from a single endosymbiotic cyanobacterium. Journal of Plant Research, 124, 93–97.

    Article  PubMed  Google Scholar 

  • Nakayama, T., Kamikawa, R., Tanifuji, G., Kashiyama, Y., Ohkouchi, N., Archibald, J. M., & Inagaki, Y. (2014). Complete genome of a nonphotosynthetic cyanobacterium in a diatom reveals recent adaptations to an intracellular lifestyle. Proceedings of the National Academy of Sciences of the United States of America, 111, 11407–11412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakov, T., Theriot, E. C., & Alverson, A. J. (2014). Using phylogeny to model cell size evolution in marine and freshwater diatoms. Limnology and Oceanography, 59, 79–86.

    Google Scholar 

  • Nakov, T., Ashworth, M., & Theriot, E. C. (2015). Comparative analysis of the interaction between habitat and growth form in diatoms. ISME Journal, 9, 246–255.

    Article  PubMed  Google Scholar 

  • Nanjappa, D., Kooistra, W. H. C. F., & Zingone, A. (2013). A reappraisal of the genus Leptocylindrus (Bacillariophyta), with the addition of three species and the erection of Tenuicylindrus gen. nov. Journal of Phycology, 49, 917–936.

    PubMed  Google Scholar 

  • Nanjappa, D., Audic, S., Romac, S., Kooistra, W. H. C. F., & Zingone, A. (2014). Assessment of species dversity and distribution of an ancient diatom lineage using a DNA metabarcoding approach. PloS One, 9, e103810.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Palmer, J. D., & Round, F. E. (1967). Persistent vertical-migration rhythms in benthic microflora VI. Tidal and diurnal nature of rhythm in diatom Hantzschia virgata. Biological Bulletin, 132, 44–55.

    Article  Google Scholar 

  • Pascher, A. (1914). Über Flagellaten und Algen. Berichte der Deutschen Botanischen Gesellschaft, 32, 136–160.

    Google Scholar 

  • Pascher, A. (1921). Über die Übereinstimmung zwischen den Diatomeen Heterokonten und Chrysomonaden. Berichte der Deutschen Botanischen Gesellschaft, 39, 236–248.

    Google Scholar 

  • Patil, S., Moeys, S., von Dassow, P., Huysman, M. J. J., Mapleson, D., De Velder, L., Sanges, R., Vyverman, W., Montresor, M., & Ferrante, M. I. (2015). Identification of the meiotic toolkit in diatoms and exploration of meiosis-specific SPO11 and RAD51 homologs in the sexual species Pseudo-nitzschia multistriata and Seminavis robusta. BMC Genomics, 16, 930.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peragallo, H., & Peragallo, M. (1897–1908). Diatomées marines de France et des districts maritimes voisins. Grez-sur-Loing: M.J. Tempere.

    Book  Google Scholar 

  • Pfitzer, E. (1869). Ueber Bau und Zelltheilung der Diatomaceen. Sitzungsberichte der Niederrheinischen Gesellschaft für Natur- und Heilkunde zu Bonn, 1869, pp. 86–89.

    Google Scholar 

  • Pfitzer, E. (1871). Untersuchungen über Bau und Entwicklung der Bacillariaceen (Diatomeen). Botanische Abhandlungen (Ed Hanstein), 1(2), 1–189.

    Google Scholar 

  • Pickett-Heaps, J. D. (1991). Cell division in diatoms. International Review of Cytology, 128, 63–108.

    Article  Google Scholar 

  • Pickett-Heaps, J. D., Tippit, D. H., & Andreozzi, J. A. (1979). Cell division in the pennate diatom Pinnularia. IV. Valve morphogenesis. Biologie Cellulaire, 35, 199–206.

    Google Scholar 

  • Pickett-Heaps, J. D., Schmid, A.-M., & Tippit, D. H. (1984). Cell division in diatoms. A translation of part of Robert Lauterborn’s treatise of 1896 with some modern confirmatory observations. Protoplasma, 120, 132–154.

    Article  Google Scholar 

  • Pickett-Heaps, J. D., Schmid, A.-M. M., & Edgar, L. A. (1990). The cell biology of diatom valve formation. Progress in Phycological Research, 7, 1–168.

    CAS  Google Scholar 

  • Pienaar, R. N., Sakai, H., & Horiguchi, T. (2007). Description of a new dinoflagellate with a diatom endosymbiont, Durinskia capensis sp. nov. (Peridiniales, Dinophyceae) from South Africa. Journal of Plant Research, 120, 247–258.

    Article  PubMed  Google Scholar 

  • Poulíčková, A., Mayama, S., Chepurnov, V. A., & Mann, D. G. (2007). Heterothallic auxosporulation, incunabula and perizonium in Pinnularia (Bacillariophyceae). European Journal of Phycology, 42, 367–390.

    Article  Google Scholar 

  • Poulíčková, A., Sato, S., Evans, K. M., Chepurnov, V. A., & Mann, D. G. (2015). Repeated evolution of uniparental reproduction in Sellaphora (Bacillariophyceae). European Journal of Phycology, 50, 62–79.

    Article  Google Scholar 

  • Raven, J. A. (1983). The transport and function of silicon in plants. Biological Reviews, 58, 179–207.

    Article  CAS  Google Scholar 

  • Raven, J. A., & Waite, A. M. (2004). The evolution of silicifcation in diatoms: Inescapbale sinking and sinking as escape? New Phytologist, 162, 45–61.

    Article  Google Scholar 

  • Raymond, J. A., & Kim, H. J. (2012). Possible role of horizontal gene transfer in the colonization of sea ice by algae. PloS One, 7(5), e35968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renaudie, J. (2016). Quantifying the Cenozoic marine diatom deposition history: links to the C and Si cycles. Biogeosciences, 13, 6003–6014.

    Google Scholar 

  • Reynolds, C. S. (2006). Ecology of phytoplankton. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Richthammer, P., Börmel, M., Brunner, E., & van Pée, K.-H. (2011). Biomineralization in diatoms: The role of silacidins. ChemBioChem, 12, 1362–1366.

    Article  CAS  PubMed  Google Scholar 

  • Rimet, F., Trobajo, R., Mann, D. G., Kermarrec, L., Franc, A., Domaizon, I., & Bouchez, A. (2014). When is sampling complete? The effects of geographical range and marker choice on perceived diversity in Nitzschia palea (Bacillariophyta). Protist, 165, 245–259.

    Article  PubMed  Google Scholar 

  • Rynearson, T. A., & Armbrust, E. V. (2004). Genetic differentiation among populations of the planktonic marine diatom Ditylum brightwellii (Bacillariophyceae). Journal of Phycology, 40, 34–43.

    Article  Google Scholar 

  • Roshchin, A. M. (1994). Zhiznennye tsikly diatomovykh vodoroslej. Kiev: Naukova Dumka.

    Google Scholar 

  • Ross, R., Cox, E. J., Karayeva, N. I., Mann, D. G., Paddock, T. B. B., Simonsen, R., & Sims, P. A. (1979). An amended terminology for the siliceous components of the diatom cell. Nova Hedwigia. Beiheft, 64, 513–533.

    Google Scholar 

  • Rothpletz, A. (1900). Über einen neuen jurassischen Hornschwämme und die darin eingeschlossenen Diatomeen. Zeitschrift der Deutschen Geologischen Gesellschaft, 52, 154–160.

    Google Scholar 

  • Round, F. E. (1981a). The ecology of algae. Cambridge: Cambridge University Press.

    Google Scholar 

  • Round, F. E. (1981b). Morphology and phyletic relationships of the silicified algae and the archetypal diatom – Monophyly or polyphyly. In T. L. Simpson & B. E. Volcani (Eds.), Silicon and siliceous structures in biological systems (pp. 97–128). New York: Springer.

