Skip to main content

Health Implications of Fructose Consumption in Humans

  • Reference work entry
  • First Online:
Sweeteners

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Fructose is a component of natural (sucrose) or industrial (high-fructose corn syrup) sugars. It has a caloric content similar to glucose and a higher sweetening power. All cells of the human body can use glucose as an energy substrate, and most can also use fatty acids. In contrast, most cells cannot use directly fructose, and this substrate needs first to be converted into lactate, glucose, or fatty acids in the gut, liver, and kidneys. Cells of these three organ express a set of fructolytic enzymes: fructokinase, aldolase B, and triokinase which convert fructose into two triose phosphate. Since there is no negative feedback on the activity of these fructolytic enzymes, the ingested fructose is almost completely and immediately metabolized in the gut and the liver. When a large amount of fructose is ingested, splanchnic organs are faced with an overproduction of triose phosphate, which they first release into the systemic circulation as lactate and glucose. When these pathways become saturated, fructose is converted into fatty acids through de novo lipogenesis, and newly synthetized fatty acids are either secreted into the blood as very low density lipoproteins – triglycerides – or temporarily stored as intrahepatic triglycerides. The metabolic fate of ingested fructose is dependent on whole body energy output. In resting conditions, glucose and lactate oxidation are limited by the low whole body energy expenditure, and excess fructose intake leads to a moderate increase in splanchnic glucose output to increased fasting and postprandial blood triglyceride concentration and to increased intrahepatic fat concentrations. During exercise, whole body energy output is high; fructose and glucose and lactate synthetized from glucose are essentially oxidized in skeletal muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Liu S, Manson JE, Lee IM, Cole SR, Hennekens CH, Willett WC, Buring JE (2000) Fruit and vegetable intake and risk of cardiovascular disease: the Women’s Health Study. Am J Clin Nutr 72:922–928

    CAS  Google Scholar 

  2. Freedman DA, Choi SK, Hurley T, Anadu E, Hebert JR (2013) A farmers’ market at a federally qualified health center improves fruit and vegetable intake among low-income diabetics. Prev Med 56:288–292

    Article  Google Scholar 

  3. Lustig RH, Schmidt LA, Brindis CD (2012) Public health: the toxic truth about sugar. Nature 482:27–29

    Article  CAS  Google Scholar 

  4. Bray G, Nielsen S, Popkin B (2004) Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am J Clin Nutr 79:737–743

    Google Scholar 

  5. Macdonald I (1986) Dietary carbohydrate and energy balance. Prog Biochem Pharmacol 21:181–191

    CAS  Google Scholar 

  6. Johnson R, Moorthy SN, Padmaja G (2010) Production of high fructose syrup from cassava and sweet potato flours and their blends with cereal flours. Food Sci Technol Int 16:251–258

    Article  CAS  Google Scholar 

  7. Hanover LM, White JS (1993) Manufacturing, composition, and applications of fructose. Am J Clin Nutr 58:724S–732S

    CAS  Google Scholar 

  8. Rosensweig NS (1972) Dietary sugars and intestinal enzymes. J Am Diet Assoc 60:483–486

    CAS  Google Scholar 

  9. Lu Y, Levin GV, Donner TW (2008) Tagatose, a new antidiabetic and obesity control drug. Diabetes Obes Metab 10:109–134

    Article  CAS  Google Scholar 

  10. Cook GC (1979) The D-xylose absorption test in different ethnic groups. Trop Geogr Med 31:93–97

    CAS  Google Scholar 

  11. Wang YM, van Eys J (1981) Nutritional significance of fructose and sugar alcohols. Annu Rev Nutr 1:437–475

    Article  CAS  Google Scholar 

  12. Robayo-Torres CC, Quezada-Calvillo R, Nichols BL (2006) Disaccharide digestion: clinical and molecular aspects. Clin Gastroenterol Hepatol 4:276–287

    Article  CAS  Google Scholar 

  13. Clausen MR, Mortensen PB (1997) Lactulose, disaccharides and colonic flora. Clinical consequences. Drugs 53:930–942

    Article  CAS  Google Scholar 

  14. Gray GM (1992) Starch digestion and absorption in nonruminants. J Nutr 122:172–177

    CAS  Google Scholar 

  15. Laffitte A, Neiers F, Briand L (2014) Functional roles of the sweet taste receptor in oral and extraoral tissues. Curr Opin Clin Nutr Metab Care 17:379–385

    Article  CAS  Google Scholar 

  16. Drewnowski A (1999) Sweetness, appetite, and energy intake: physiological aspects. World Rev Nutr Diet 85:64–76

    Article  CAS  Google Scholar 

  17. Beauchamp GK (1999) Factors affecting sweetness. World Rev Nutr Diet 85:10–17

    Article  CAS  Google Scholar 

  18. Treesukosol Y, Smith KR, Spector AC (2011) The functional role of the T1R family of receptors in sweet taste and feeding. Physiol Behav 105:14–26

    Article  CAS  Google Scholar 

  19. Newbrun E, Hoover C, Mettraux G, Graf H (1980) Comparison of dietary habits and dental health of subjects with hereditary fructose intolerance and control subjects. J Am Dent Assoc 101:619–626

    Article  CAS  Google Scholar 

  20. Burmeister LA, Valdivia T, Nuttall FQ (1991) Adult hereditary fructose intolerance. Arch Intern Med 151:773–776

    Article  CAS  Google Scholar 

  21. Flatt JP (1978) The biochemistry of energy expenditure. In: Bray GA (ed) Recent advances in obesity research. Newman Publishing, London, pp 211–228

    Google Scholar 

  22. Raninen KJ, Lappi JE, Mukkala ML, Tuomainen TP, Mykkanen HM, Poutanen KS, Raatikainen OJ (2016) Fiber content of diet affects exhaled breath volatiles in fasting and postprandial state in a pilot crossover study. Nutr Res 36:612–619

    Article  CAS  Google Scholar 

  23. Trichopoulou A, Lagiou P (1997) Healthy traditional Mediterranean diet: an expression of culture, history, and lifestyle. Nutr Rev 55:383–389

    Article  CAS  Google Scholar 

  24. Sheehy T, Kolahdooz F, Roache C, Sharma S (2015) Traditional food consumption is associated with better diet quality and adequacy among Inuit adults in Nunavut, Canada. Int J Food Sci Nutr 66:445–451

    Article  CAS  Google Scholar 

  25. Boyce VL, Swinburn BA (1993) The traditional Pima Indian diet. Composition and adaptation for use in a dietary intervention study. Diabetes Care 16:369–371

    Article  CAS  Google Scholar 

  26. Cordain L, Eaton SB, Miller JB, Mann N, Hill K (2002) The paradoxical nature of hunter-gatherer diets: meat-based, yet non-atherogenic. Eur J Clin Nutr 56(Suppl 1):S42–S52

    Article  Google Scholar 

  27. Sluik D, van Lee L, Engelen AI, Feskens EJ (2016) Total, free, and added sugar consumption and adherence to guidelines: the Dutch National Food Consumption Survey 2007–2010. Nutrients 8:70

    Article  Google Scholar 

  28. Marriott BP, Olsho L, Hadden L, Connor P (2010) Intake of added sugars and selected nutrients in the United States, National Health and Nutrition Examination Survey (NHANES) 2003–2006. Crit Rev Food Sci Nutr 50:228–258

    Article  CAS  Google Scholar 

  29. Lei L, Rangan A, Flood VM, Louie JC (2016) Dietary intake and food sources of added sugar in the Australian population. Br J Nutr 115:868–877

    Article  CAS  Google Scholar 

  30. Campos VC, Tappy L (2016) Physiological handling of dietary fructose-containing sugars: implications for health. Int J Obes (Lond) 40(Suppl 1):S6–S11

    Article  CAS  Google Scholar 

  31. Mayes PA (1993) Intermediary metabolism of fructose. Am J Clin Nutr 58:754S–765S

    CAS  Google Scholar 

  32. Mueckler M, Thorens B (2013) The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med 34:121–138

    Article  CAS  Google Scholar 

  33. Kinne RK, Castaneda F (2011) SGLT inhibitors as new therapeutic tools in the treatment of diabetes. Handb Exp Pharmacol:105–126

    Google Scholar 

  34. Douard V, Ferraris RP (2008) Regulation of the fructose transporter GLUT5 in health and disease. Am J Physiol Endocrinol Metab 295:E227–E237

