Skip to main content

Glycemic Targets and Prevention of Chronic Complications

  • Living reference work entry
  • First Online:
Diabetes. Epidemiology, Genetics, Pathogenesis, Diagnosis, Prevention, and Treatment

Part of the book series: Endocrinology ((ENDOCR))

  • 393 Accesses

Abstract

Hyperglycemia is the main cause and critical initiating factor of chronic microvascular complications of diabetes and also a major contributor to the macrovascular complications. In diabetes care it is therefore essential to set appropriate glycemic targets (or target ranges) that guide the management of the disease in order to reduce the risk of long-term complications, while avoiding unnecessary burden or adverse events. In this chapter we discuss the role of hyperglycemia in inducing diabetes chronic complications and evidence from clinical trials proving the benefit of glycemic control in preventing or ameliorating the progression of micro- and macrovascular complications. We also review the recommendations of current clinical guidelines, including individualization of glycemic targets when treating patients with diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • ACCORD Study Group Writing Committee. Nine-year effects of 3.7 years of intensive glycemic control on cardiovascular outcomes. Diabetes Care. 2016;39(5):701–8.

    Article  CAS  Google Scholar 

  • Action to Control Cardiovascular Risk in Diabetes Follow-On (ACCORDION) Eye Study Group and the Action to Control Cardiovascular Risk in Diabetes Follow-On (ACCORDION) Study Group. Persistent effects of intensive glycemic control on retinopathy in type 2 diabetes in the action to control cardiovascular risk in diabetes (ACCORD) follow-on study. Diabetes Care. 2016;39(7):1089–100.

    Article  CAS  Google Scholar 

  • Action to Control Cardiovascular Risk in Diabetes Study Group, Gerstein HC, Miller ME, Byington RP, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358(24):2545–59.

    Article  Google Scholar 

  • ADVANCE Collaborative Group, Patel A, MacMahon S, Chalmers J, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358(24):2560–72.

    Article  Google Scholar 

  • Agrawal L, Azad N, Emanuele NV, Veterans Affairs Diabetes Trial (VADT) Study Group, et al. Observation on renal outcomes in the Veterans Affairs Diabetes Trial. Diabetes Care. 2011;34(9):2090–4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Albers JW, Herman WH, Pop-Busui R, Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group, et al. Effect of prior intensive insulin treatment during the Diabetes Control and Complications Trial (DCCT) on peripheral neuropathy in type 1 diabetes during the Epidemiology of Diabetes Interventions and Complications (EDIC) study. Diabetes Care. 2010;33(5):1090–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • American Diabetes Association. Glycemic targets. Diabetes Care. 2016;39(Suppl 1):S39–46.

    Google Scholar 

  • Amin R, Widmer B, Prevost AT, et al. Risk of microalbuminuria and progression to macroalbuminuria in a cohort with childhood onset type 1 diabetes: prospective observational study. BMJ. 2008;336(7646):697–701.

    Article  PubMed  PubMed Central  Google Scholar 

  • Berezin A. Metabolic memory phenomenon in diabetes mellitus: achieving and perspectives. Diabetes Metab Syndr. 2016. https://doi.org/10.1016/j.dsx.2016.03.016.

  • Bergenstal RM. Glycemic variability and diabetes complications: does it matter? Simply put, there are better glycemic markers! Diabetes Care. 2015;38(8):1615–21.

    Article  PubMed  Google Scholar 

  • Bianchi C, Del Prato S. Metabolic memory and individual treatment aims in type 2 diabetes – outcome-lessons learned from large clinical trials. Rev Diabet Stud. 2011;8(3):432–40.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonds DE, Miller ME, Bergenstal RM, et al. The association between symptomatic, severe hypoglycaemia and mortality in type 2 diabetes: retrospective epidemiological analysis of the ACCORD study. BMJ. 2010;340:b4909.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bron M, Wilson C, Fleck P. A post hoc analysis of HbA1c, hypoglycemia, and weight change outcomes with alogliptin vs. glipizide in older patients with type 2 diabetes. Diabetes Ther. 2014;5(2):521–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54(6):1615–25.