    Chapter  Google Scholar 

  • Round, F. E., & Crawford, R. M. (1981). The lines of evolution of the Bacillariophyta. I. Origin. Proceedings of the Royal Society of London B, 211, 237–260.

    Article  Google Scholar 

  • Round, F. E., & Crawford, R. M. (1984). The lines of evolution of the Bacillariophyta II. The centric series. Proceedings of the Royal Society of London B, 221, 169–188.

    Article  Google Scholar 

  • Round, F. E., Crawford, R. M., & Mann, D. G. (1990). The diatoms. Biology and morphology of the genera. Cambridge: Cambridge University Press.

    Google Scholar 

  • Ruck, E. C., & Theriot, E. C. (2011). Origin and evolution of the canal raphe system in diatoms. Protist, 162, 723–737.

    Article  PubMed  Google Scholar 

  • Ruck, E. C., Nakov, T., Alverson, A. J., & Theriot, E. C. (2016). Phylogeny, ecology, morphological evolution, and reclassification of the diatom orders Surirellales and Rhopalodiales. Molecular Phylogenetics and Evolution, 103, 155–171.

    Article  PubMed  Google Scholar 

  • Sabater, S., Buchaca, T., Cambra, J., Catalan, J., Guasch, H., Ivorra, N., Muñoz, I., Navarro, E., Real, M., & Romaní, A. (2003). Structure and function of benthic algal communities in an extremely acid river. Journal of Phycology, 39, 481–489.

    Article  CAS  Google Scholar 

  • Saburova, M., Chomerat, N., & Hoppenrath, M. (2009). Morphology and SSU rDNA phylogeny of Durinskia agilis (Kofoid and Swezy) comb. nov. (Peridiniales, Dinophyceae), a thecate, marine, sand-dwelling dinoflagellate formerly classified within Gymnodinium. Phycologia, 51, 287–302.

    Article  Google Scholar 

  • Sapp, J., Carrapiço, F., & Zolotonosov, M. (2002). Symbiogenesis: The hidden face of Constantin Merezhkowsky. History and Philosophy of the Life Sciences, 24, 413–440.

    Article  PubMed  Google Scholar 

  • Sarno, D., Kooistra, W. H. C. F., Medlin, L. K., Percopo, I., & Zingone, A. (2005). Diversity in the genus Skeletonema (Bacillariophyceae). II. An assessment of the taxonomy of S. costatum-like species with the description of four new species. Journal of Phycology, 41, 151–176.

    Article  Google Scholar 

  • Sato, S. (2010). Valve and girdle band morphogenesis in a bipolar centric diatom Plagiogrammopsis vanheurckii (Cymatosiraceae, Bacillariophyta). European Journal of Phycology, 45, 167–176.

    Article  Google Scholar 

  • Sato, S., Beakes, G., Idei, M., Nagumo, T., & Mann, D. G. (2011). Novel sex cells and evidence for sex pheromones in diatoms. PloS One, 6(10), e26923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmid, A.-M. M. (1991). Obituary – Prof. Dr Lothar Geitler (1899–1900). Diatom Research, 6, 181–193.

    Article  Google Scholar 

  • Schmid, A.-M. M. (2003a). Endobacteria in the diatom Pinnularia (Bacillariophyceae). I. “Scattered ct-nucleoids” explained: DAPI–DNA complexes stem from exoplastidial bacteria boring into the chloroplasts. Journal of Phycology, 39, 122–138.

    Article  Google Scholar 

  • Schmid, A.-M. M. (2003b). Endobacteria in the diatom Pinnularia (Bacillariophyceae). II. Host cell cycle-dependent translocation and transient chloroplast scars. Journal of Phycology, 39, 139–153.

    Article  Google Scholar 

  • Schmid, A.-M. M., & Crawford, R. M. (2001). Ellerbeckia arenaria (Bacillariophyceae): Formation of auxospores and initial cells. European Journal of Phycology, 36, 307–320.

    Article  Google Scholar 

  • Schmid, A.-M. M., & Volcani, B. E. (1983). Wall morphogenesis in Coscinodiscus wailesii Gran and Angst. I. Valve morphology and developments of its architecture. Journal of Phycology, 19, 387–402.

    Article  Google Scholar 

  • Schmidt, A. (1874–1959). Atlas der Diatomaceen-Kunde. Leipzig: O. R. Reisland.

    Book  Google Scholar 

  • Schnepf, E. (1969). Leukoplasten bei Nitzschia alba. Österreichische Botanische Zeitung, 116, 65–69.

    Article  Google Scholar 

  • Schütt, F. (1896). Bacillariales (Diatomeae). In A. Engler & K. Prantl (Eds.), Die natürlichen Pflanzenfamilien I. lb. Leipzig: Engelmann.

    Google Scholar 

  • Seckbach, J., & Kociolek, J. P. (2011). The diatom world. Dordrecht: Springer.

    Google Scholar 

  • Silva, P. C. (1962). Classification of algae. In R. A. Lewin (Ed.), Physiology and biochemistry of algae (pp. 827–840). New York: Academic.

    Google Scholar 

  • Simpson, T. L., & Volcani, B. E. (Eds.). (1981). Silicon and siliceous structures in biological systems. New York: Springer.

    Google Scholar 

  • Sims, P. A., Mann, D. G., & Medlin, L. K. (2006). Evolution of the diatoms: Insights from fossil, biological and molecular data. Phycologia, 45, 361–402.

    Article  Google Scholar 

  • Sinninghe Damsté, J. S., Muyzer, G., Abbas, B., Rampen, S. W., Massé, G., Allard, W. G., Belt, S. T., Robert, J.-M., Rowland, S. J., Moldowan, J. M., Barbanti, S. M., Fago, F. J., Denisevich, P., Dahl, J., Trindade, L. A. F., & Schouten, S. (2004). The rise of the rhizosolenid diatoms. Science, 304, 584–587.

    Article  CAS  Google Scholar 

  • Siver, P. A., Wolfe, A. P., & Edlund, M. B. (2010). Taxonomic descriptions and evolutionary implications of Middle Eocene pennate diatoms representing the extant genera Oxyneis, Actinella and Nupela (Bacillariophyceae). Plant Ecology and Evolution, 143, 340–351.

    Article  Google Scholar 

  • Smetacek, V. (1985). Role of sinking in diatom life-history cycles: Ecological, evolutionary and geological significance. Marine Biology, 84, 239–251.

    Article  Google Scholar 

  • Smith, W. (1856). A synopsis of the British Diatomaceae (Vol. 2). London: J. van Voorst.

    Google Scholar 

  • Smol, J. P., & Stoermer, E. F. (Eds.). (2010). The diatoms, Applications for the environmental and Earth sciences (2nd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Sorhannus, U. (2007). A nuclear-encoded small-subunit ribosomal RNA timescale for diatom evolution. Marine Micropaleontology, 65, 1–12.

    Article  Google Scholar 

  • Souffreau, C., Verbruggen, H., Wolfe, A. P., Vanormelingen, P., Siver, P. A., Cox, E. J., Mann, D. G., Van der Vijver, B., Sabbe, K., & Vyverman, W. (2011). A time-calibrated multi-gene phylogeny of the diatom genus Pinnularia. Molecular Phylogenetics and Evolution, 61, 866–879.

    Article  PubMed  Google Scholar 

  • Souffreau, C., Vanormelingen, P., Van de Vijver, B., Isheva, T., Verleyen, E., Sabbe, K., & Vyverman, W. (2013). Molecular evidence for distinct Antarctic lineages in the cosmopolitan terrestrial diatoms Pinnularia borealis and Hantzschia amphioxys. Protist, 164, 101–115.

    Article  CAS  PubMed  Google Scholar 

  • von Stosch, H. A. (1950). Oogamy in a centric diatom. Nature, 165, 531.

    Article  Google Scholar 

  • von Stosch, H. A., & Fecher, K. (1979). ‘Internal thecae’ of Eunotia soleirolii (Bacillariophyceae): Development, structure and function as resting spores. Journal of Phycology, 15, 233–243.

    Article  Google Scholar 

  • Sumper, M., & Brunner, E. (2008). Silica biomineralisation in diatoms: The model organism Thalassiosira pseudonana. ChemBioChem, 9, 1187–1194.

    Article  CAS  PubMed  Google Scholar 

  • Tamura, M., Shimada, S., & Horiguchi, T. (2005). Galeidinium rugatum gen. et sp nov (Dinophyceae), a new coccoid dinoflagellate with a diatom endosymbiont. Journal of Phycology, 41, 658–671.

    Article  CAS  Google Scholar 

  • Taylor, F. B. (1929). Notes on diatoms. An introduction to the study of the Diatomaceae. Privately published.

    Google Scholar 

  • Tempère, J., & Peragallo, H. (1915). Diatomées du monde entier (2nd ed.). Arcachon: J. Tempère [A published collection of 995 microscope slides].

    Google Scholar 

  • Tesson, B., & Hildebrand, M. (2010). Extensive and intimate association of the cytoskeleton with forming silica in diatoms: Control over patterning on the meso- and micro-scale. PloS One, 5, e14300.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Theriot, E. C., Fritz, S. C., Whitlock, C., & Conley, D. J. (2006). Late-Quaternary rapid morphological evolution of an endemic diatom in Yellowstone Lake, Wyoming. Paleobiology, 23, 38–54.

    Article  Google Scholar 

  • Theriot, E. C., Ashworth, M., Ruck, E., Nakov, T., & Jansen, R. K. (2010). A preliminary multigene phylogeny of the diatoms (Bacillariophyta): Challenges for future research. Plant Ecology and Evolution, 143, 278–296.

    Article  Google Scholar 

  • Theriot, E. C., Ruck, E., Ashworth, M., Nakov, T., & Jansen, R. K. (2011). Status of the pursuit of the diatom phylogeny: Are traditional view and new molecular paradigms really that different? In J. Seckbach & J. P. Kociolek (Eds.), The diatom world (pp. 123–142). Dordrecht: Springer.

    Google Scholar 

  • Theriot, E. C., Ashworth, M. P., Nakov, T., Ruck, E., & Jansen, R. K. (2015). Dissecting signal and noise in diatom chloroplast protein encoding genes with phylogenetic information profiling. Molecular Phylogenetics and Evolution, 89, 28–36.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, D. N., & Dieckmann, G. S. (Eds.). (2003). Sea ice: An introduction to its physics, chemistry, biology and geology. Oxford: Blackwell.

    Google Scholar 

  • Thwaites, G. H. K. (1847). On conjugation in the Diatomaceae. Annals and Magazine of Natural History, ser. 1, 20, 9–11, 343–344.

    Google Scholar 

  • Trainer, V. L., Bates, S. S., Lundholm, N., Thessen, A. E., Cochlan, W. P., Adams, N. P., & Trick, C. G. (2012). Pseudo-nitzschia physiological ecology, phylogeny, toxicity, monitoring and impacts on ecosystem health. Harmful Algae, 14, 271–300.

    Article  Google Scholar 

  • Trobajo, R., Mann, D. G., Chepurnov, V. A., Clavero, E., & Cox, E. J. (2006). Auxosporulation and size reduction pattern in Nitzschia fonticola (Bacillariophyta). Journal of Phycology, 42, 1353–1372.

    Article  CAS  Google Scholar 

  • Underwood, G. J. C., & Paterson, D. M. (2003). The importance of extracellular carbohydrate production by marine epipelic diatoms. Advances in Botanical Research, 40, 183–240.

    Article  CAS  Google Scholar 

  • van den Hoek, C., Mann, D. G., & Jahns, H. M. (1995). Algae. An introduction to phycology. Cambridge: Cambridge University Press.

    Google Scholar 

  • VanLandingham, S. L. (1967–1979). Catalogue of the fossil and recent genera and species of diatoms and their synonyms (Vol. 1–8). Vaduz: Cramer.

    Google Scholar 

  • Vanormelingen, P., Verleyen, E., & Vyverman, W. (2008). The diversity and distribution of diatoms: From cosmopolitanism to narrow endemism. Biodiversity and Conservation, 17, 393–405.

    Article  Google Scholar 

  • Vanormelingen, P., Vanelslander, B., Sato, S., Gillard, J., Trobajo, R., Sabbe, K., & Vyverman, W. (2013). Heterothallic sexual reproduction in the model diatom Cylindrotheca. European Journal of Phycology, 48, 93–105.

    Article  Google Scholar 

  • Vanormelingen, P., Evans, K. M., Mann, D. G., Lance, S., Debeer, A.-E., D’Hondt, S., Verstraete, T., De Meester, L., & Vyverman, W. (2015). Genotypic diversity and differentiation among populations of two benthic freshwater diatoms as revealed by microsatellites. Molecular Ecology, 24, 4433–4448.

    Article  PubMed  Google Scholar 

  • Vanstechelman, I., Sabbe, K., Vyverman, W., Vanormelingen, P., & Vuylsteke, M. (2013). Linkage mapping identifies the sex determining region as a single locus in the pennate diatom Seminavis robusta. PloS One, 8(3), e60132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walsby, A. E., & Xypolyta, A. (1977). The form resistance of chitan fibres attached to the cells of Thalassiosira fluviatilis Hustedt. British Phycological Journal, 12, 215–233.

    Article  Google Scholar 

  • Wee, K. M., Rogers, T. N., Altan, B. S., Hackney, S. A., & Hamm, C. (2005). Engineering and medical applications of diatoms. Journal of Nanoscience and Nanotechnology, 5, 88–91.

    Article  CAS  PubMed  Google Scholar 

  • Werner, D. (Ed.). (1977). The biology of diatoms. Oxford: Blackwell.

    Google Scholar 

  • Yamada, K., Yoshikawa, S., Ichinomiya, M., Kuwata, A., Kamiya, M., & Ohki, K. (2014). Effects of silicon-limitation on growth and morphology of Triparma laevis NIES-2565 (Parmales, Heterokontophyta). PloS One, 9, e103289.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamada, K., Yoshikawa, S., Ohki, K., Ichinomiya, M., Kuwata, A., Motomura, T., & Nagasato, C. (2016). Ultrastructural analysis of siliceous cell wall regeneration in the stramenopile Triparma laevis (Parmales, Bolidophyceae). Phycologia, 55, 602–609.

    Article  Google Scholar 

  • Yanagisawa, Y., & Akiba, F. (1990). Taxonomy and phylogeny of the three marine diatom genera, Crucidenticula, Denticulopsis and Neodenticula. Bulletin of the Geological Survey of Japan, 41, 197–301.

    Google Scholar 

  • Zimmermann, J., Jahn, R., & Gemeinholzer, B. (2011). Barcoding diatoms: Evaluation of the V4 subregion on the 18S rRNA gene, including new primers and protocols. Organisms, Diversity and Evolution, 11, 173–192.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are most grateful to Prof. Linda Medlin for comments on the manuscript, Prof. Masahiko Idei for micrographs of sexual stages and auxospores, and Drs. Shinya Sato and Laia Rovira for SEM images of auxospores.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. Mann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Mann, D.G., Crawford, R.M., Round, F.E. (2017). Bacillariophyta. In: Archibald, J., Simpson, A., Slamovits, C. (eds) Handbook of the Protists. Springer, Cham. https://doi.org/10.1007/978-3-319-28149-0_29

Download citation

Publish with us

Policies and ethics