    Article  CAS  Google Scholar 

  35. Barone S, Fussell SL, Singh AK, Lucas F, Xu J, Kim C, Wu X, Yu Y, Amlal H, Seidler U et al (2009) Slc2a5 (Glut5) is essential for the absorption of fructose in the intestine and generation of fructose-induced hypertension. J Biol Chem 284:5056–5066

    Article  CAS  Google Scholar 

  36. Sugawara-Yokoo M, Suzuki T, Matsuzaki T, Naruse T, Takata K (1999) Presence of fructose transporter GLUT5 in the S3 proximal tubules in the rat kidney. Kidney Int 56:1022–1028

    Article  CAS  Google Scholar 

  37. Sun SZ, Empie MW (2012) Fructose metabolism in humans – what isotopic tracer studies tell us. Nutr Metab 9:89

    Article  Google Scholar 

  38. Theytaz F, de Giorgi S, Hodson L, Stefanoni N, Rey V, Schneiter P, Giusti V, Tappy L (2014) Metabolic fate of fructose ingested with and without glucose in a mixed meal. Nutrients 6:2632–2649

    Article  CAS  Google Scholar 

  39. Paquot N, Schneiter P, Jequier E, Gaillard R, Lefebvre PJ, Scheen A, Tappy L (1996) Effects of ingested fructose and infused glucagon on endogenous glucose production in obese NIDDM patients, obese non-diabetic subjects, and healthy subjects. Diabetologia 39:580–586

    Article  CAS  Google Scholar 

  40. Bizeau ME, Pagliassotti MJ (2005) Hepatic adaptations to sucrose and fructose. Metabolism 54:1189–1201

    Article  CAS  Google Scholar 

  41. Tappy L, Le KA (2010) Metabolic effects of fructose and the worldwide increase in obesity. Physiol Rev 90:23–46

    Article  CAS  Google Scholar 

  42. Samuel VT (2011) Fructose induced lipogenesis: from sugar to fat to insulin resistance. Trends Endocrinol Metab: TEM 22:60–65

    Article  CAS  Google Scholar 

  43. Faeh D, Minehira K, Schwarz J, Periasami R, Seongus P, Tappy L (2005) Effect of fructose overfeeding and fish oil administration on hepatic de novo lipogenesis and insulin sensitivity in healthy males. Diabetes 54:1907–1913

    Article  CAS  Google Scholar 

  44. Le KA, Faeh D, Stettler R, Ith M, Kreis R, Vermathen P, Boesch C, Ravussin E, Tappy L (2006) A 4-wk high-fructose diet alters lipid metabolism without affecting insulin sensitivity or ectopic lipids in healthy humans. Am J Clin Nutr 84:1374–1379

    CAS  Google Scholar 

  45. Haidari M, Leung N, Mahbub F, Uffelman KD, Kohen-Avramoglu R, Lewis GF, Adeli K (2002) Fasting and postprandial overproduction of intestinally derived lipoproteins in an animal model of insulin resistance. Evidence that chronic fructose feeding in the hamster is accompanied by enhanced intestinal de novo lipogenesis and ApoB48-containing lipoprotein overproduction. J Biol Chem 277:31646–31655

    Article  CAS  Google Scholar 

  46. Teff KL, Grudziak J, Townsend RR, Dunn TN, Grant RW, Adams SH, Keim NL, Cummings BP, Stanhope KL, Havel PJ (2009) Endocrine and metabolic effects of consuming fructose- and glucose-sweetened beverages with meals in obese men and women: influence of insulin resistance on plasma triglyceride responses. J Clin Endocrinol Metab 94:1562–1569

    Article  CAS  Google Scholar 

  47. Jeppesen J, Chen YI, Zhou MY, Schaaf P, Coulston A, Reaven GM (1995) Postprandial triglyceride and retinyl ester responses to oral fat: effects of fructose. Am J Clin Nutr 61:787–791

    Article  CAS  Google Scholar 

  48. Livesey G, Taylor R (2008) Fructose consumption and consequences for glycation, plasma triacylglycerol, and body weight: meta-analyses and meta-regression models of intervention studies. Am J Clin Nutr 88:1419–1437

    CAS  Google Scholar 

  49. Sievenpiper JL, Carleton AJ, Chatha S, Jiang HY, de Souza RJ, Beyene J, Kendall CW, Jenkins DJ (2009) Heterogeneous effects of fructose on blood lipids in individuals with type 2 diabetes: systematic review and meta-analysis of experimental trials in humans. Diabetes Care 32:1930–1937

    Article  CAS  Google Scholar 

  50. David Wang D, Sievenpiper JL, de Souza RJ, Cozma AI, Chiavaroli L, Ha V, Mirrahimi A, Carleton AJ, Di Buono M, Jenkins AL et al (2014) Effect of fructose on postprandial triglycerides: a systematic review and meta-analysis of controlled feeding trials. Atherosclerosis 232:125–133

    Article  CAS  Google Scholar 

  51. Sobrecases H, Le KA, Bortolotti M, Schneiter P, Ith M, Kreis R, Boesch C, Tappy L (2010) Effects of short-term overfeeding with fructose, fat and fructose plus fat on plasma and hepatic lipids in healthy men. Diabetes Metab 36:244–246

    Article  CAS  Google Scholar 

  52. Egli L, Lecoultre V, Theytaz F, Campos V, Hodson L, Schneiter P, Mittendorfer B, Patterson BW, Fielding BA, Gerber PA et al (2013) Exercise prevents fructose-induced hypertriglyceridemia in healthy young subjects. Diabetes 62:2259–2265

    Article  CAS  Google Scholar 

  53. Le KA, Ith M, Kreis R, Faeh D, Bortolotti M, Tran C, Boesch C, Tappy L (2009) Fructose overconsumption causes dyslipidemia and ectopic lipid deposition in healthy subjects with and without a family history of type 2 diabetes. Am J Clin Nutr 89:1760–1765

    Article  CAS  Google Scholar 

  54. Bortolotti M, Kreis R, Debard C, Cariou B, Faeh D, Chetiveaux M, Ith M, Vermathen P, Stefanoni N, Le KA et al (2009) High protein intake reduces intrahepatocellular lipid deposition in humans. Am J Clin Nutr 90:1002–1010

    Article  CAS  Google Scholar 

  55. Roglans N, Vila L, Farre M, Alegret M, Sanchez RM, Vazquez-Carrera M, Laguna JC (2007) Impairment of hepatic Stat-3 activation and reduction of PPARalpha activity in fructose-fed rats. Hepatology 45:778–788

    Article  CAS  Google Scholar 

  56. Lecoultre V, Egli L, Carrel G, Theytaz F, Kreis R, Schneiter P, Boss A, Zwygart K, Le KA, Bortolotti M et al (2013) Effects of fructose and glucose overfeeding on hepatic insulin sensitivity and intrahepatic lipids in healthy humans. Obesity (Silver Spring) 21:782–785

    Article  CAS  Google Scholar 

  57. Stanhope KL, Schwarz JM, Keim NL, Griffen SC, Bremer AA, Graham JL, Hatcher B, Cox CL, Dyachenko A, Zhang W et al (2009) Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest 119:1322–1334

    Article  CAS  Google Scholar 

  58. Maersk M, Belza A, Stodkilde-Jorgensen H, Ringgaard S, Chabanova E, Thomsen H, Pedersen SB, Astrup A, Richelsen B (2012) Sucrose-sweetened beverages increase fat storage in the liver, muscle, and visceral fat depot: a 6-mo randomized intervention study. Am J Clin Nutr 95:283–289

    Article  CAS  Google Scholar 

  59. Elwyn DH, Bursztein S (1993) Carbohydrate metabolism and requirements for nutritional support: part I. Nutrition 9:50–66

    CAS  Google Scholar 

  60. Bursztein S, Elwyn DH, Askanazi J, Kinney JM (1989) Energy metabolism, indirect calorimetry, and nutrition. Williams & Wilkins, Baltimore, 266 pp

    Google Scholar 

  61. Johnston RD, Stephenson MC, Crossland H, Cordon SM, Palcidi E, Cox EF, Taylor MA, Aithal GP, Macdonald IA (2013) No difference between high-fructose and high-glucose diets on liver triacylglycerol or biochemistry in healthy overweight men. Gastroenterology 145(1016–1025):e1012

    Google Scholar 

  62. Ngo Sock ET, Le KA, Ith M, Kreis R, Boesch C, Tappy L (2010) Effects of a short-term overfeeding with fructose or glucose in healthy young males. Br J Nutr 103:939–943

    Article  Google Scholar 

  63. Schwarz JM, Noworolski SM, Wen MJ, Dyachenko A, Prior JL, Weinberg ME, Herraiz LA, Tai VW, Bergeron N, Bersot TP et al (2015) Effect of a high-fructose weight-maintaining diet on lipogenesis and liver fat. J Clin Endocrinol Metab 100:2434–2442

    Article  CAS  Google Scholar 

  64. Tappy L, Le KA (2012) Does fructose consumption contribute to non-alcoholic fatty liver disease? Clin Res Hepatol Gastroenterol 36:554–560

    Article  CAS  Google Scholar 

  65. Tounian P, Schneiter P, Henry S, Jéquier E, Tappy L (1994) Effects of infused fructose on endogenous glucose production, gluconeogenesis and glycogen metabolism in healthy humans. Am J Physiol 267:E710–E717

    CAS  Google Scholar 

  66. Schwarz JM, Acheson KJ, Tappy L, Piolino V, Muller MJ, Felber JP, Jequier E (1992) Thermogenesis and fructose metabolism in humans. Am J Physiol 262:E591–E598

    CAS  Google Scholar 

  67. Dirlewanger M, di Vetta V, Guenat E, Battilana P, Seematter G, Schneiter P, Jequier E, Tappy L (2000) Effects of short-term carbohydrate or fat overfeeding on energy expenditure and plasma leptin concentrations in healthy female subjects. Int J Obes Relat Metab Dis: J Int Assoc Study Obes 24:1413–1418

    Article  CAS  Google Scholar 

  68. Mevorach M, Giacca A, Aharon Y, Hawkins M, Shamoon H, Rossetti L (1998) Regulation of endogenous glucose production by glucose per se is impaired in type 2 diabetes mellitus. J Clin Invest 102:744–753

    Article  CAS  Google Scholar 

  69. Delarue J, Normand S, Pachiaudi C, Beylot M, Lamisse F, Riou JP (1993) The contribution of naturally labelled 13C fructose to glucose appearance in humans. Diabetologia 36:338–345

    Article  CAS  Google Scholar 

  70. Aeberli I, Hochuli M, Gerber PA, Sze L, Murer SB, Tappy L, Spinas GA, Berneis K (2013) Moderate amounts of fructose consumption impair insulin sensitivity in healthy young men: a randomized controlled trial. Diabetes Care 36:150–156

    Article  CAS  Google Scholar 

  71. Tappy L, Le KA (2015) Health effects of fructose and fructose-containing caloric sweeteners: where do we stand 10 years after the initial whistle blowings? Curr Diab Rep 15:627

    Article  Google Scholar 

  72. Johnson RJ, Nakagawa T, Sanchez-Lozada LG, Shafiu M, Sundaram S, Le M, Ishimoto T, Sautin YY, Lanaspa MA (2013) Sugar, uric acid, and the etiology of diabetes and obesity. Diabetes 62:3307–3315

    Article  CAS  Google Scholar 

  73. Teff KL, Elliott SS, Tschop M, Kieffer TJ, Rader D, Heiman M, Townsend RR, Keim NL, D’Alessio D, Havel PJ (2004) Dietary fructose reduces circulating insulin and leptin, attenuates postprandial suppression of ghrelin, and increases triglycerides in women. J Clin Endocrinol Metab 89:2963–2972

    Article  CAS  Google Scholar 

  74. Soenen S, Westerterp-Plantenga MS (2007) No differences in satiety or energy intake after high-fructose corn syrup, sucrose, or milk preloads. Am J Clin Nutr 86:1586–1594

    CAS  Google Scholar 

  75. Rodin J, Reed D, Jamner L (1988) Metabolic effects of fructose and glucose: implications for food intake. Am J Clin Nutr 47:683–689

    CAS  Google Scholar 

  76. Payne AN, Chassard C, Lacroix C (2012) Gut microbial adaptation to dietary consumption of fructose, artificial sweeteners and sugar alcohols: implications for host-microbe interactions contributing to obesity. Obes Rev 13:799–809

    Article  CAS  Google Scholar 

  77. Jandrain BJ, Pallikarakis N, Normand S, Pirnay F, Lacroix M, Mosora F, Pachiaudi C, Gautier JF, Scheen AJ, Riou JP et al (1993) Fructose utilization during exercise in men: rapid conversion of ingested fructose to circulating glucose. J Appl Physiol 74:2146–2154

    Article  CAS  Google Scholar 

  78. Jeukendrup AE (2010) Carbohydrate and exercise performance: the role of multiple transportable carbohydrates. Curr Opin Clin Nutr Metab Care 13:452–457

    Article  CAS  Google Scholar 

  79. Lecoultre V, Benoit R, Carrel G, Schutz Y, Millet GP, Tappy L, Schneiter P (2010) Fructose and glucose co-ingestion during prolonged exercise increases lactate and glucose fluxes and oxidation compared with an equimolar intake of glucose. Am J Clin Nutr 92:1071–1079

    Article  CAS  Google Scholar 

  80. Egli L, Lecoultre V, Cros J, Rosset R, Marques AS, Schneiter P, Hodson L, Gabert L, Laville M, Tappy L (2016) Exercise performed immediately after fructose ingestion enhances fructose oxidation and suppresses fructose storage. Am J Clin Nutr 103:348–355

    Article  CAS  Google Scholar 

  81. Bidwell AJ, Fairchild TJ, Redmond J, Wang L, Keslacy S, Kanaley JA (2014) Physical activity offsets the negative effects of a high-fructose diet. Med Sci Sports Exerc 46:2091–2098

    Article  CAS  Google Scholar 

  82. Koutsari C, Karpe F, Humphreys SM, Frayn KN, Hardman AE (2001) Exercise prevents the accumulation of triglyceride-rich lipoproteins and their remnants seen when changing to a high-carbohydrate diet. Arterioscler Thromb Vasc Biol 21:1520–1525

    Article  CAS  Google Scholar 

  83. Tappy L, Egli L, Lecoultre V, Schneider P (2013) Effects of fructose-containing caloric sweeteners on resting energy expenditure and energy efficiency: a review of human trials. Nutr Metab 10:54

    Article  CAS  Google Scholar 

  84. Tran C, Jacot-Descombes D, Lecoultre V, Fielding BA, Carrel G, Le KA, Schneiter P, Bortolotti M, Frayn KN, Tappy L (2010) Sex differences in lipid and glucose kinetics after ingestion of an acute oral fructose load. Br J Nutr 104:1139–1147

    Article  CAS  Google Scholar 

  85. Couchepin C, Le KA, Bortolotti M, da Encarnacao JA, Oboni JB, Tran C, Schneiter P, Tappy L (2008) Markedly blunted metabolic effects of fructose in healthy young female subjects compared with male subjects. Diabetes Care 31:1254–1256

    Article  CAS  Google Scholar 

  86. Busserolles J, Mazur A, Gueux E, Rock E, Rayssiguier Y (2002) Metabolic syndrome in the rat: females are protected against the pro-oxidant effect of a high sucrose diet. Exp Biol Med (Maywood) 227:837–842

    Article  CAS  Google Scholar 

  87. Wilder-Smith CH, Li X, Ho SS, Leong SM, Wong RK, Koay ES, Ferraris RP (2014) Fructose transporters GLUT5 and GLUT2 expression in adult patients with fructose intolerance. U Eur Gastroenterol J 2:14–21

    Article  Google Scholar 

  88. Fedewa A, Rao SS (2014) Dietary fructose intolerance, fructan intolerance and FODMAPs. Curr Gastroenterol Rep 16:370

    Article  Google Scholar 

Download references

Acknowledgments

The author’s research in this field has been supported by grant from the Swiss National Science Foundation 26074044 and by grants from the Swiss Federal Office for Sport Science. I warmly thank Dr. Kevin Seyssel for having reviewed and commented the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc Tappy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Tappy, L. (2018). Health Implications of Fructose Consumption in Humans. In: Mérillon, JM., Ramawat, K. (eds) Sweeteners. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-27027-2_29

Download citation

Publish with us

Policies and ethics