    Article  PubMed  CAS  Google Scholar 

  • Brownlee M, Hirsch IB. Glycemic variability: a hemoglobin A1c-independent risk factor for diabetic complications. JAMA. 2006;295(14):1707–8.

    Article  PubMed  CAS  Google Scholar 

  • Cahn A, Raz I, Kleinman Y, et al. Clinical assessment of individualized glycemic goals in patients with type 2 diabetes: formulation of an algorithm based on a survey among leading worldwide diabetologists. Diabetes Care. 2015;38(12):2293–300.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cavender MA, Scirica BM, Raz I, et al. Cardiovascular outcomes of patients in SAVOR-TIMI 53 by baseline hemoglobin A1c. Am J Med. 2016;129(3):340.e1–8.

    Article  CAS  Google Scholar 

  • Ceriello A. The emerging challenge in diabetes: the “metabolic memory”. Vasc Pharmacol. 2012;57(5–6):133–8.

    Article  CAS  Google Scholar 

  • Ceriello A, Esposito K, Piconi L, et al. Oscillating glucose is more deleterious to endothelial function and oxidative stress than mean glucose in normal and type 2 diabetic patients. Diabetes. 2008;57(5):1349–54.

    Article  PubMed  CAS  Google Scholar 

  • Chiasson JL, Josse RG, Gomis R, STOP-NIDDM Trial Research Group, et al. Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. JAMA. 2003;290(4):486–94.

    Article  PubMed  CAS  Google Scholar 

  • Connelly KA, Yan AT, Leiter LA, et al. Cardiovascular implications of hypoglycemia in diabetes mellitus. Circulation. 2015;132(24):2345–50.

    Article  PubMed  Google Scholar 

  • Control Group, Turnbull FM, Abraira C, Anderson RJ, et al. Intensive glucose control and macrovascular outcomes in type 2 diabetes. Diabetologia. 2009;52(11):2288–98.

    Article  CAS  Google Scholar 

  • Conway BN, May ME, Fischl A, Frisbee J, et al. Cause-specific mortality by race in low-income Black and White people with type 2 diabetes. Diabet Med. 2015;32(1):33–41.

    Article  PubMed  CAS  Google Scholar 

  • Creager MA, Lüscher TF, Cosentino F, et al. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Circulation. 2003;108(12):1527–32.

    Article  PubMed  Google Scholar 

  • Currie CJ, Peters JR, Tynan A, et al. Survival as a function of HbA1c in people with type 2 diabetes: a retrospective cohort study. Lancet. 2010;375(9713):481–9.

    Article  PubMed  CAS  Google Scholar 

  • DCCT/EDIC Research Group. Effect of intensive diabetes treatment on albuminuria in type 1 diabetes: long-term follow-up of the Diabetes Control and Complications Trial and Epidemiology of Diabetes Interventions and Complications study. Lancet Diabetes Endocrinol. 2014;2(10):793–800.

    Article  Google Scholar 

  • Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) Study Research Group. Intensive diabetes treatment and cardiovascular outcomes in type 1 diabetes: the DCCT/EDIC study 30-year follow-up. Diabetes Care. 2016;39(5):686–93.

    Article  CAS  Google Scholar 

  • Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) Study Research Group, Lachin JM, White NH, Hainsworth DP, et al. Effect of intensive diabetes therapy on the progression of diabetic retinopathy in patients with type 1 diabetes: 18 years of follow-up in the DCCT/EDIC. Diabetes. 2015;64(2):631–42.

    Article  CAS  Google Scholar 

  • Duckworth W, Abraira C, Moritz T, VADT Investigators, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009;360(2):129–39.

    Article  PubMed  CAS  Google Scholar 

  • Eeg-Olofsson K, Cederholm J, Nilsson PM, et al. New aspects of HbA1c as a risk factor for cardiovascular diseases in type 2 diabetes: an observational study from the Swedish National Diabetes Register (NDR). J Intern Med. 2010;268(5):471–82.

    Article  PubMed  CAS  Google Scholar 

  • El-Osta A, Brasacchio D, Yao D, et al. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J Exp Med. 2008;205(10):2409–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Emerging Risk Factors Collaboration, Sarwar N, Gao P, Seshasai SR, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375(9733):2215–22.

    Article  CAS  Google Scholar 

  • FLAT-SUGAR Trial Investigators, Probstfield JL, Hirsch I, O’Brien K, et al. Design of FLAT-SUGAR: randomized trial of prandial insulin versus prandial GLP-1 receptor agonist together with basal insulin and metformin for high-risk type 2 diabetes. Diabetes Care. 2015;38(8):1558–66.

    Article  CAS  Google Scholar 

  • Gaede P, Pedersen O. Intensive integrated therapy of type 2 diabetes: implications for long-term prognosis. Diabetes. 2004;53(Suppl 3):S39–47.

    Article  PubMed  CAS  Google Scholar 

  • Gaede P, Vedel P, Larsen N, et al. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med. 2003;348(5):383–93.

    Article  PubMed  Google Scholar 

  • Gaede P, Lund-Andersen H, Parving HH, et al. Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med. 2008;358(6):580–91.

    Article  PubMed  CAS  Google Scholar 

  • Garber AJ, Abrahamson MJ, Barzilay JI, et al. Consensus statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the comprehensive type 2 diabetes management algorithm – 2016 executive summary. Endocr Pract. 2016;22(1):84–113.

    Article  PubMed  Google Scholar 

  • Geiss LS, Herman WH, Smith PJ. Mortality among persons with non-insulin dependent diabetes. In: Harris MI, Cowie CC, Stern MP, Boyko EJ, Reiber GE, Bennett PH, editors. Diabetes in America. 2nd ed. Bethesda: National Institutes of Health; 1995. p. 233–58.

    Google Scholar 

  • Gerstein HC, Miller ME, Ismail-Beigi F, ACCORD Study Group, et al. Effects of intensive glycaemic control on ischaemic heart disease: analysis of data from the randomised, controlled ACCORD trial. Lancet. 2014;384(9958):1936–41.

    Article  PubMed  PubMed Central  Google Scholar 

  • Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gorst C, Kwok CS, Aslam S, et al. Long-term glycemic variability and risk of adverse outcomes: a systematic review and meta-analysis. Diabetes Care. 2015;38(12):2354–69.

    Article  PubMed  CAS  Google Scholar 

  • Groop PH, Cooper ME, Perkovic V, et al. Linagliptin lowers albuminuria on top of recommended standard treatment in patients with type 2 diabetes and renal dysfunction. Diabetes Care. 2013;36(11):3460–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hayward RA, Reaven PD, Wiitala WL, VADT Investigators, et al. Follow-up of glycemic control and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2015;372(23):2197–206.

    Article  PubMed  CAS  Google Scholar 

  • Hillege HL, Janssen WM, Bak AA, PREVEND Study Group, et al. Microalbuminuria is common, also in a nondiabetic, nonhypertensive population, and an independent indicator of cardiovascular risk factors and cardiovascular morbidity. J Intern Med. 2001;249(6):519–26.

    Article  PubMed  CAS  Google Scholar 

  • Hirsch IB. Glycemic variability and diabetes complications: does it matter? Of course it does! Diabetes Care. 2015;38(8):1610–4.

    Article  PubMed  CAS  Google Scholar 

  • Holman RR, Paul SK, Bethel MA, et al. 10-Year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359(15):1577–89.

    Article  PubMed  CAS  Google Scholar 

  • International Diabetes Federation Clinical Guidelines Task Force. Global guideline for type 2 diabetes. 2012. http://www.idf.org/sites/default/files/IDF-Guideline-for-Type-2-Diabetes.pdf.

  • Inzucchi S, Majumdar S. Glycemic targets: what is the evidence? Med Clin North Am. 2015;99(1):47–67.

    Article  PubMed  Google Scholar 

  • Inzucchi SE, Bergenstal RM, Buse JB, American Diabetes Association (ADA), European Association for the Study of Diabetes (EASD), et al. Management of hyperglycemia in type 2 diabetes: a patient-centered approach: position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2012;35(6):1364–79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Inzucchi SE, Zinman B, Wanner C, et al. SGLT-2 inhibitors and cardiovascular risk: proposed pathways and review of ongoing outcome trials. Diab Vasc Dis Res. 2015;12(2):90–100.

    Article  PubMed  CAS  Google Scholar 

  • Ismail-Beigi F, Craven T, Banerji MA, ACCORD Trial Group, et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial. Lancet. 2010;376(9739):419–30.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ismail-Beigi F, Moghissi E, Tiktin M, et al. Individualizing glycemic targets in type 2 diabetes mellitus: implications of recent clinical trials. Ann Intern Med. 2011;154(8):554–9.

    Article  PubMed  Google Scholar 

  • Klein R, Klein BE, Moss SE. Relation of glycemic control to diabetic microvascular complications in diabetes mellitus. Ann Intern Med. 1996;124(1 Pt 2):90–6.

    Article  PubMed  CAS  Google Scholar 

  • Klein R, Knudtson MD, Lee KE, et al. The Wisconsin epidemiologic study of diabetic retinopathy: XXII the twenty-five-year progression of retinopathy in persons with type 1 diabetes. Ophthalmology. 2008;115(11):1859–68.

    Article  PubMed  Google Scholar 

  • Lachin JM, Genuth S, Nathan DM, DCCT/EDIC Research Group, et al. Effect of glycemic exposure on the risk of microvascular complications in the diabetes control and complications trial – revisited. Diabetes. 2008;57(4):995–1001.

    Article  PubMed  CAS  Google Scholar 

  • Lingvay I, Manghi FP, García-Hernández P, DUAL V Investigators, et al. Effect of insulin glargine up-titration vs. insulin degludec/liraglutide on glycated hemoglobin levels in patients with uncontrolled type 2 diabetes: The DUAL V randomized clinical trial. JAMA. 2016;315(9):898–907.

    Article  PubMed  CAS  Google Scholar 

  • Marso SP, Daniels GH, Brown-Frandsen K, LEADER Steering Committee, LEADER Trial Investigators, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375(4):311–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mellbin LG, Malmberg K, Rydén L, et al. The relationship between glycaemic variability and cardiovascular complications in patients with acute myocardial infarction and type 2 diabetes: a report from the DIGAMI 2 trial. Eur Heart J. 2013;34(5):374–9.

    Article  PubMed  CAS  Google Scholar 

  • Miyazawa T, Nakagawa K, Shimasaki S, et al. Lipid glycation and protein glycation in diabetes and atherosclerosis. Amino Acids. 2012;42(4):1163–70.

    Article  PubMed  CAS  Google Scholar 

  • Monnier L, Mas E, Ginet C, et al. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA. 2006;295(14):1681–7.

    Article  PubMed  CAS  Google Scholar 

  • Mosenzon O, Cahn A, Hirshberg B, et al. Cardiovascular outcomes by albumin creatinine ratio categories in the SAVOR trial. Diabetes. 2015;64(Suppl 1). https://ada.scientificposters.com/epsAbstractADA.cfm?id=2. Accessed 3 July 2016.

  • Mosenzon O, Pollack R, Raz I. Treatment of type 2 diabetes: from “guidelines” to “position statements” and back, recommendations of the Israeli National Diabetes Council. Diabetes Care. 2016;39(Suppl 2):S146–53.

    Article  PubMed  CAS  Google Scholar 

  • Nathan DM, Cleary PA, Backlund JY, Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group, et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med. 2005;353(25):2643–53.

    Article  PubMed  Google Scholar 

  • NAVIGATOR Study Group, Holman RR, Haffner SM, JJ MM, et al. Effect of nateglinide on the incidence of diabetes and cardiovascular events. N Engl J Med. 2010;362(16):1463–76.

    Article  Google Scholar 

  • Nolan CJ, Ruderman NB, Kahn SE, et al. Insulin resistance as a physiological defense against metabolic stress: implications for the management of subsets of type 2 diabetes. Diabetes. 2015;64(3):673–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ohkubo Y, Kishikawa H, Araki E, et al. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res Clin Pract. 1995;28(2):103–17.

    Article  PubMed  CAS  Google Scholar 

  • ORIGIN Trial Investigators. Cardiovascular and other outcomes post-intervention with insulin glargine and omega-3 fatty acids (ORIGINALE). Diabetes Care. 2016;39(5):709–16.

    Article  CAS  Google Scholar 

  • ORIGIN Trial Investigators, Gerstein HC, Bosch J, Dagenais GR, et al. Basal insulin and cardiovascular and other outcomes in dysglycemia. N Engl J Med. 2012;367(4):319–28.

    Article  CAS  Google Scholar 

  • ORIGIN Trial Investigators, Gilbert RE, Mann JF, Hanefeld M, et al. Basal insulin glargine and microvascular outcomes in dysglycaemic individuals: results of the Outcome Reduction with an Initial Glargine Intervention (ORIGIN) trial. Diabetologia. 2014;57(7):1325–31.

    Article  CAS  Google Scholar 

  • Paneni F, Mocharla P, Akhmedov A, et al. Gene silencing of the mitochondrial adaptor p66(Shc) suppresses vascular hyperglycemic memory in diabetes. Circ Res. 2012;111(3):278–89.

    Article  PubMed  CAS  Google Scholar 

  • Paneni F, Beckman JA, Creager MA, et al. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Eur Heart J. 2013;34(31):2436–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pasko N, Toti F, Strakosha A, et al. Prevalence of microalbuminuria and risk factor analysis in type 2 diabetes patients in Albania: the need for accurate and early diagnosis of diabetic nephropathy. Hippokratia. 2013;17(4):337–41.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Phillips LS, Ratner RE, Buse JB, et al. We can change the natural history of type 2 diabetes. Diabetes Care. 2014;37(10):2668–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pistrosch F, Ganz X, Bornstein SR, et al. Risk of and risk factors for hypoglycemia and associated arrhythmias in patients with type 2 diabetes and cardiovascular disease: a cohort study under real-world conditions. Acta Diabetol. 2015;52(5):889–95.

    Article  PubMed  CAS  Google Scholar 

  • Pozzilli P, Leslie RD, Chan J, et al. The A1C and ABCD of glycaemia management in type 2 diabetes: a physician’s personalized approach. Diabetes Metab Res Rev. 2010;26(4):239–44.

    Article  PubMed  CAS  Google Scholar 

  • Pozzilli P, Strollo R, Bonora E. One size does not fit all glycemic targets for type 2 diabetes. J Diabetes Investig. 2014;5(2):134–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prattichizzo F, Giuliani A, Ceka A, et al. Epigenetic mechanisms of endothelial dysfunction in type 2 diabetes. Clin Epigenetics. 2015;7(1):56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Quagliaro L, Piconi L, Assaloni R, et al. Intermittent high glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells: the role of protein kinase C and NAD(P)H-oxidase activation. Diabetes. 2003;52(11):2795–804.

    Article  PubMed  CAS  Google Scholar 

  • Rajala U, Laakso M, Qiao Q, et al. Prevalence of retinopathy in people with diabetes, impaired glucose tolerance, and normal glucose tolerance. Diabetes Care. 1998;21(10):1664–9.

    Article  PubMed  CAS  Google Scholar 

  • Ray KK, Seshasai SR, Wijesuriya S, et al. Effect of intensive control of glucose on cardiovascular outcomes and death in patients with diabetes mellitus: a meta-analysis of randomised controlled trials. Lancet. 2009;373(9677):1765–72.

    Article  PubMed  CAS  Google Scholar 

  • Raz I, Wilson PW, Strojek K, et al. Effects of prandial versus fasting glycemia on cardiovascular outcomes in type 2 diabetes: the HEART2D trial. Diabetes Care. 2009;32(3):381–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raz I, Ceriello A, Wilson PW, et al. Post hoc subgroup analysis of the HEART2D trial demonstrates lower cardiovascular risk in older patients targeting postprandial versus fasting/premeal glycemia. Diabetes Care. 2011;34(7):1511–3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Raz I, Riddle MC, Rosenstock J, et al. Personalized management of hyperglycemia in type 2 diabetes: reflections from a Diabetes Care editors’ expert forum. Diabetes Care. 2013;36:1779–88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reaven PD, Moritz TE, Schwenke DC, Veterans Affairs Diabetes Trial, et al. Intensive glucose-lowering therapy reduces cardiovascular disease events in Veterans Affairs Diabetes Trial participants with lower calcified coronary atherosclerosis. Diabetes. 2009;58(11):2642–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reddy MA, Zhang E, Natarajan R. Epigenetic mechanisms in diabetic complications and metabolic memory. Diabetologia. 2015;58(3):443–55.

    Article  PubMed  CAS  Google Scholar 

  • Riddle MC, Ambrosius WT, Brillon DJ, Action to Control Cardiovascular Risk in Diabetes Investigators, et al. Epidemiologic relationships between A1C and all-cause mortality during a median 3.4-year follow-up of glycemic treatment in the ACCORD trial. Diabetes Care. 2010;33(5):983–90.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosenstock J, Vico M, Wei L, et al. Effects of dapagliflozin, an SGLT2 inhibitor, on HbA(1c), body weight, and hypoglycemia risk in patients with type 2 diabetes inadequately controlled on pioglitazone monotherapy. Diabetes Care. 2012;35(7):1473–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rosenstock J, Guerci B, Hanefeld M, GetGoal Duo-2 Trial Investigators, et al. Prandial options to advance basal insulin glargine therapy: testing lixisenatide plus basal insulin versus insulin glulisine either as basal-plus or basal-bolus in type 2 diabetes: the GetGoal Duo-2 trial. Diabetes Care. 2016;39(8):1318–28.

    Article  PubMed  CAS  Google Scholar 

  • Sarwar N, Aspelund T, Eiriksdottir G, et al. Markers of dysglycaemia and risk of coronary heart disease in people without diabetes: Reykjavik prospective study and systematic review. PLoS Med. 2010;7(5):e1000278.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Selvin E, Coresh J, Golden SH, et al. Glycemic control and coronary heart disease risk in persons with and without diabetes: the atherosclerosis risk in communities study. Arch Intern Med. 2005;165(16):1910–6.

    Article  PubMed  Google Scholar 

  • Skyler JS, Bergenstal R, Bonow RO, American Diabetes Association, American College of Cardiology Foundation, American Heart Association, et al. Intensive glycemic control and the prevention of cardiovascular events: implications of the ACCORD, ADVANCE, and VA diabetes trials: a position statement of the American Diabetes Association and a scientific statement of the American College of Cardiology Foundation and the American Heart Association. Diabetes Care. 2009;32(1):187–92.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stark Casagrande S, Fradkin JE, Saydah SH, et al. The prevalence of meeting A1C, blood pressure, and LDL goals among people with diabetes, 1988–2010. Diabetes Care. 2013;36(8):2271–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stratton IM, Adler AI, Neil HA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ. 2000;321(7258):405–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stratton IM, Kohner EM, Aldington SJ, et al. UKPDS 50: risk factors for incidence and progression of retinopathy in type II diabetes over 6 years from diagnosis. Diabetologia. 2001;44(2):156–63.

    Article  PubMed  CAS  Google Scholar 

  • Suh S, Kim JH. Glycemic variability: how do we measure it and why is it important? Diabetes Metab J. 2015;39(4):273–82.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tesfaye S, Stevens LK, Stephenson JM, et al. Prevalence of diabetic peripheral neuropathy and its relation to glycaemic control and potential risk factors: the EURODIAB IDDM Complications Study. Diabetologia. 1996;39(11):1377–84.

    Article  PubMed  CAS  Google Scholar 

  • The DCCT Research Group. The Diabetes Control and Complications Trial (DCCT). Design and methodologic considerations for the feasibility phase. Diabetes. 1986;35(5):530–45.

    Article  Google Scholar 

  • The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329(14):977–86.

    Article  Google Scholar 

  • Thomas MC. Glycemic exposure, glycemic control, and metabolic karma in diabetic complications. Adv Chronic Kidney Dis. 2014;21(3):311–7.

    Article  PubMed  Google Scholar 

  • UK Prospective Diabetes Study (UKPDS) Group. UK Prospective Diabetes Study (UKPDS). VIII. Study design, progress and performance. Diabetologia. 1991;34(12):877–90.

    Article  Google Scholar 

  • UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998a;352(9131):837–53.

    Article  Google Scholar 

  • UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998b;352(9131):854–65.

    Article  Google Scholar 

  • van Leiden HA, Dekker JM, Moll AC, et al. Blood pressure, lipids, and obesity are associated with retinopathy: the Hoorn study. Diabetes Care. 2002;25(8):1320–5.

    Article  PubMed  Google Scholar 

  • Wong TY, Liew G, Tapp RJ, et al. Relation between fasting glucose and retinopathy for diagnosis of diabetes: three population-based cross-sectional studies. Lancet. 2008;371(9614):736–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wong MG, Perkovic V, Chalmers J, ADVANCE-ON Collaborative Group, et al. Long-term benefits of intensive glucose control for preventing end-stage kidney disease: ADVANCE-ON. Diabetes Care. 2016;39(5):694–700.

    Article  PubMed  CAS  Google Scholar 

  • Wright A, Burden AC, Paisey RB, U.K. Prospective Diabetes Study Group, et al. Sulfonylurea inadequacy: efficacy of addition of insulin over 6 years in patients with type 2 diabetes in the U.K. Prospective Diabetes Study (UKPDS 57). Diabetes Care. 2002;25(2):330–6.

    Article  PubMed  CAS  Google Scholar 

  • Writing Group for the DCCT/EDIC Research Group, Orchard TJ, Nathan DM, Zinman B, et al. Association between 7 years of intensive treatment of type 1 diabetes and long-term mortality. JAMA. 2015;313(1):45–53.

    Article  CAS  Google Scholar 

  • Ziegler D, Rathmann W, Dickhaus T, KORA Study Group, et al. Prevalence of polyneuropathy in pre-diabetes and diabetes is associated with abdominal obesity and macroangiopathy: the MONICA/KORA Augsburg Surveys S2 and S3. Diabetes Care. 2008;31(3):464–9.

    Article  PubMed  CAS  Google Scholar 

  • Zinman B, Schmidt WE, Moses A, et al. Achieving a clinically relevant composite outcome of an HbA1c of <7% without weight gain or hypoglycaemia in type 2 diabetes: a meta-analysis of the liraglutide clinical trial programme. Diabetes Obes Metab. 2012;14(1):77–82.

    Article  PubMed  CAS  Google Scholar 

  • Zinman B, Wanner C, Lachin JM, EMPA-REG OUTCOME Investigators, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28.

    Article  PubMed  CAS  Google Scholar 

  • Zoungas S, Chalmers J, Neal B, ADVANCE-ON Collaborative Group, et al. Follow-up of blood-pressure lowering and glucose control in type 2 diabetes. N Engl J Med. 2014;371(15):1392–406.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itamar Raz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Cernea, S., Cahn, A., Raz, I. (2018). Glycemic Targets and Prevention of Chronic Complications. In: Bonora, E., DeFronzo, R. (eds) Diabetes. Epidemiology, Genetics, Pathogenesis, Diagnosis, Prevention, and Treatment. Endocrinology. Springer, Cham. https://doi.org/10.1007/978-3-319-27317-4_14-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27317-4_14-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27317-4

  • Online ISBN: 978-3-319-27317-4

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics