Skip to main content

Xylitol: One Name, Numerous Benefits

  • Reference work entry
  • First Online:
Sweeteners

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Xylitol among other sugar alcohols have been extensively studied, showing numerous beneficial effects and potential clinical uses other than being used as a sweetener. The present chapter focuses on the beneficial effects of xylitol and its potential clinical relevance. It also elaborated the several beneficial effects of xylitol that requires more investigation, especially at clinical levels to ascertain its clinical and therapeutic applications. Information from different sources, mainly from “PubMed” journals, were reviewed, focusing on the beneficial effects and potential therapeutic values of this unique sugar alcohol in oral health care, glycemic control, lipid metabolism, weight management, bone metabolism, skin care, ear and upper respiratory tract infection and oxidative stress. There were consistent reports showing beneficial effects and potential clinical application of xylitol in the above-mentioned areas. There is a global acceptance of the use of xylitol in dental caries prevention and glycemic control, but more investigations are required to ascertain the clinical application of xylitol in the other areas. It has been approved as a safe sweetener by the Food and Drug Administration (FDA), USA, thus xylitol may be used not only as a sweetener but also as a therapeutic additive in the abovementioned health-related issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AEP:

Acquired enamel pellicle

AOM:

Acute otitis media

ChREBP:

Carbohydrate response element binding protein

EPS:

Extracellular polysaccharides

FFA:

Free fatty acid

GI:

Glycemic index

II:

Insulinemic index

NEFA:

Non-esterified fatty acid

NFBG:

Non-fasting blood glucose

PPARα:

Peroxisome proliferator-activated receptor alpha

PPARγ:

Peroxisome proliferator-activated receptor gamma

SREBP-1c:

Sterol response element binding protein 1c

T2D:

Type 2 diabetes

References

  1. Zacharis C (2012) Xylitol. In: O’Donnell K, Kearsley MW (eds) Sweeteners and sugar alternatives in food technology, 2nd edn. Wiley & Sons, UK

    Google Scholar 

  2. Amo K, Arai H, Uebanso T et al (2011) Effects of xylitol on metabolic parameters and visceral fat accumulation. J Clin Biochem Nutr 49:1–7

    Article  CAS  Google Scholar 

  3. Peterson ME (2013) Xylitol. Top Companion Anim Med 28:18–20

    Article  Google Scholar 

  4. Sadler M, Stowell JD (2012) Calorie control and weight management. In: O’Donnell K, Kearsley MW (eds) Sweeteners and sugar alternatives in food technology, 2nd edn. Wiley & Sons, UK

    Google Scholar 

  5. Livesey G (2003) Health potential of polyols as sugar replacers, with emphasis on low glycaemic properties. Nutr Res Rev 16:163–191

    Article  CAS  Google Scholar 

  6. Baessler KH (1978) Absorption, metabolism and tolerance of polyol sugar substitutes. Pharmacol Ther Dent 3:85–93

    Google Scholar 

  7. Takahashi N, Nyvad B (2011) The role of bacteria in the caries process: ecological perspectives. J Dent Res 90:294–303

    Article  CAS  Google Scholar 

  8. Bowen WH (2002) Do we need to be concerned about dental caries in the coming millennium? Crit Rev Oral Biol Med 13:126–131

    Article  Google Scholar 

  9. Paes Leme AF, Koo H, Bellato CM, Bedi G, Cury JA (2006) The role of sucrose in cariogenic dental biofilm formation – new insight. J Dent Res 85:878–887

    Article  CAS  Google Scholar 

  10. Banas JA, Vickerman MM (2003) Glucan-binding proteins of the oral streptococci. Crit Rev Oral Biol Med 14:89–99

    Article  CAS  Google Scholar 

  11. Takahashi N, Washio J (2011) Metabolomic effects of xylitol and fluoride on plaque biofilm in vivo. J Dent Res 90:1463–1468

    Article  CAS  Google Scholar 

  12. Söderling E, Alaräisänen L, Scheinin A, Mäkinen KK (1987) Effect of xylitol and sorbitol on polysaccharide production by and adhesive properties of Streptococcus mutans. Caries Res 21:109–116

    Article  Google Scholar 

  13. Söderling EM (2009) Xylitol, mutans streptococci, and dental plaque. Adv Dent Res 21:74–78

    Article  Google Scholar 

  14. Wood JM (1997) An investigation of the effect of xylitol on the production of polysaccharide from sucrose by Streptococcus mutans. Rep Spec Proj 506:1–9

    Google Scholar 

  15. Söderling EM, Hietala-Lenkkeri A (2010) Xylitol and erythritol decrease adherence of polysaccharide-producing oral streptococci. Curr Microbiol 60:25–29

    Article  CAS  Google Scholar 

  16. Badet C, Furiga A, Thébaud N (2008) Effect of xylitol on an in vitro model of oral biofilm. Oral Health Prev Dent 6:337–341

    Google Scholar 

  17. Alves FR, Neves MA, Silva MG, Rôças IN, Siqueira JF Jr (2103) Antibiofilm and antibacterial activities of farnesol and xylitol as potential endodontic irrigants. Braz Dent J 24:224–229

    Article  Google Scholar 

  18. Lee YE, Choi YH, Jeong SH, Kim HS, Lee SH, Song KB (2009) Morphological changes in Streptococcus mutans after chewing gum containing xylitol for twelve months. Curr Microbiol 58:332–337

    Article  CAS  Google Scholar 

  19. Marsh PD, Nyvad B (2008) The oral microflora and biofilms on teeth. In: Fejerskov O, Kidd EAM (eds) Dental caries: the disease and its clinical management, 2nd edn. Blackwell Munksgaard, UK

    Google Scholar 

  20. Mäkinen KK (2010) Sugar alcohols, caries incidence, and remineralization of caries lesions: a literature review. Int J Dent. doi:10.1155/2010/981072

  21. Miyasawa-Hori H, Aizawa S, Takahashi N (2006) Difference in the xylitol sensitivity of acid production among Streptococcus mutans strains and the biochemical mechanism. Oral Microbiol Immunol 21:201–205

    Article  CAS  Google Scholar 

  22. Splieth CH, Alkilzy M, Schmitt J, Berndt C, Welk A (2009) Effect of xylitol and sorbitol on plaque acidogenesis. Quintessence Int 40:279–285

    Google Scholar 

  23. Assev S, Stig S, Scheie AA (2002) Cariogenic traits in xylitol-resistant and xylitol-sensitive mutans streptococci. Oral Microbiol Immunol 17:95–99

    Article  CAS  Google Scholar 

  24. Söderling EM, Ekman TC, Taipale TJ (2008) Growth inhibition of Streptococcus mutans with low xylitol concentrations. Curr Microbiol 56:382–385

    Article  CAS  Google Scholar 

  25. Radmerikhi S, Formantes B, Fajardo KR, Azul E (2013) Antimicrobial effect of different xylitol concentrations on Streptococcus mutans and Lactobacillus acidophilus count. J Res Dent 1:95–98

    Article  Google Scholar 

  26. Thaweboon S, Thaweboon B, Soo-Ampon S (2004) The effect of xylitol chewing gum on mutans streptococci in saliva and dental plaque. Southeast Asian J Trop Med Public Health 35:1024–1027

    Google Scholar 

  27. Loesche WJ, Grossman NS, Earnest R, Corpron R (1984) The effect of chewing xylitol gum on the plaque and saliva levels of Streptococcus mutans. J Am Dent Assoc 108:587–592

    Article  CAS  Google Scholar 

  28. Söderling E, Trahan L, Tammiala-Salonen T, Häkkinen L (1997) Effects of xylitol, xylitol-sorbitol, and placebo chewing gums on the plaque of habitual xylitol consumers. Eur J Oral Sci 105:170–177

    Article  Google Scholar 

  29. Söderling E, Isokangas P, Pienihäkkinen K, Tenovuo J, Alanen P (2001) Influence of maternal xylitol consumption on mother-child transmission of mutans streptococci: 6-year follow-up. Caries Res 35:173–177

    Article  Google Scholar 

  30. Zimmerman JN, Custodio W, Hatibovic-Kofman S, Lee YH, Xiao Y, Siqueira WL (2013) Proteome and peptidome of human acquired enamel pellicle on deciduous teeth. Int J Mol Sci 14:920–934

    Article  CAS  Google Scholar 

  31. Kleber CJ, Putt MS, Muhler JC (1978) Enamel dissolution by various food acidulants in a sorbitol candy. J Dent Res 57:447–451

    Article  CAS  Google Scholar 

  32. Steinberg LM, Odusola F, Mandel ID (1992) Remineralizing potential, antiplaque and antigingivitis effects of xylitol and sorbitol sweetened chewing gum. Clin Prev Dent 14:31–34

    CAS  Google Scholar 

  33. Mäkinen KK (2000) Can the pentitol-hexitol theory explain the clinical observations made with xylitol. Med Hypotheses 54:603–613

    Article  Google Scholar 

  34. Mäkinen KK (1985) New biochemical aspects of sweeteners. Int Dent J 35:23–35

    Google Scholar 

  35. Vacca Smith AM, Bowen WH (2000) In situ studies of pellicle formation on hydroxyapatite discs. Arch Oral Biol 45:277–291

    Article  CAS  Google Scholar 

  36. Miake Y, Saeki Y, Takahashi M, Yanagisawa T (2003) Remineralization effects of xylitol on demineralized enamel. J Electron Microsc (Tokyo) 52:471–476

    Article  CAS  Google Scholar 

  37. Chunmuang S, Jitpukdeebodintra S, Chuenarrom C, Benjakul P (2007) Effect of xylitol and fluoride on enamel erosion in vitro. J Oral Sci 49:293–297

    Article  CAS  Google Scholar 

  38. Leach SA, Green RM (1980) Effect of xylitol-supplemented diets on the progression and regression of fissure caries in the albino rat. Caries Res 14:16–23

    Article  CAS  Google Scholar 

  39. Scheinin A, Mäkinen KK (1975) Turku sugar studies I-XXI. Acta Odontol Scand 33:1–351

    Article  Google Scholar 

  40. Mäkinen KK (1991) Prevention of dental caries by xylitol. Environ Manag Health 2:6–11

    Article  Google Scholar 

  41. Mäkinen KK, Järvinen KL, Anttila CH, Luntamo LM, Vahlberg T (2013) Topical xylitol administration by parents for the promotion of oral health in infants: a caries prevention experiment at a Finnish Public Health Centre. Int Dent J 63:210–224

    Article  Google Scholar 

  42. Campus G, Cagetti MG, Sale S, Petruzzi M, Solinas G, Strohmenger L, Lingström P (2013) Six months of high-dose xylitol in high-risk caries subjects – a 2-year randomised, clinical trial. Clin Oral Investig 17:785–791

    Article  Google Scholar 

  43. Islam S (2011) Effects of xylitol as a sugar substitute on diabetes-related parameters in non-diabetic rats. J Med Food 14:505–511

    Article  CAS  Google Scholar 

  44. Mushtaq Z, Imran M, Salim-ur Rehman, Zahoor T, Ahmad RS, Arshad MU (2014) Biochemical perspectives of xylitol extracted from indigenous agricultural by-product mung bean (vignaradiata) hulls in a rat model. J Sci Food Agric 94:969–974

    Article  CAS  Google Scholar 

  45. Islam S, Indrajit M (2012) Effects of xylitol on blood glucose, glucose tolerance, serum insulin and lipid profile in a type 2 diabetes model of rats. Ann Nutr Metab 61:57–64

    Article  CAS  Google Scholar 

  46. Rahman MA, Islam MS (2014) Xylitol improves pancreatic islets morphology to ameliorate type 2 diabetes in rats: a dose response study. J Food Sci 79:1436–1442

    Article  CAS  Google Scholar 

  47. de Kalbermatten N, Ravussin E, Maeder E, Geser C, Jéquier E, Felber JP (1980) Comparison of glucose, fructose, sorbitol, and xylitol utilization in humans during insulin suppression. Metabolism 29:62–67

    Article  Google Scholar 

  48. Woelnerhanssen BK, Cajacob L, Keller N et al (2016) Gut hormone secretion, gastric emptying and glycemic responses to erythritol and xylitol in lean and obese subjects. Am J Physiol Endocrinol Metab 310:E1053-E1061

    Google Scholar 

  49. Hassinger W, Sauer G, Cordes U, Krause U, Beyer J, Baessler KH (1981) The effects of equal caloric amounts of xylitol, sucrose and starch on insulin requirements and blood glucose levels in insulin-dependent diabetics. Diabetologia 21:37–40

    Article  CAS  Google Scholar 

  50. Patel DK, Kumar R, Laloo D, Hemalatha S (2012) Natural medicines from plant source used for therapy of diabetes mellitus: an overview of its pharmacological aspects. Asian Pac J Trop Dis 2:239–250

    Article  Google Scholar 

  51. Kang Y, Jo S, Yoo J, Cho J, Kim E, Apostolidis E, Kwon K (2014) Anti-hyperglycemic effect of selected sugar alcohols. FASEB J 24:829–832

    Google Scholar 

  52. Chukwuma CI, Islam MS (2015) Effects of xylitol on carbohydrate digesting enzymes activity, intestinal glucose absorption and muscle glucose uptake: a multi-mode study. Food Funct 6:955–962

    Article  CAS  Google Scholar 

  53. Frejnagel SS, Gomez-Villalva E, Zduñczyk Z (2003) Intestinal absorption of xylitol and effect of its concentration on glucose and water absorption in the small intestine of rat. Pol J Food Nutr 12(53):32–34

    CAS  Google Scholar 

  54. Solomon TP, Haus JM, Kelly KR et al (2010) A low–glycemic index diet combined with exercise reduces insulin resistance, postprandial hyperinsulinemia, and glucose dependent insulinotropic polypeptide responses in obese, prediabetic humans. Am J Clin Nutr 92:1359–1368

    Article  CAS  Google Scholar 

  55. Khalid Q, Rahman MA (1984) Studies on xylitol-induced insulin secretion in vitro. Biomed Pharmacother 38:175–178

    CAS  Google Scholar 

  56. Seino Y, Taminato T, Inoue Y, Goto Y, Ikeda M (1976) Xylitol: stimulation of insulin and inhibition of glucagon responses to arginine in man. J Clin Endocrinol Metab 42:736–743

    Article  CAS  Google Scholar 

  57. Bessesen DH (2001) The role of carbohydrates in insulin resistance. J Nutr 131:2782–2786

    Google Scholar 

  58. Karpe F, Dickmann JR, Frayn KN (2011) Fatty acids, obesity, and insulin resistance: time for a reevaluation. Diabetes 60:2441–2449

    Article  CAS  Google Scholar 

  59. Kishore P, Kehlenbrink S, Hu M et al (2012) Xylitol prevents NEFA-induced insulin resistance in rats. Diabetologia 55:1808–1812

    Article  CAS  Google Scholar 

  60. Marchetti P, Lupi R, Del Guerra S, Bugliani M, Marselli L, Boggi U (2010) The beta-cell in human type 2 diabetes. Adv Exp Med Biol 654:501–514

    Article  CAS  Google Scholar 

  61. Krauss RM (2004) Lipids and lipoproteins in patients with type 2 diabetes. Diabetes Care 27:1496–1504

    Article  CAS  Google Scholar 

  62. Förster H, Quadbeck R, Gottstein U (1982) Metabolic tolerance to high doses of oral xylitol in human volunteers not previously adapted to xylitol. Int J Vitam Nutr Res Suppl 22:67–88

    Google Scholar 

  63. Opitz K (1966) On the action of sugars, sugar alcohols and related substances on the fat mobilization. Naunyn Schmiedebergs Arch Pharmakol Exp Pathol 255:192–199

    Article  CAS  Google Scholar 

  64. Yamagata S, Goto Y, Ohneda A et al (1965) Clinical effects of xylitol on carbohydrate and lipid metabolism in diabetes. Lancet 286:918–921

    Article  Google Scholar 

  65. Goto Y, Nagano S, Nakamura H (1969) Comment: effect of xylitol on individual free fatty acids in the plasma. In: Horecker BL, Lang K, Takagi Y (eds) International symposium on metabolism, physiology, and clinical use of pentoses and pentitols, 1st edn. Springer, Heidelberg

    Google Scholar 

  66. Bray GA, Lovejoy JC, Smith SR (2002) The influence of different fats and fatty acids on obesity, insulin resistance and inflammation. J Nutr 132:2488–2491

    CAS  Google Scholar 

  67. Strable MS, Ntambi JM (2010) Genetic control of de novo lipogenesis: role in diet-induced obesity. Crit Rev Biochem Mol Biol 45:199–214

    Article  CAS  Google Scholar 

  68. Postic C, Girard J (2008) Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J Clin Invest 118:829–838

    Article  CAS  Google Scholar 

  69. Kabashima T, Kawaguchi T, Wadzinski BE, Uyeda K (2003) Xylulose 5-phosphate mediates glucose-induced lipogenesis by xylulose 5-phosphate-activated protein phosphatase in rat liver. Proc Natl Acad Sci U S A 100:5107–5112

    Article  CAS  Google Scholar 

  70. Shimano H, Shimomura I, Hammer RE, Herz J, Goldstein JL, Brown MS, Horton JD (1997) Elevated levels of SREBP-2 and cholesterol synthesis in livers of mice homozygous for a targeted disruption of the SREBP-1 gene. J Clin Invest 100:2115–2124

    Article  CAS  Google Scholar 

  71. Artham SM, Lavie CJ, Milani RV, Ventura HO (2009) Obesity and hypertension, heart failure, and coronary heart disease – risk factor, paradox, and recommendations for weight loss. Ochsner J 9:124–132

    Google Scholar 

  72. Brown RJ, De Banate MA, Rother KI (2010) Artificial Sweeteners: a systematic review of metabolic effects in youth. Int J Pediatr Obes 5:305–312

    Article  Google Scholar 

  73. Shafer RB, Levine AS, Marlette JM, Morley JE (1987) Effects of xylitol on gastric emptying and food intake. Am J Clin Nutr 45:744–747

    CAS  Google Scholar 

  74. Jiménez-Cruz A, Gutiérrez-González AN, Bacardi-Gascon M (2005) Low glycemic index lunch on satiety in overweight and obese people with type 2 diabetes. Nutr Hosp 20:348–350

    Google Scholar 

  75. Bergmann JF, Chassany O, Petit A, Triki R, Caulin C, Segrestaa JM (1992) Correlation between echographic gastric emptying and appetite: influence of psyllium. Gut 33:1042–1043

    Article  CAS  Google Scholar 

  76. Brand-Miller JC, Holt SHA, Pawlak DB, McMillan J (2002) Glycemic index and obesity. Am J Clin Nutr 76:281–285

    Google Scholar 

  77. Fowler MJ (2008) Microvascular and macrovascular complications of diabetes. Clin Diabetes 26:77–82

    Article  Google Scholar 

  78. Parke DV (1999) Nutritional antioxidants and disease prevention: mechanisms of action. In: Basu TK, Temple NJ, Garg ML (eds) Antioxidants in human health and disease, 1st edn. CABI Publishing, New York

    Google Scholar 

  79. Al-Shahrani MM, Zaman GS, Amanullah A (2013) Measurement of antioxidant activity in selected food products and nutraceuticals. J Nutr Food Sci. doi:10.4172/2155-9600.1000205

  80. Knuuttila ML, Kuoksa TH, Svanberg MJ, Mattila PT, Karjalainen KM, Kolehmainen E (2000) Effects of dietary xylitol on collagen content and glycosylation in healthy and diabetic rats. Life Sci 67:283–290

    Article  CAS  Google Scholar 

  81. Pösö AR (1979) Shuttles for the translocation of NADH in isolated liver cells from fed rats during oxidation of xylitol. Acta Chem Scand B B33:93–99

    Article  Google Scholar 

  82. Asakura T, Adachi K, Yoshikawa H (1970) Reduction of oxidized glutathione by xylitol. J Biochem 67:731–733

    Article  CAS  Google Scholar 

  83. Mattila P, Knuuttila M, Kovanen V, Svanberg M (1999) Improved bone biomechanical properties in rats after oral xylitol administration. Calcif Tissue Int 64:340–344

    Article  CAS  Google Scholar 

  84. Sato H, Ide Y, Nasu M, Numabe Y (2011) The effects of oral xylitol administration on bone density in rat femur. Odontology 99:28–33

    Article  CAS  Google Scholar 

  85. Mattila PT, Svanberg MJ, Jämsä T, Knuuttila ML (2002) Improved bone biomechanical properties in xylitol-fed aged rats. Metabolism 51:92–96

    Article  CAS  Google Scholar 

  86. Mattila PT, Knuuttila ML, Svanberg MJ (1998) Dietary xylitol supplementation prevents osteoporotic changes in streptozotocin-diabetic rats. Metabolism 47:578–583

    Article  CAS  Google Scholar 

  87. Akesson K, Lau KH, Johnston P, Imperio E, Baylink DJ (1998) Effects of short-term calcium depletion and repletion on biochemical markers of bone turnover in young adult women. J Clin Endocrinol Metab 83:1921–1927

    CAS  Google Scholar 

  88. Hämäläinen MM, Knuuttila M, Svanberg M, Koskinen T (1990) Comparison of the effect of gluconate, lactose, and xylitol on bone recalcification in calcium-deficient rats. Bone 11:429–438

    Article  Google Scholar 

  89. Mattila PT, Svanberg MJ, Mäkinen KK, Knuuttila ML (1996) Dietary xylitol, sorbitol and d-mannitol but not erythritol retard bone resorption in rats. J Nutr 126:1865–1870

    CAS  Google Scholar 

  90. Svanberg M, Knuuttila M (1994) Dietary xylitol retards bone resorption in rats. Miner Electrolyte Metab 20:153–157

    CAS  Google Scholar 

  91. Beenken KE, Bradney L, Bellamy W (2012) Use of xylitol to enhance the therapeutic efficacy of polymethyl methacrylate-based antibiotic therapy in treatment of chronic osteomyelitis. Antimicrob Agents Chemother 56:5839–5844

    Article  CAS  Google Scholar 

  92. Faden H, Waz MJ, Bernstein JM, Brodsky L, Stanievich J, Ogra PL (1991) Nasopharyngeal flora in the first three years of life in normal and otitis-prone children. Ann Otol Rhinol Laryngol 100:612–615

    Article  CAS  Google Scholar 

  93. Uhari M, Kontiokari T, Koskela M, Niemelä M (1996) Xylitol chewing gum in prevention of acute otitis media: double blind randomised trial. BMJ 313:1180–1184

    Article  CAS  Google Scholar 

  94. Uhari M, Kontiokari T, Niemelä M (1998) A novel use of xylitol sugar in preventing acute otitis media. Pediatrics 102:879–884

    Article  CAS  Google Scholar 

  95. Zabner J, Seiler MP, Launspach JL (2000) The osmolyte xylitol reduces the salt concentration of airway surface liquid and may enhance bacterial killing. Proc Natl Acad Sci U S A 97:11614–11619

    Article  CAS  Google Scholar 

  96. Kontiokari T, Uhari M, Koskela M (1995) Effect of xylitol on growth of nasopharyngeal bacteria in vitro. Antimicrob Agents Chemother 39:1820–1823

    Article  CAS  Google Scholar 

  97. Kontiokari T, Uhari M, Koskela M (1998) Antiadhesive effects of xylitol on otopathogenic bacteria. J Antimicrob Chemother 41:563–565

    Article  CAS  Google Scholar 

  98. Tapiainen T, Sormunen R, Kaijalainen T, Kontiokari T, Ikäheimo I, Uhari M (2004) Ultrastructure of Streptococcus pneumoniae after exposure to xylitol. J Antimicrob Chemother 54:225–228

    Article  CAS  Google Scholar 

  99. Kurola P, Tapiainen T, Sevander J, Kaijalainen T, Leinonen M, Uhari M, Saukkoriipi A (2011) Effect of xylitol and other carbon sources on Streptococcus pneumoniae biofilm formation and gene expression in vitro. APMIS 119:135–142

    Article  CAS  Google Scholar 

  100. Danhauer JL, Johnson CE, Corbin NE, Bruccheri KG (2010) Xylitol as a prophylaxis for acute otitis media: systematic review. Int J Audiol 49:754–761

    Article  Google Scholar 

  101. Brown CL, Graham SC, Cable BB, Ozer EA, Taft PJ, Zabner J (2004) Xylitol enhances bacterial killing in the rabbit maxillary sinus. Laryngoscope 114:2021–2024

    Article  CAS  Google Scholar 

  102. Weissman JD, Fernandez F, Hwang PH (2011) Xylitol nasal irrigation in the management of chronic rhinosinusitis: a pilot study. Laryngoscope 121:2468–2472

    Article  Google Scholar 

  103. Niebuhr M (2011) Infections and bacterial colonization including treatment. In: Werfel T, Spergel JM (eds) Atopic dermatitis in childhood and adolescence, vol 15. Pediatr Adolesc Med, Karger, Basel

    Chapter  Google Scholar 

  104. Masako K, Hideyuki I, Shigeyuki O, Zenro I (2005) A novel method to control the balance of skin microflora. Part 1. Attack on biofilm of Staphylococcus aureus without antibiotics. J Dermatol Sci 38:197–205

    Article  CAS  Google Scholar 

  105. Masako K, Yusuke K, Hideyuki I, Atsuko M, Yoshiki M, Kayoko M, Makoto K (2005) A novel method to control the balance of skin microflora Part 2. A study to assess the effect of a cream containing farnesol and xylitol on atopic dry skin. J Dermatol Sci 38:207–213

    Article  CAS  Google Scholar 

  106. Usha R, Raman SS, Subramanian V, Ramasami T (2006) Role of polyols (erythritol, xylitol and sorbitol) on the structural stabilization of collagen. Chem Phys Lett 430:391–396

    Article  CAS  Google Scholar 

  107. Usha R, Ramasami T (2008) Stability of collagen with polyols against guanidine denaturation. Colloids Surf B Biointerfaces 61:39–42

    Article  CAS  Google Scholar 

  108. Olsson H, Spak CJ, Axéll T (1991) The effect of a chewing gum on salivary secretion, oral mucosal friction and the feeling of dry mouth in xerostomic patients. Acta Odontol Scand 49:273–279

    Article  CAS  Google Scholar 

  109. Abu-Elteen H, Khaled H (2005) The influence of dietary carbohydrates on in vitro adherence of four Candida species to human buccal epithelial cells (BEC). Microb Ecol Health Dis 17:156–162

    Article  CAS  Google Scholar 

  110. Assouline G, Danon A (1981) Hyperosmotic xylitol, prostaglandins and gastric mucosal barrier. Prostaglandins Med 7:63–70

    Article  CAS  Google Scholar 

  111. Ukab WA, Sato J, Wang YM, van Eys J (1981) Xylitol mediated amelioration of acetylphenylhydrazine-induced hemolysis in rabbits. Metabolism 30:1053–1059

    Article  CAS  Google Scholar 

  112. Naaber P, Lehto E, Salminen S, Mikelsaar M (1996) Inhibition of adhesion of Clostridium difficile to caco-2 cells. FEMS Immunol Med Microbiol 14:205–209

    Article  CAS  Google Scholar 

  113. Flambeau M, Respondek F, Wagner A (2012) Maltitol syrups. In: O’Donnell K, Kearsley MW (eds) Sweeteners and sugar alternatives in food technology, 2nd edn. Wiley & Sons, UK

    Google Scholar 

  114. Storey D, Lee A, Bornet F, Brouns F (2007) Gastrointestinal tolerance of erythritol and xylitol ingested in a liquid. Eur J Clin Nutr 61:349–354

    Article  CAS  Google Scholar 

  115. Fitch C, Keim KS (2012) Position of the academy of nutrition and dietetics: use of nutritive and non nutritive sweeteners. J Acad Nutr Diet 112:739–758

    Article  Google Scholar 

  116. Wang YM, van Eys J (1981) Nutritional significance of fructose and sugar alcohols. Annu Rev Nutr 1:437–475

    Article  CAS  Google Scholar 

  117. World Health Organization (1977) Summary of toxicology data of certain food additives. Twenty-first report of the joint FAO/WHO Expert Committee on Food Additives, Technical Report Series 617, Geneva, Switzerland.

    Google Scholar 

  118. Murphy LA, Coleman AE (2012) Xylitol toxicosis in dogs. Vet Clin North Am Small Anim Pract 42:307–312

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chika Ifeanyi Chukwuma or Md. Shahidul Islam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chukwuma, C.I., Islam, M.S. (2018). Xylitol: One Name, Numerous Benefits. In: Mérillon, JM., Ramawat, K. (eds) Sweeteners. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-27027-2_33

Download citation

Publish with us

Policies and ethics