Abstract
Lignans are major phytochemicals biosynthesized in several plants including Sesamum, Linum, Forsythia, and Podophyllum genus, and a great variety of lignans have received wide attentions as leading compounds of novel drugs for tumor treatment and healthy diets to reduce of the risks of lifestyle-related diseases. Recent genome and transcriptome studies have characterized multiple novel lignan-biosynthetic enzymes, and thus have opened new avenues to transgenic metabolic engineering of various nonmodel dietary or medicinal plants. Forsythia and Linum are the most useful and prevalent natural and agricultural sources for the development of both transgenic foods and medicinal compounds. Over the past few years, transiently gene-transfected or transgenic Forsythia and Linum plants or cell cultures have been shown to be promising platforms for the sustainable and efficient production of beneficial lignans. In this chapter, we present the essential knowledge and recent advances regarding metabolic engineering of lignans based on their biosynthetic pathways and biological activities and the perspectives in lignan production via metabolic engineering.
Similar content being viewed by others
Abbreviations
- CAD:
-
Cinnamylalcohol dehydrogenase
- CCR:
-
Cinnamoyl-CoA reductase
- DIR:
-
Dirigent protein
- ER:
-
Estrogen receptor
- MAPK:
-
Mitogen-activated protein kinase
- MeJA:
-
Methyl jasmonate
- MOMT:
-
Matairesinol O-methyltransferase
- PAL:
-
Phenylalanine ammonialyase
- PIP:
-
Pinoresinol-lariciresinol/isoflavone/phenylcoumaran benzylic ether reductase
- PLR:
-
Pinoresinol-lariciresinol reductase
- PTOX:
-
Podophyllotoxin
- RNAi:
-
RNA interference
- SA:
-
Salicylic acid
- SDG:
-
Secoisolariciresinol diglucoside
- SIRD:
-
Secoisolariciresinol dehydrogenase
References
Umezawa T (2003) Diversity in lignan biosynthesis. Phytochem Rev 2:371–390
Suzuki S, Umezawa T (2007) Biosynthesis of lignans and norlignans. J Wood Sci 53:273–284
Macías FA, López A, Varela RM, Torres A, Molinillo JMG (2004) Bioactive lignans from a cultivar of Helianthus annuus. J Agric Food Chem 52:6443–6447
Lee J, Choe E (2006) Extraction of lignan compounds from roasted sesame oil and their effects on the autoxidation of methyl linoleate. J Food Sci 71:C430–C436
Guo H, Liu A-H, Ye M, Yang M, Guo D-A (2007) Characterization of phenolic compounds in the fruits of Forsythia suspense by high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 21:715–729
Peñalvo JL, Adlercreutz H, Uehara M, Ristimaki A, Watanabe S (2008) Lignan content of selected foods from Japan. J Agric Food Chem 56:401–409
Piao X-L, Jang M-H, Cui J, Piao X (2008) Lignans from the fruits of Forsythia suspensa. Bioorg Med Chem Lett 18:1980–1984
Hata N, Hayashi Y, Okazawa A, Ono E, Satake H, Kobayashi A (2010) Comparison of sesamin contents and CYP81Q1 gene expressions in aboveground vegetative organs between two Japanese sesame (Sesamum indicum L.) varieties differing in seed sesamin contents. Plant Sci 178:510–516
Hata N, Hayashi Y, Ono E, Satake H, Kobayashi A, Muranaka T, Okazawa A (2013) Differences in plant growth and leaf sesamin content of the lignan-rich sesame variety “Gomazou” under continuous light of different wavelengths. Plant Biotechnol 30:1–8
Okazawa A, Hori K, Okumura R, Izumi Y, Hata N, Bamba T, Fukusaki E, Ono E, Satake H, Kobayashi A (2011) Simultaneous quantification of lignans in Arabidopsis thaliana by highly sensitive capillary liquid chromatography-electrospray ionization-ion trap mass spectrometry. Plant Biotechnol 28:287–293
Schmidt TJ, Klaes M, Sendker J (2012) Lignans in seeds of Linum species. Phytochemistry 82:89–99
Satake H, Ono E, Murata J (2013) Recent advances in metabolic engineering of lignan biosynthesis pathways for the production of transgenic plant-based foods and supplements. J Agric Food Chem 61:11721–11729
Satake H, Koyama T, Bahabadi SE, Matsumoto E, Ono E, Murata J (2015) Essences inmetabolic engineering of lignan biosynthesis. Metabolites 5:270–290
Kajla P, Sharma A, Sood DR (2015) Flaxseed-a potential functional food source. J Food Sci Technol 52:1857–1871
Goyal A, Sharma V, Upadhyay N, Gill S, Sihag M (2014) Flax and flaxseed oil: an ancient medicine & modern functional food. J Food Sci Technol 51:1633–1653
Chaurasia OP, Ballabh B, Tayade A, Kumar R, Kumar GP, Singh SB (2012) Podophyllum L.: an endangered and anticancerous medicinal plant–an overview. Indian J Tradit Knowl 11:234–241
Murata J, Matsumoto E, Morimoto K, Koyama T, Satake H (2015) Generation of triple-transgenic Forsythia cell cultures as a platform for the efficient, stable, and sustainable production of lignans. PLoS One 10:e0144519
Ionkova I (2007) Biotechnological approaches for the production of lignans. Phcog Rev 1:57–68
Ionkova I, Antonova I, Momekov G, Fuss E (2010) Production of podophyllotoxin in Linum linearifolium in vitro cultures. Pharmacogn Mag 6:180–185
Ionkova I (2011) Anticancer lignans – from discovery to biotechnology. Mini Rev Med Chem 11:843–856
Lata H, Mizuno CS, Moraes RM (2009) The role of biotechnology in the production of the anticancer compound podophyllotoxin. Methods Mol Biol 547:387–402
Malik S, Biba O, Grúz J, Arroo RRJ, Strnad M (2014) Biotechnological approaches for producing aryltetralin lignans from Linum species. Phytochem Rev 13:893–913
Lau W, Sattely ES (2015) Six enzymes from mayapple that complete the biosynthetic pathway to the etoposide aglycone. Science 349:1224–1228
Oliva A, Moraes RA, Watson B, Duke SO, Dayan FE (2002) Aryltertralin lignans inhibit plant growth by affecting formation of mitotic microtubular organizing centers. Pestic Biochem Phys 72:45–54
Harmatha J, Dinan L (2003) Biological activities of lignans and stilbenoids associated with plant-insect chemical interaction. Phytochem Rev 2:321–330
Schroeder FC, del Campo ML, Grant JB, Weibel DB, Smedley SR, Bolton KL, Meinwald J, Eisner T (2006) Pinoresinol: a lignol of plant origin serving for defense in a caterpillar. Proc Natl Acad Sci U S A 103:15497–15501
Cutillo F, D’Abrosca B, DellaGreca M, Fiorentino A, Zarrelli A (2003) Lignans and neolignans from Brassica fruticulosa: effects on seed germination and plant growth. J Agric Food Chem 51:6165–6172
Nishiwaki H, Kumamoto M, Shuto Y, Yamauchi S (2011) Stereoselective syntheses of allstereoisomers of lariciresinol and their plant growth inhibitory activities. J Agric Food Chem 59:13089–13095
Carillo P, Cozzolino C, D’Abrosca B, Nacca F, DellaGreca M, Fiorentio A, Fuggi A (2011) Effects of the allelochemicals dihydrodiconiferylalcohol and lariciresinol on metabolism of Lactuca sativa. Open Bioact Compd J 3:18–24
Heinonen S, Nurmi T, Liukkonen K, Poutanen K, Wähälä K, Deyama T, Nishibe S, Adlercreutz H (2001) In vitro metabolism of plant lignans: new precursors of mammalian lignans enterolactone and enterodiol. J Agric Food Chem 49:3178–3186
Lampe JW, Atkinson C, Hullar MA (2006) Assessing exposure to lignans and their metabolites in humans. J AOAC Int 89:1174–1181
Liu Z, Saarinen NM, Thompson LU (2006) Sesamin is one of the major precursors of mammalian lignans in sesame seed (Sesamum indicum) as observed in vitro and in rats. J Nutr 136:906–912
Mueller SO, Simon S, Chae K, Metzler M, Korach KS (2004) Phytoestrogens and their human metabolites show distinct agonistic and antagonistic properties on estrogenreceptor alpha (ERα) and ERβ in human cells. Toxicol Sci 80:14–25
Penttinen P, Jaehrling J, Damdimopoulos AE, Inzunza J, Lemmen JG, van der Saag P, Pettersson K, Gauglitz G, Mäkelä S, Pongratz I (2007) Diet-derived polyphenol metabolite enterolactone is a tissue-specific estrogen receptor activator. Endocrinology 148:4875–4886
During A, Debouche C, Raas T, Larondelle Y (2012) Among plant lignans, pinoresinolhas the strongest antiinflammatory properties in human intestinal Caco-2 cells. J Nutr 142:1798–1805
Adlercreutz H (2007) Lignans and human health. CRC Crit Rev Clin Lab Sci 44:483–525
Bergman Jungeström M, Thompson LU, Dabrosin C (2007) Flaxseed and its lignansinhibit estradiol-induced growth, angiogenesis, and secretion of vascular endothelial growth factor in human breast cancer xenografts in vivo. Clin Cancer Res 13:1061–1067
Power KA, Saarinen NM, Chen JM, Thompson LU (2006) Mammalian lignans enterolactone and enterodiol, alone and in combination with the isoflavone genistein, do not promote the growth of MCF-7 xenografts in ovariectomized athymic nude mice. Int J Cancer 118:1316–1320
Mense SM, Hei TK, Ganju RK, Bhat HK (2008) Phytoestrogens and breast cancer prevention: possible mechanisms of action. Environ Health Perspect 116:426–433
Saarinen NM, Wärri A, Dings RPM, Airio M, Smeds AI, Mäkelä S (2008) Dietary lariciresinol attenuates mammary tumor growth and reduces blood vessel density inhuman MCF-7 breast cancer xenografts and carcinogen-induced mammary tumors in rats. Int J Cancer 123:1196–1204
Adolphe JL, Whiting SJ, Juurlink BHJ, Thorpe LU, Alcorn J (2010) Health effects with consumption of the flax lignan secoisolariciresinol diglucoside. Br J Nutr 103:929–938
Barre DE, Mizier-Barre KA, Stelmach E, Hobson J, Griscti O, Rudiuk A, Muthuthevar D (2012) Flaxseed lignan complex administration in older human type 2diabetics manages central obesity and prothrombosis-an invitation to further investigation into poly pharmacy reduction. J Nutr Metab 585170
Hano C, Renouard S, Molinié R, Corbin C, Barakzoy E, Doussot J, Lamblin F, Lainé E (2013) Flaxseed (Linum usitatissimum L.) extract as well as(+)-secoisolariciresinol diglucoside and its mammalian derivatives are potentinhibitors of α-amylase activity. Bioorg Med Chem Lett 23:3007–3012
Sirato-Yasumoto S, Katsuta M, Okuyama Y, Takahashi Y, Ide T (2001) Effect of sesame seeds rich in sesamin and sesamolin on fatty acid oxidation in rat liver. J Agric Food Chem 49:2647–2651
Nakano D, Itoh C, Takaoka M, Kiso Y, Tanaka T, Matsumura Y (2002) Antihypertensive effect of sesamin. IV. Inhibition of vascular superoxide production by sesamin. Biol Pharm Bull 25:1247–1249
Nakai M, Harada M, Nakahara K, Akimoto K, Shibata H, Miki W, Kiso Y (2003) Novel antioxidative metabolites in rat liver with ingested sesamin. J Agric Food Chem 51:1666–1670
Akimoto K, Kitagawa Y, Akamatsu T, Hirose N, Sugano M, Shimizu S, Yamada H (1993) Protective effects of sesamin against liver damage caused by alcohol or carbon tetrachloride in rodents. Ann Nutr Metab 37:218–224
Tada M, Ono Y, Nakai M, Harada M, Shibata H, Kiso Y, Ogata T (2013) Evaluation of antioxidative effects of sesamin on the in vivo hepatic reducing abilities by a radiofrequency ESR method. Anal Sci 29:89–94
Liu C-M, Zheng G-H, Ming Q-L, Cheng C, Sun J-M (2013) Sesamin protects mouse liver against nickel-induced oxidative DNA damage and apoptosis by the PI3K/Akt pathway. J Agric Food Chem 61:1146–1154
Saarinen NM, Wärri A, Airio M, Smeds A, Mäkelä S (2007) Role of dietary lignans inthe reduction of breast cancer risk. Mol Nutr Food Res 51:857–866
Velentzis LS, Cantwell MM, Cardwell C, Keshtgar MR, Leathem AJ, Woodside JV (2009) Lignans and breast cancer risk in pre- and post-menopausal women: meta-analysesof observational studies. Br J Cancer 100:1492–1498
Velentzis LS, Keshtgar MR, Woodside JV, Leathem AJ, Titcomb A, Perkins KA, Mazurowska M, Anderson V, Wardell K, Cantwell MM (2011) Significant changes in dietary intake and supplement use after breast cancer diagnosis in a UK multicentre study. Breast Cancer Res Treat 128:473–482
Buck K, Zaineddin AK, Vrieling A, Linseisen J, Chang-Claude J (2010) Meta-analysesof lignans and enterolignans in relation to breast cancer risk. Am J Clin Nutr 92:141–153
Buck K, Zaineddin AK, Vrieling A, Heinz J, Linseisen J, Flesch-Janys D, Chang-Claude J (2011) Estimated enterolignans, lignan-rich foods, and fibre in relationto survival after postmenopausal breast cancer. Br J Cancer 105:1151–1157
Zaineddin AK, Buck K, Vrieling A, Heinz J, Flesch-Janys D, Linseisen J, Chang-Claude J (2012) The association between dietary lignans, phytoestrogen-rich foods, and fiber intake and postmenopausal breast cancer risk: a German case–control study. Nutr Cancer 64:652–665
Buck K, Vrieling A, Zaineddin AK, Becker S, Hüsing A, Kaaks R, Linseisen J, Flesch-Janys D, Chang-Claude J (2011) Serum enterolactone and prognosis of postmenopausal breast cancer. J Clin Oncol 29:3730–3738
Chen JM, Saggar JK, Corey P, Thompson LU (2009) Flaxseed and pure secoisolariciresinol diglucoside, but not flaxseed hull, reduce human breast tumor growth (MCF-7) in athymic mice. J Nutr 139:2061–2066
Truan JS, Chen JM, Thompson LU (2012) Comparative effects of sesame seed lignan and flaxseed lignan in reducing the growth of human breast tumors (MCF-7) at high levels of circulating estrogen in athymic mice. Nutr Cancer 64:65–71
Yousefzadi M, Sharifi M, Behmanesh M, Moyano E, Bonfill M, Cusido RM, Palazon J (2010) Podophyllotoxin: current approaches to its biotechnological production and future challenges. Eng Life Sci 10:281–292
Davin LB, Lewis NG (2003) A historical perspective on lignan biosynthesis: monolignol, allylphenol and hydroxycinnamic acid coupling and downstream metabolism. Phytochem Rev 2:257–288
Ono E, Nakai M, Fukui Y, Tomimori N, Fukuchi-Mizutani M, Saito M, Satake H, Tanaka T, Katsuta M, Umezawa T, Tanaka Y (2006) Formation of two methylenedioxy bridges by a Sesamum CYP81Q protein yielding a furofuran lignan, (+)-sesamin. Proc Natl Acad Sci U S A 103:10116–10121
Noguchi A, Fukui Y, Iuchi-Okada A, Kakutani S, Satake H, Iwashita T, Nakao M, Umezawa T, Ono E (2008) Sequential glucosylation of a furofuran lignan, (+)-sesaminol, by Sesamum indicum UGT71A9 and UGT94D1. Plant J 54:415–427
Marques JV, Kim K-W, Lee C, Costa MA, May GD, Crow JA, Davin LB, Lewis NG (2013) Next generation sequencing in predicting gene function in podophyllotoxin biosynthesis. J Biol Chem 288:466–479
Marques JV, Dalisay DS, Yang H, Lee C, Davin LB, Lewis NG (2014) A multi-omics strategy resolves the elusive nature of alkaloids in Podophyllum species. Mol BioSyst 10:2838–2849
Wang L, Yu S, Tong C, Zhao Y, Liu Y, Song C, Zhang Y, Zhang X, Wang Y, Hua W, Li D, Li D, Li F, Yu J, Xu C, Han X, Huang S, Tai S, Wang J, Xu X, Li Y, Liu S, Varshney RK, Wang J, Zhang X (2014) Genome sequencing of the high oil crop sesame provides insight into oil biosynthesis. Genome Biol 15:R39
Wang L, Han X, Zhang Y, Li D, Wei X, Ding X, Zhang X (2014) Deep resequencing reveals allelic variation in Sesamum indicum. BMC Plant Biol 14:225
Wu K, Yang M, Liu H, Tao Y, Mei J, Zhao Y (2014) Genetic analysis and molecular characterization of Chinese sesame (Sesamum indicum L.) cultivars using insertion-deletion (InDel) and simple sequence repeat (SSR) markers. BMC Genet 15:35
Babu PR, Rao KV, Reddy VD (2013) Structural organization and classification of cytochrome P450 genes in flax (Linum usitatissimum L.). Gene 513:156–162
Bhattacharyya D, Sinha R, Hazra S, Datta R, Chattopadhyay S (2013) De novotranscriptome analysis using 454 pyrosequencing of the Himalayan Mayapple, Podophyllum hexandrum. BMC Genomics 14:748
Dinkova-Kostova AT, Gang DR, Davin LB, Bedgar DL, Chu A, Lewis NG (1996) (+)-pinoresinol/(+)-lariciresinol reductase from Forsythia intermedia. J Biol Chem 271:29473–29482
Gang DR, Kasahara H, Xia Z-Q, Vander-Mijnsbrugge K, Bauw G, Boerjan W, Van Montagu M, Davin LB, Lewis NG (1999) Evolution of plant defense mechanisms. Relationships of phenylcoumaran benzylic ether reductases to pinoresinol-lariciresinol and isoflavone reductases. J Biol Chem 274:7516–7527
Hemmati S, Schmidt TJ, Fuss E (2007) (+)-pinoresinol/(−)-lariciresinol reductase from Linum perenne Himmelszelt involved in the biosynthesis of justicidin B. FEBS Lett 581:603–610
Bayindir Ü, Alfermann AW, Fuss E (2008) Hinokinin Biosynthesis in Linum corymbulosum Reichenb. Plant J 55:810–820
Nakatsubo T, Mizutani M, Suzuki S, Hattori T, Umezawa T (2008) Characterization of Arabidopsis thaliana pinoresinol reductase, a new type of enzyme involved in lignan biosynthesis. J Biol Chem 283:15550–15557
Wankhede DP, Biswas DK, Rajkumar S, Sinha AK (2013) Expressed sequence tags and molecular cloning and characterization of gene encoding pinoresinol/lariciresinolreductase from Podophyllum hexandrum. Protoplasma 250:1239–1249
Ono E, Kim H-J, Murata J, Morimoto K, Okazawa A, Kobayashi A, Umezawa T, Satake H (2010) Molecular and functional characterization of novel furofuran-class lignan glucosyltransferases from Forsythia. Plant Biotechnol 27:317–324
Kim H-J, Ono E, Morimoto K, Yamagaki T, Okazawa A, Kobayashi A, Satake H (2009) Metabolic engineering of lignan biosynthesis in Forsythia cell culture. Plant Cell Physiol 50:2200–2209
Morimoto K, Satake H (2013) Seasonal alteration in amounts of lignans and their glucosides and gene expression of the relevant biosynthetic enzymes in the Forsythia suspense leaf. Biol Pharm Bull 36:1519–1523
Okazawa A, Kusunose T, Ono E, Kim H-J, Satake H, Shimizu B, Mizutani M, Seki H, Muranaka T (2014) Glucosyltransferase activity of Arabidopsis UGT71C1 towards pinoresinol and lariciresinol. Plant Biotechnol 31:561–566. doi:10.5511/plantbiotechnology.14.0910a
Xia Z-Q, Costa MA, Pélissier HC, Davin LB, Lewis NG (2001) Secoisolariciresinol dehydrogenase purification, cloning, and functional expression. J Biol Chem 276:12614–12623
Ghose K, Selvaraj K, McCallum J, Kirby CW, Sweeney-Nixon M, Cloutier SJ, Deyholos M, Datla R, Fofana B (2014) Identification and functional characterization of a flax UDP-glycosyltransferase glucosylating secoisolariciresinol (SECO) into secoisolariciresinol monoglucoside (SMG) and diglucoside (SDG). BMC Plant Biol 14:82
Umezawa T, Ragamustari SK, Nakatsubo T, Wada S, Li L, Yamamura M, Sakakibara N, Hattori T, Suzuki S, Chiang VL (2013) A lignan O-methyltransferase catalyzing the regioselective methylation of matairesinol in Carthamus tinctorius. Plant Biotechnol 30:97–109
Ragamustari SK, Yamamura M, Ono E, Hattori T, Suzuki S, Suzuki H, Shibata D, Umezawa T (2014) Substrate-enantiomer selectivity of matairesinol O-methyltransferases. Plant Biotechnol 31:257–267
Ragamustari SK, Nakatsubo T, Hattori T, Ono E, Kitamura Y, Suzuki S, Yamamura M, Umezawa T (2013) A novel O-methyltransferase involved in the first methylation step of yatein biosynthesis from matairesinol in Anthriscus sylvestris. Plant Biotechnol 30:375–384
Wang Z, Hobson N, Galindo L, Zhu S, Shi D, McDill J, Yang L, Hawkins S, Neutelings G, Datla R, Lambert G, Galbraith DW, Grassa CJ, Geraldes A, Cronk QC, Cullis C, Dash PK, Kumar PA, Cloutier S, Sharpe AG, Wong GKS, Wang J, Deyholos MK (2012) The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads. Plant J 72:461–473
Barvkar VT, Pardeshi VC, Kale SM, Kadoo NY, Gupta VS (2012) Phylogenomic analysis of UDP glycosyltransferase1 multigene family in Linum usitatissimum identified genes with varied expression patterns. BMC Genomics 2012:13,175
Eyberger AL, Dondapati R, Porter JR (2006) Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J Nat Prod 69:1121–1124
Schmitt J, Petersen M (2002) Pinoresinol and matairesinol accumulation in a Forsythia x intermedia cell suspension culture. Plant Cell Tissue Organ Cult 68:91–98
Morimoto K, Ono E, Kim H-J, Okazawa A, Kobayashi A, Satake H (2011) The construction of transgenic Forsythia plants: comparative study of three Forsythia species. Plant Biotechnol 28:273–280
Renouard S, Tribalatc M-A, Lamblin F, Mongelard G, Fliniaux O, Corbin C, Marosevic D, Pilard S, Demailly H, Gutierrez L, Hano C, Mesnard F, Lainé E (2014) RNAi-mediated pinoresinol lariciresinol reductase gene silencing in flax (Linum usitatissimum L.) seed coat: consequences on lignans and neolignans accumulation. J Plant Physiol 171:1372–1377
Rosati C, Cadic A, Renou J-P, Duron M (1996) Regeneration and agrobacterium-mediated transformation of Forsythia x intermedia “Spring Glowly”. Plant Cell Rep 16:114–117
Rosati C, Simoneau P, Treutter D, Poupard P, Cadot Y, Cadic A, Duron M (2003) Engineering of flower color in forsythia by expression of two independently-transformed dihydroflavonol 4-reductase and anthocyanidin synthase genes of flavonoid pathway. Mol Breed 12:197–208
Murase K, Sugai Y, Hayashi S, Suzuki Y, Tsuji K, Takayama S (2015) Generation of transgenic Linum perenne by Agrobacterium mediated transformation. Plant Biotechnol 32:349–352
Morimoto K, Kim H-J, Ono E, Kobayashi A, Okazawa A, Satake H (2011) Effects of light on production of endogenous and exogenous lignans by Forsythia koreana wildtype and transgenic cells. Plant Biotechnol 28:331–337
Yousefzadi M, Sharifi M, Behmanesh M, Ghasempour A, Moyano E, Palazon J (2012) The effect of light on gene expression and podophyllotoxin biosynthesis in Linum album cell culture. Plant Physiol Biochem 56:41–56
Hata N, Hayashi Y, Okazawa A, Ono E, Satake H, Kobayashi A (2012) Effect of photoperiod on growth of the plants, and sesamin content and CYP81Q1 gene expression in the leaves of sesame (Sesamum indicum L.). Environ Exp Bot 75:212–219
Kobayashi T, Niino T, Kobayashi M (2005) Simple cryopreservation protocol with an encapsulation technique for tobacco BY-2 suspension cell cultures. Plant Biotechnol 22:105–112. doi:10.5511/plantbiotechnology.22.105
Ogawa Y, Sakurai N, Oikawa A, Kai K, Morishita Y, Mori K et al (2011) High-throughput cryopreservation of plant cell cultures for functional genomics. Plant Cell Physiol 53:943–952. doi:10.1093/pcp/pcs038, PMID: 22437846
Sarasan V, Cripps R, Ramsay MM, Atherton C, Mcmichen M, Prendergast G (2006) Conservation in vitro of threatened plants – progress in the past decade. In Vitro Cell Dev Biol Plant 42:206–214. doi:10.1079/IVP2006769
Chen Q, Lai H, Hurtado J, Stahnke J, Leuzinger K, Dent M (2013) Agroinfiltration as an effective and scalable strategy of gene delivery for production of pharmaceutical proteins. Adv Tech Biol Med 1:103
Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283–333
Berim A, Spring O, Conrad J, Maitrejean M, Boland W, Petersen M (2005) Enhancement of lignan biosynthesis in suspension cultures of Linum nodiflorum by coronalon, indanoyl-isoleucine and methyl jasmonate. Planta 222:769–776
Van Fürden B, Humburg A, Fuss E (2005) Influence of methyl jasmonate on podophyllotoxin and 6-methoxypodophyllotoxin accumulation in Linum album cell suspension cultures. Plant Cell Rep 24:312–317
Yousefzadi M, Sharifi M, Behmanesh M, Ghasempour A, Moyano E, Palazon J (2010) Salicylic acid improves podophyllotoxin production in cell cultures of Linum album by increasing the expression of genes related with its biosynthesis. Biotechnol Lett 32:1739–1743
Bhattacharyya D, Sinha R, Ghanta S, Chakraborty A, Hazra S, Chattopadhyay S (2012) Proteins differentially expressed in elicited cell suspension culture of Podophyllum hexandrum with enhanced podophyllotoxin content. Proteome Sci 10:34
Vardapetyan HR, Kirakosyan AB, Oganesyan AA, Penesyan AR, Alfermann WA (2003) Effect of various elicitors onlignan biosynthesis in callus cultures of Linum austriacum. Russ J Plant Physl 50:297–300
Ionkova I (2009) Effect of methyl jasmonate on production of ariltetralin lignans in hairy root cultures of Linum tauricum. Pharmacogn Res 1:102–105
Schmitt J, Petersen M (2002) Influence of methyl jasmonate and coniferyl alcohol on pinoresinol and matairesinol accumulation in a Forsythia × intermedia suspension culture. Plant Cell Rep 20:885–890
Muranaka T, Miyata M, Ito K, Tachibana S (1998) Production of podophyllotoxin in Juniperus chinensis callus cultures treated with oligosaccharides and a biogenetic precursor. Phytochemistry 49:491–496
Bahabadi SE, Sharifi M, Safaie N, Murata J, Yamagaki T, Satake H (2011) Increased lignan biosynthesis in the suspension cultures of Linum album by fungal extracts. Plant Biotechnol Rep 5:367–373
Bahabadi SE, Sharifi M, Chashmi NA, Murata J, Satake H (2014) Significant enhancement of lignans accumulation in hairy root cultures of Linum album using biotic elicitors. Acta Physiol Plant 36:3325–3331
Bahabadi SE, Sharifi M, Murata J, Satake H (2014) The effect of chitosan and chitin oligomers on gene expression and lignan production in Linum album cell cultures. J Med Plant 13:46–53
Hano C, Addi M, Bensaddek L, Crônier D, Baltora-Rosset S, Doussot J, Maury S, Mesnard B, Chabbert B, Hawkins S, Lainé E, Lamblin F (2006) Differential accumulation of monolignol-drived compounds in elicited flax (Linum usitatissimum) cell suspension cultures. Planta 223:975–989
Bahabadi SE, Sharifi M, Behmanesh M, Safaie N, Murata J, Araki R, Yamagaki T, Satake H (2012) Time-course changes in fungal elicitor-induced lignan synthesis and expression of the relevant genes in cell cultures of Linum album. J Plant Physiol 169:487–491
Tahsili J, Sharifi M, Safaie N, Bahabadi SE, Behmanesh M (2014) Induction of lignans and phenolic compounds in cell culture of Linum album by culture filtrate of Fusarium graminearum. J Plant Interact 9:412–417
Chun C, Kozai T (2001) A closed transplant production system, a hybrid of scaled-up micropropagation system and plant factory. J Plant Biotechnol 3:59–66
Hirai T, Fukukawa G, Kakuta H, Fukuda N, Ezura H (2010) Production of recombinant miraculin using transgenic tomatoes in a closed cultivation system. J Agric Food Chem 58:6096–6101
Kato K, Yoshida R, Kikuzaki A, Hirai T, Kuroda H, Hiwasa-Tanase K, Takane K, Ezura H, Mizoguchi T (2010) Molecular breeding of tomato lines for mass production of miraculin in a plant factory. J Agric Food Chem 58:9505–9510
Acknowledgments
This work was, in part, supported by the Plant Factory Project of the Ministry of Economy, Technology, and Industry of Japan.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this entry
Cite this entry
Satake, H., Koyama, T., Matsumoto, E., Morimoto, K., Ono, E., Murata, J. (2016). Metabolic Engineering of Lignan Biosynthesis Pathways for the Production of Transgenic Plant-Based Foods. In: Jha, S. (eds) Transgenesis and Secondary Metabolism. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-27490-4_11-1
Download citation
DOI: https://doi.org/10.1007/978-3-319-27490-4_11-1
Received:
Accepted:
Published:
Publisher Name: Springer, Cham
Online ISBN: 978-3-319-27490-4
eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences