Skip to main content

Ovarian Physiology

  • Living reference work entry
  • First Online:
Principles of Endocrinology and Hormone Action

Part of the book series: Endocrinology ((ENDOCR))

  • 481 Accesses

Abstract

This chapter discusses ovarian processes starting in uterine life and subsequently across the following phases: from birth until puberty, the pubertal period itself, then from post puberty until menopause, and finally during menopause and the postmenopausal phase. The ovary has three important functions: first, oocyte and follicle formation and storage; second, oocyte and follicle development resulting in ovulation; and third, reproductive hormone production. The hormone production is inseparable from follicular development. The various processes are described in each of the different phases of life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adhikari D, Liu K. Molecular mechanisms underlying the activation of mammalian primordial follicles. Endocr Rev. 2009;30(5):438–64.

    Article  CAS  PubMed  Google Scholar 

  • Adhikari D, Liu K. mTOR signaling in the control of activation of primordial follicles. Cell Cycle. 2010;9(9):1673–4.

    Article  CAS  PubMed  Google Scholar 

  • Andersen CY, Schmidt KT, Kristensen SG, Rosendahl M, Byskov AG, Ernst E. Concentrations of AMH and inhibin-B in relation to follicular diameter in normal human small antral follicles. Hum Reprod. 2010;25(5):1282–7.

    Article  CAS  PubMed  Google Scholar 

  • Anderson RA, McLaughlin M, Wallace WH, Albertini DF, Telfer EE. The immature human ovary shows loss of abnormal follicles and increasing follicle developmental competence through childhood and adolescence. Hum Reprod. 2014;29(1):97–106.

    Article  CAS  PubMed  Google Scholar 

  • Apter D, Cacciatore B, Alfthan H, Stenman UH. Serum luteinizing hormone concentrations increase 100-fold in females from 7 years to adulthood, as measured by time-resolved immunofluorometric assay. J Clin Endocrinol Metab. 1989;68(1):53–7.

    Article  CAS  PubMed  Google Scholar 

  • Arendsen de Wolff-Exalto E. Influence of gonadotrophins on early follicle cell development and early oocyte growth in the immature rat. J Reprod Fertil. 1982;66(2):537–42.

    Article  CAS  PubMed  Google Scholar 

  • Baker TG, Scrimgeour JB. Development of the gonad in normal and anencephalic human fetuses. J Reprod Fertil. 1980;60(1):193–9.

    Article  CAS  PubMed  Google Scholar 

  • Beemsterboer SN, Homburg R, Gorter NA, Schats R, Hompes PG, Lambalk CB. The paradox of declining fertility but increasing twinning rates with advancing maternal age. Hum Reprod. 2006;21(6):1531–2.

    Article  CAS  PubMed  Google Scholar 

  • Bentzen JG, Forman JL, Johannsen TH, Pinborg A, Larsen EC, Andersen AN. Ovarian antral follicle subclasses and anti-mullerian hormone during normal reproductive aging. J Clin Endocrinol Metab. 2013;98(4):1602–11.

    Article  CAS  PubMed  Google Scholar 

  • Broekmans FJ, Visser JA, Laven JS, Broer SL, Themmen AP, Fauser BC. Anti-Mullerian hormone and ovarian dysfunction. Trends Endocrinol Metab. 2008;19(9):340–7.

    Article  CAS  PubMed  Google Scholar 

  • Castrillon DH, Miao L, Kollipara R, Horner JW, DePinho RA. Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a. Science. 2003;301(5630):215–8.

    Article  CAS  PubMed  Google Scholar 

  • Chan C, Liu K. Clinical pregnancy in a woman with idiopathic hypogonadotropic hypogonadism and low AMH: utility of ovarian reserve markers in IHH. J Assist Reprod Genet. 2014;31(10):1317–21.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng Y, Kawamura K, Takae S, Deguchi M, Yang Q, Kuo C, et al. Oocyte-derived R-spondin2 promotes ovarian follicle development. FASEB J. 2013;27(6):2175–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis GH, McEwan JC, Fennessy PF, Dodds KG, McNatty KP, WS O. Infertility due to bilateral ovarian hypoplasia in sheep homozygous (FecXI FecXI) for the inverdale prolificacy gene located on the X chromosome. Biol Reprod. 1992;46(4):636–40.

    Article  CAS  PubMed  Google Scholar 

  • Dewailly D, Robin G, Peigne M, Decanter C, Pigny P, Catteau-Jonard S. Interactions between androgens, FSH, anti-Mullerian hormone and estradiol during folliculogenesis in the human normal and polycystic ovary. Hum Reprod Update. 2016;22:709–24.

    Article  PubMed  Google Scholar 

  • di Clemente N, Goxe B, Remy JJ, Cate R, Josso N, Vigier B, et al. Inhibitory effect of AMH upon aromatase activity and LH receptors of granulosa cells of rat and porcine immature ovaries. Endocrine. 1994;2(6):553–8.

    Google Scholar 

  • Dickerman Z, Prager-Lewis R, Laron Z. Response of plasma LH and FSH to synthetic LH-RH in children at various pubertal stages. Am J Dis Child. 1976;130(6):634–8.

    CAS  PubMed  Google Scholar 

  • Dong J, Albertini DF, Nishimori K, Kumar TR, Lu N, Matzuk MM. Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature. 1996;383(6600):531–5.

    Article  CAS  PubMed  Google Scholar 

  • Donnez J, Silber S, Andersen CY, Demeestere I, Piver P, Meirow D, et al. Children born after autotransplantation of cryopreserved ovarian tissue. a review of 13 live births. Ann Med. 2011;43(6):437–50.

    Article  PubMed  Google Scholar 

  • Durlinger AL, Gruijters MJ, Kramer P, Karels B, Kumar TR, Matzuk MM, et al. Anti-Mullerian hormone attenuates the effects of FSH on follicle development in the mouse ovary. Endocrinology. 2001;142(11):4891–9.

    CAS  PubMed  Google Scholar 

  • Farquhar C, Brown J, Marjoribanks J. Laparoscopic drilling by diathermy or laser for ovulation induction in anovulatory polycystic ovary syndrome. Cochrane Database Syst Rev. 2012;6, CD001122.

    Google Scholar 

  • Fraser IS, Baird DT. Endometrial cystic glandular hyperplasia in adolescent girls. J Obstet Gynaecol Br Commonw. 1972;79(11):1009–15.

    Article  CAS  PubMed  Google Scholar 

  • Fraser IS, Michie EA, Wide L, Baird DT. Pituitary gonadotropins and ovarian function in adolescent dysfunctional uterine bleeding. J Clin Endocrinol Metab. 1973;37(3):407–14.

    Article  CAS  PubMed  Google Scholar 

  • Gallardo TD, John GB, Shirley L, Contreras CM, Akbay EA, Haynie JM, et al. Genomewide discovery and classification of candidate ovarian fertility genes in the mouse. Genetics. 2007;177(1):179–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galloway SM, McNatty KP, Cambridge LM, Laitinen MP, Juengel JL, Jokiranta TS, et al. Mutations in an oocyte-derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner. Nat Genet. 2000;25(3):279–83.

    Article  CAS  PubMed  Google Scholar 

  • Gosden RG, Faddy MJ. Ovarian aging, follicular depletion, and steroidogenesis. Exp Gerontol. 1994;29(3–4):265–74.

    Article  CAS  PubMed  Google Scholar 

  • Gougeon A. Regulation of ovarian follicular development in primates: facts and hypotheses. Endocr Rev. 1996;17(2):121–55.

    Article  CAS  PubMed  Google Scholar 

  • Gougeon A. Ovarian follicular growth in humans: ovarian ageing and population of growing follicles. Maturitas. 1998;30(2):137–42.

    Article  CAS  PubMed  Google Scholar 

  • Gougeon A, Testart J. Germinal vesicle breakdown in oocytes of human atretic follicles during the menstrual cycle. J Reprod Fertil. 1986;78(2):389–401.

    Article  CAS  PubMed  Google Scholar 

  • Gougeon A, Ecochard R, Thalabard JC. Age-related changes of the population of human ovarian follicles: increase in the disappearance rate of non-growing and early-growing follicles in aging women. Biol Reprod. 1994;50(3):653–63.

    Article  CAS  PubMed  Google Scholar 

  • Groome NP, Illingworth PJ, O'Brien M, Pai R, Rodger FE, Mather JP, McNeilly AS. Measurement of dimeric inhibin B throughout the human menstrual cycle. J Clin Endocrinol and Metab. 1996; 81(4):1401–1402.

    CAS  Google Scholar 

  • Gwynne JT, Strauss 3rd JF. The role of lipoproteins in steroidogenesis and cholesterol metabolism in steroidogenic glands. Endocr Rev. 1982;3(3):299–329.

    Article  CAS  PubMed  Google Scholar 

  • Hagen CP, Aksglaede L, Sorensen K, Main KM, Boas M, Cleemann L, et al. Serum levels of anti-Mullerian hormone as a marker of ovarian function in 926 healthy females from birth to adulthood and in 172 Turner syndrome patients. J Clin Endocrinol Metab. 2010;95(11):5003–10.

    Article  CAS  PubMed  Google Scholar 

  • Hagen CP, Aksglaede L, Sorensen K, Mouritsen A, Andersson AM, Petersen JH, et al. Individual serum levels of anti-Mullerian hormone in healthy girls persist through childhood and adolescence: a longitudinal cohort study. Hum Reprod. 2012a;27(3):861–6.

    Article  CAS  PubMed  Google Scholar 

  • Hagen CP, Sorensen K, Anderson RA, Juul A. Serum levels of anti mullerian hormone in early maturing girls before, during, and after suppression with GnRH agonist. Fertil Steril. 2012b;98(5):1326–30.

    Article  CAS  PubMed  Google Scholar 

  • Halder G, Johnson RL. Hippo signaling: growth control and beyond. Development. 2011;138(1):9–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall JE. Neuroendocrine changes with reproductive aging in women. Semin Reprod Med. 2007;25(5):344–51.

    Article  CAS  PubMed  Google Scholar 

  • Hall JE, Welt CK, Cramer DW. Inhibin A and inhibin B reflect ovarian function in assisted reproduction but are less useful at predicting outcome. Hum Reprod. 1999;14(2):409–15.

    Article  CAS  PubMed  Google Scholar 

  • Halpin DM, Charlton HM, Faddy MJ. Effects of gonadotrophin deficiency on follicular development in hypogonadal (hpg) mice. J Reprod Fertil. 1986;78(1):119–25.

    Article  CAS  PubMed  Google Scholar 

  • Hergovich A, Hemmings BA. Hippo signalling in the G2/M cell cycle phase: lessons learned from the yeast MEN and SIN pathways. Semin Cell Dev Biol. 2012;23(7):794–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsueh AJ, Kawamura K, Cheng Y, Fauser BC. Intraovarian control of early folliculogenesis. Endocr Rev. 2015;36(1):1–24.

    Article  CAS  PubMed  Google Scholar 

  • Hu YC, Wang PH, Yeh S, Wang RS, Xie C, Xu Q, et al. Subfertility and defective folliculogenesis in female mice lacking androgen receptor. Proc Natl Acad Sci U S A. 2004;101(31):11209–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang L, Wang ZB, Jiang ZZ, Hu MW, Lin F, Zhang QH, et al. Specific disruption of Tsc1 in ovarian granulosa cells promotes ovulation and causes progressive accumulation of corpora lutea. PLoS ONE. 2013;8(1), e54052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juengel JL, Bodensteiner KJ, Heath DA, Hudson NL, Moeller CL, Smith P, et al. Physiology of GDF9 and BMP15 signalling molecules. Anim Reprod Sci. 2004;82–83:447–60.

    Article  PubMed  Google Scholar 

  • Kawamura K, Cheng Y, Suzuki N, Deguchi M, Sato Y, Takae S, et al. Hippo signaling disruption and Akt stimulation of ovarian follicles for infertility treatment. Proc Natl Acad Sci U S A. 2013;110(43):17474–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keye WR, Jr., Jaffe RB. Strength-duration characteristics of estrogen effects on gonadotropin response to gonadotropin-releasing hormone in women. I. Effects of varying duration of estradiol.

    Google Scholar 

  • Klein NA, Battaglia DE, Fujimoto VY, Davis GS, Bremner WJ, Soules MR. Reproductive aging: accelerated ovarian follicular development associated with a monotropic follicle-stimulating hormone rise in normal older women. J Clin Endocrinol Metab. 1996;81(3):1038–45.

    CAS  PubMed  Google Scholar 

  • Kuijper EA, Ket JC, Caanen MR, Lambalk CB. Reproductive hormone concentrations in pregnancy and neonates: a systematic review. Reprod Biomed Online. 2013;27(1):33–63.

    Article  CAS  PubMed  Google Scholar 

  • Kuiri-Hanninen T, Kallio S, Seuri R, Tyrvainen E, Liakka A, Tapanainen J, et al. Postnatal developmental changes in the pituitary-ovarian axis in preterm and term infant girls. J Clin Endocrinol Metab. 2011;96(11):3432–9.

    Article  CAS  PubMed  Google Scholar 

  • Kuiri-Hanninen T, Haanpaa M, Turpeinen U, Hamalainen E, Seuri R, Tyrvainen E, et al. Postnatal ovarian activation has effects in estrogen target tissues in infant girls. J Clin Endocrinol Metab. 2013;98(12):4709–16.

    Article  CAS  PubMed  Google Scholar 

  • Kumar TR, Wang Y, Lu N, Matzuk MM. Follicle stimulating hormone is required for ovarian follicle maturation but not male fertility. Nat Genet. 1997;15(2):201–4.

    Article  CAS  PubMed  Google Scholar 

  • La MA, Malmusi S, Giulini S, Tamaro LF, Orvieto R, Levratti P, et al. Anti-Mullerian hormone plasma levels in spontaneous menstrual cycle and during treatment with FSH to induce ovulation. Hum Reprod. 2004;19(12):2738–41.

    Article  Google Scholar 

  • Lashen H, Dunger DB, Ness A, Ong KK. Peripubertal changes in circulating antimullerian hormone levels in girls. Fertil Steril. 2013;99(7):2071–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazerbourg S, Klein C, Roh J, Kaivo-Oja N, Mottershead DG, Korchynskyi O, et al. Growth differentiation factor-9 signaling is mediated by the type I receptor, activin receptor-like kinase 5. Mol Endocrinol. 2004;18(3):653–65.

    Article  CAS  PubMed  Google Scholar 

  • McGee EA, Perlas E, LaPolt PS, Tsafriri A, Hsueh AJ. Follicle-stimulating hormone enhances the development of preantral follicles in juvenile rats. Biol Reprod. 1997;57(5):990–8.

    Article  CAS  PubMed  Google Scholar 

  • McKinlay SM, Brambilla DJ, Posner JG. The normal menopause transition. Maturitas. 1992;14(2):103–15.

    Article  CAS  PubMed  Google Scholar 

  • Micevych P, Sinchak K. The neurosteroid progesterone underlies estrogen positive feedback of the LH surge. Front Endocrinol (Lausanne). 2011;2:90.

    Google Scholar 

  • Millar RP, Roseweir AK, Tello JA, Anderson RA, George JT, Morgan K, et al. Kisspeptin antagonists: unraveling the role of kisspeptin in reproductive physiology. Brain Res. 2010;1364:81–9.

    Article  CAS  PubMed  Google Scholar 

  • Mouritsen A, Aksglaede L, Soerensen K, Hagen CP, Petersen JH, Main KM, et al. The pubertal transition in 179 healthy Danish children: associations between pubarche, adrenarche, gonadarche, and body composition. Eur J Endocrinol. 2013;168(2):129–36.

    Article  CAS  PubMed  Google Scholar 

  • Naftolin F, et al. In: Ferin M et al., editors. Biorhytms and human reproduction. New York: Wiley; 1974. p. 219–38.

    Google Scholar 

  • Orisaka M, Orisaka S, Jiang JY, Craig J, Wang Y, Kotsuji F, et al. Growth differentiation factor 9 is antiapoptotic during follicular development from preantral to early antral stage. Mol Endocrinol. 2006;20(10):2456–68.

    Article  CAS  PubMed  Google Scholar 

  • Otsuka F, Yao Z, Lee T, Yamamoto S, Erickson GF, Shimasaki S. Bone morphogenetic protein-15. Identification of target cells and biological functions. J Biol Chem. 2000;275(50):39523–8.

    Article  CAS  PubMed  Google Scholar 

  • Overlie I, Moen MH, Morkrid L, Skjaeraasen JS, Holte A. The endocrine transition around menopause – a five years prospective study with profiles of gonadotropines, estrogens, androgens and SHBG among healthy women. Acta Obstet Gynecol Scand. 1999;78(7):642–7.

    Article  CAS  PubMed  Google Scholar 

  • Persani L, Rossetti R, Di Pasquale E, Cacciatore C, Fabre S. The fundamental role of bone morphogenetic protein 15 in ovarian function and its involvement in female fertility disorders. Hum Reprod Update. 2014;20(6):869–83.

    Article  PubMed  Google Scholar 

  • Peters H, Byskov AG, Grinsted J. Follicular growth in fetal and prepubertal ovaries of humans and other primates. Clin Endocrinol Metab. 1978;7(3):469–85.

    Article  CAS  PubMed  Google Scholar 

  • Pineda R, Garcia-Galiano D, Roseweir A, Romero M, Sanchez-Garrido MA, Ruiz-Pino F, et al. Critical roles of kisspeptins in female puberty and preovulatory gonadotropin surges as revealed by a novel antagonist. Endocrinology. 2010;151(2):722–30.

    Article  CAS  PubMed  Google Scholar 

  • Randolph Jr JF, Zheng H, Sowers MR, Crandall C, Crawford S, Gold EB, et al. Change in follicle-stimulating hormone and estradiol across the menopausal transition: effect of age at the final menstrual period. J Clin Endocrinol Metab. 2011;96(3):746–54.

    Article  CAS  PubMed  Google Scholar 

  • Reddy P, Liu L, Adhikari D, Jagarlamudi K, Rajareddy S, Shen Y, et al. Oocyte-specific deletion of Pten causes premature activation of the primordial follicle pool. Science. 2008;319(5863):611–3.

    Article  CAS  PubMed  Google Scholar 

  • Richardson SJ. The biological basis of the menopause. Baillieres Clin Endocrinol Metab. 1993;7(1):1–16.

    Article  CAS  PubMed  Google Scholar 

  • Retamales I, Carrasco I, Troncoso JL, Las Heras J, Devoto L, Vega M. Morpho-functional study of human luteal cell subpopulations. Hum Reprod. 1994;9(4):591–6.

    CAS  PubMed  Google Scholar 

  • Sherman BM, West JH, Korenman SG. The menopausal transition: analysis of LH, FSH, estradiol, and progesterone concentrations during menstrual cycles of older women. J Clin Endocrinol Metab. 1976;42(4):629–36.

    Article  CAS  PubMed  Google Scholar 

  • Shiina H, Matsumoto T, Sato T, Igarashi K, Miyamoto J, Takemasa S, et al. Premature ovarian failure in androgen receptor-deficient mice. Proc Natl Acad Sci U S A. 2006;103(1):224–9.

    Article  CAS  PubMed  Google Scholar 

  • Sizonenko PC. Preadolescent and adolescent endocrinology: physiology and physiopathology. II. Hormonal changes during abnormal pubertal development. Am J Dis Child. 1978;132(8):797–805.

    Article  CAS  PubMed  Google Scholar 

  • Sluijmer AV, Heineman MJ, De Jong FH, Evers JL. Endocrine activity of the postmenopausal ovary: the effects of pituitary down-regulation and oophorectomy. J Clin Endocrinol Metab. 1995;80(7):2163–7.

    CAS  PubMed  Google Scholar 

  • Sluijmer AV, Heineman MJ, Koudstaal J, Theunissen PH, de Jong FH, Evers JL. Relationship between ovarian production of estrone, estradiol, testosterone, and androstenedione and the ovarian degree of stromal hyperplasia in postmenopausal women. Menopause. 1998;5(4):207–10.

    Article  CAS  PubMed  Google Scholar 

  • Solovyeva EV, Hayashi M, Margi K, Barkats C, Klein C, Amsterdam A, et al. Growth differentiation factor-9 stimulates rat theca-interstitial cell androgen biosynthesis. Biol Reprod. 2000;63(4):1214–8.

    Article  CAS  PubMed  Google Scholar 

  • Spicer LJ, Aad PY, Allen DT, Mazerbourg S, Payne AH, Hsueh AJ. Growth differentiation factor 9 (GDF9) stimulates proliferation and inhibits steroidogenesis by bovine theca cells: influence of follicle size on responses to GDF9. Biol Reprod. 2008;78(2):243–53.

    Article  CAS  PubMed  Google Scholar 

  • Stocco DM, Clark BJ. Role of the steroidogenic acute regulatory protein (StAR) in steroidogenesis. Biochem Pharmacol. 1996;51(3):197–205.

    Article  CAS  PubMed  Google Scholar 

  • Stocco C, Telleria C, Gibori G. The molecular control of corpus luteum formation, function, and regression. Endocr Rev. 2007;28(1):117–49.

    Article  CAS  PubMed  Google Scholar 

  • Stolk L, Zhai G, van Meurs JB, Verbiest MM, Visser JA, Estrada K, et al. Loci at chromosomes 13, 19 and 20 influence age at natural menopause. Nat Genet. 2009;41(6):645–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strauss 3rd JF, Kallen CB, Christenson LK, Watari H, Devoto L, Arakane F, et al. The steroidogenic acute regulatory protein (StAR): a window into the complexities of intracellular cholesterol trafficking. Recent Prog Horm Res. 1999;54:369–94. discussion 94–5.

    CAS  PubMed  Google Scholar 

  • Tarnawa ED, Baker MD, Aloisio GM, Carr BR, Castrillon DH. Gonadal expression of Foxo1, but not Foxo3, is conserved in diverse Mammalian species. Biol Reprod. 2013;88(4):103.

    Article  PubMed  PubMed Central  Google Scholar 

  • Verhoeven MO, van der Mooren MJ, Teerlink T, Verheijen RH, Scheffer PG, Kenemans P. The influence of physiological and surgical menopause on coronary heart disease risk markers. Menopause. 2009;16(1):37–49.

    Article  PubMed  Google Scholar 

  • Vitt UA, McGee EA, Hayashi M, Hsueh AJ. In vivo treatment with GDF-9 stimulates primordial and primary follicle progression and theca cell marker CYP17 in ovaries of immature rats. Endocrinology. 2000;141(10):3814–20.

    CAS  PubMed  Google Scholar 

  • Vitt UA, Mazerbourg S, Klein C, Hsueh AJ. Bone morphogenetic protein receptor type II is a receptor for growth differentiation factor-9. Biol Reprod. 2002;67(2):473–80.

    Article  CAS  PubMed  Google Scholar 

  • Weintraub A, Margalioth EJ, Chetrit AB, Gal M, Goldberg D, Alerhand S, et al. The dynamics of serum anti-Mullerian-hormone levels during controlled ovarian hyperstimulation with GnRH-antagonist short protocol in polycystic ovary syndrome and low responders. Eur J Obstet Gynecol Reprod Biol. 2014;176:163–7.

    Article  CAS  PubMed  Google Scholar 

  • Welt CK, Schneyer AL. Differential regulation of inhibin B and inhibin a by follicle-stimulating hormone and local growth factors in human granulosa cells from small antral follicles. J Clin Endocrinol Metab. 2001;86(1):330–6.

    CAS  PubMed  Google Scholar 

  • Winter JS, Faiman C. The development of cyclic pituitary-gonadal function in adolescent females. J Clin Endocrinol Metab. 1973;37(5):714–8.

    Article  CAS  PubMed  Google Scholar 

  • Yan C, Wang P, DeMayo J, DeMayo FJ, Elvin JA, Carino C, et al. Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function. Mol Endocrinol. 2001;15(6):854–66.

    Article  CAS  PubMed  Google Scholar 

  • Young JM, McNeilly AS. Theca: the forgotten cell of the ovarian follicle. Reproduction. 2010;140(4):489–504.

    Article  CAS  PubMed  Google Scholar 

  • Zeleznik AJ. In vivo responses of the primate corpus luteum to luteinizing hormone and chorionic gonadotropin. Proc Natl Acad Sci U S A. 1998;95(18):11002–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao B, Tumaneng K, Guan KL. The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat Cell Biol. 2011;13(8):877–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. O. Verhoeven .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Verhoeven, M.O., Lambalk, C.B. (2016). Ovarian Physiology. In: Belfiore, A., LeRoith, D. (eds) Principles of Endocrinology and Hormone Action. Endocrinology. Springer, Cham. https://doi.org/10.1007/978-3-319-27318-1_18-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27318-1_18-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-27318-1

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics