Skip to main content

Analytical Strategies to Determine Artificial Sweeteners by Liquid Chromatography-Mass Spectrometry

  • Reference work entry
  • First Online:
Book cover Sweeteners

Abstract

The interest of consumers and government organizations on improving the quality of food and its impact on human health is growing in recent years. Consuming low-calorie foodstuffs are increasingly demanded, and the presence of artificial sweeteners plays an important role not only in food but also in waste reaching the environment. Analysis of these compounds is important in assessing food safety and quality. This chapter reviews the analytical approaches for the extraction and reliable identification and quantification of most commonly used artificial sweeteners in food, pharmaceutical, and environmental related matrices. The advantages and disadvantages of determination techniques used are described, with special emphasis on liquid chromatography coupled to mass spectrometry with different approaches, including applications of high resolution mass spectrometry. The possibility of using new materials for efficient extraction, miniaturized extraction techniques, and the potential for quantification of LC-MS/MS techniques are highlighted as future prospects, based on achievements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ACS-K:

Acesulfame

ADA:

American Diabetes Association

ADI:

Acceptable daily intake

AHA:

American Heart Association

ALI:

Alitame

ANSES:

Agency for Food Environmental and Occupational Health & Safety

APCI:

Atmospheric pressure chemical ionization

API:

Atmospheric pressure ionization

ASP:

Aspartame

C18:

Octadecylsilane

CE:

Capillary electrophoresis

CFR:

Code of Federal Regulations

CID:

Collision induced dissociation

CP-ANN:

Counter-propagation artificial neural networks

CYC:

Cyclamate

DAD:

Diode array detector

DKP:

Diketopiperazine

DUL:

Dulcin

EDCs:

Endocrine disrupting chemicals

EFSA:

European Food Safety Authority

ELSD:

Evaporative light scattering detector

EOF:

Electroosmotic flow

ESI:

Electrospray ionization

FAO:

Food and Agriculture Organization of the United Nations

FASI:

Field-amplified sample injection

FT:

Fourier Transform

GA:

Glycyrrhizic acid

GC-ECD:

Gas chromatography-electron capture detector

GRAS:

Generally recognized as safe

HILIC:

Hydrophilic interaction liquid chromatography

HPTLC:

High-performance thin-layer chromatography

HRMS:

High-resolution mass spectrometry

HS-SDME:

Headspace single-drop microextraction

IC:

Ion chromatography

ISA:

International Society of Automation

JECFA:

Joint Expert Committee on Food Additives

JRC:

Joint Research Centre

LODs:

Limits of detection

LOQs:

Limits of quantification

LVI:

Large-volume injection

MDL:

Method detection limit

MEKC:

Micellar electrokinetic chromatographic

MeOH:

Methanol

MIP:

Molecularly imprinted polymer

MRM:

Multiple reaction monitoring

MSTFA:

N-methyl-N-trimethylsilytrifluoroacetamide

NEO:

Neotame

NHDC:

Neohesperidin dihydrochalcone

NMR:

Nuclear magnetic resonance

PCR:

Principal component regression

PLE:

Pressurized liquid extraction

PLS:

Partial least squares

PPCPs:

Pharmaceuticals and personal care products

Q:

Single quadrupole

QqQ:

Triple quadrupole

QTOF:

Quadrupole time-of-flight

RP:

Reversed phase

RRHD:

Rapid resolution high definition

SAC:

Saccharin

SGFE:

Siraitia grosvenorii Swingle fruit extract

SIM:

Selected ion monitoring

SIR:

Selective ionization recording

SPE:

Solid phase extraction

SPM:

Suspended particulate matter

SPME:

Solid phase microextraction

STV:

Stevioside

SUC:

Sucralose

SWTs:

Sweeteners

TMCS:

Trimethylchlorosilane

TRIS:

Tris (hydroxymethyl) amino methane

UHPLC-MS/MS:

Ultra-high performance liquid chromatography-tandem mass spectrometry

WHO:

World Health Organization

WWTPs:

Wastewater treatment plants

References

  1. Regulation (EC) No 1333/2008 of the European Parliament and of the Council of 16 December 2008 on food additives. Off J Eur Union L 354:16–33

    Google Scholar 

  2. US FDA (United States Food and Drug Administration) (2014) http://www.fda.gov/food/ingredientspackaginglabeling/foodadditivesingredients/ucm397716.htm. Accessed 22 Jan 2016

  3. ISA (International Sweeteners Association) (2014) Low calories sweeteners and you. http://www.sweeteners.org/en. Accessed 25 Jan 2016

  4. Commission Regulation (EU) No 1129/2011 of 11 November 2011 amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council by establishing a Union list of food additives. Off J Eur Union L 295:1–177

    Google Scholar 

  5. Commission Regulation (EU) No 1131/2011 of 11 November 2011 amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council with regard to steviol glycosides. Off J Eur Union L 295:205–211

    Google Scholar 

  6. Commission Regulation (EU) No 497/2014 of 14 May 2014 amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council and the Annex to Commission Regulation (EU) No 231/2012 as regards the use of advantame as a sweetener text with EEA relevance. Off J Eur Communities 143:6–13

    Google Scholar 

  7. EFSA (European Food SafetyAuthority) (2014) http://www.efsa.europa.eu/en/topics/topic/sweeteners. Accessed 22 Jan 2016

  8. FDA (Food and Drug Administration) http://www.fda.gov/Food/IngredientsPackagingLabeling/FoodAdditivesIngredients/ucm397725.htm. Accessed 22 Jan 2016

  9. Grembecka M (2015) Natural sweeteners in a human diet. Rocz Panstw Zakl Hig 66:195–202

    Google Scholar 

  10. EFSA (European Food Safety Authority) (2013) Scientific opinion on the safety of advantame for the proposed uses as a food additive. EFSA J 11:3301–3369. doi:10.2903/j.efsa.2013.3301

    Article  Google Scholar 

  11. EFSA (European Food Safety Authority) (2013) Scientific opinion on the re-evaluation of aspartame (E 951) as a food additive. EFSA J 11:3496–3759. doi:10.2903/j.efsa.2013.3496

    Google Scholar 

  12. European Commission (2006) Directive 2006/52/EC of European Parliament and Council of 5 July 2006 amending Directive 95/2/EC on food additives other than colours and sweeteners and Directive 94/35/EC on sweeteners for use in foodstuffs. Off J Eur Union L 204:10–22. Brussels

    Google Scholar 

  13. Commission Regulation (EU) No 257/2010 of 25 March 2010 setting up a programme for the re-evaluation of approved food additives in accordance with Regulation (EC) No 1333/2008 of the European Parliament and of the Council on food additives. Off J Eur Communities 80:19–27

    Google Scholar 

  14. Spillane WJ (2006) Optimising sweet taste in food. CRC Press, Boca Raton

    Book  Google Scholar 

  15. Kaneko R, Kitabatake N (2001) Sweetness of sweet protein thaumatin is more thermoresistant under acid conditions than under neutral or alkaline conditions. Biosci Biotech Bioch 65:409–413. doi:10.1271/bbb.65.409

    Article  CAS  Google Scholar 

  16. Bellisle F (2015) Intense sweeteners, appetite for the sweeteners taste, and relationship to weight management. Curr Obes Rep 4:106–110. doi:10.1007/s13679-014-0133-08

    Article  Google Scholar 

  17. Mattes RD, Popkin BM (2009) Nonnutritive sweetener consumption in humans: effects on appetite and food intake and their putative mechanisms. Am J Clin Nutr 89:1–14. doi:10.3945/ajcn.2008.26792

    Article  CAS  Google Scholar 

  18. Ficth C, Keim KS (2012) Position of the Academy of Nutrition and Dietetic: use of nutritive and nonnutritive sweeteners. J Acad Nutr Diet 112:739–758

    Article  Google Scholar 

  19. AHA (American Heart Association), ADA (American Diabetes Association) (2012) Nonnutritive sweeteners: current use and health perspectives: a scientific statement. Circulation 126:509–519. doi:10.1161/CIR0b013e31825c42ee

    Article  Google Scholar 

  20. Ain Q, Khan SA (2015) Artificial sweeteners: safe or unsafe? Recent Adv Endocr 65:225–227

    Google Scholar 

  21. ANSES (French Agency for Food, Environmental and Occupational Health & Safety) (2015) OPINION of the French Agency for Food, Environmental and Occupational Health & Safety of 19 November 2014, revised on 9 January 2015 on the assessment of the nutritional benefits and risks related to intense sweeteners. www.anses.fr. ANSES Opinion Request no. 2011-SA-0161

  22. EFSA (2011) Scientific opinion on the substantiation of health claims related to intense sweeteners and contribution to the maintenance or achievement of a normal body weight (ID 1136, 1444, 4299), reduction of post-prandial glycaemic responses (ID 4298), maintenance of normal blood glucose concentrations (ID 1221, 4298), and maintenance of tooth mineralisation by decreasing tooth demineralisation (ID 1134, 1167, 1283) pursuant to Article 13(1) of Regulation (EC) No 1924/20061. EFSA J 9:2229–2255

    Google Scholar 

  23. Pepino MY (2015) Metabolic effects of non-nutritive sweeteners. Physiol Behav 152:450–455. doi:10.1016/j.physbeh.2015.06.024

    Article  CAS  Google Scholar 

  24. Swithers SE (2015) Artificial sweeteners are not the answer to childhood obesity. Appetite 93:85–90. doi:10.1016/j.appet.2015.03.027

    Article  Google Scholar 

  25. Shankar P, Ahuja S, Sriram K (2013) Non-nutritive sweeteners: review and update. Nutrition 29:1293–1299. doi:10.1016/j.nut.2013.03.024

    Article  CAS  Google Scholar 

  26. Kokotou MG, Asimakopoulos AG, Thomaidis NS (2012) Artificial sweeteners as emerging pollutants in the environment: analytical methodologies and environmental impact. Anal Methods 4:3057–3070. doi:10.1039/c2ay05950a

    Article  CAS  Google Scholar 

  27. Perkola N, Sainio P (2014) Quantification of four artificial sweeteners in Finnish surface waters with isotope-dilution mass spectrometry. Environ Pollut 184:391–396. doi:10.1016/j.envpol.2013.09.017

    Article  CAS  Google Scholar 

  28. Zygler A, Wasik A, Namieśnik J (2009) Analytical methodologies for determination of artificial sweeteners in foodstuffs. Trends Anal Chem 28:1082–1102. doi:10.1016/j.trac.2009.06.008

    Article  CAS  Google Scholar 

  29. Lange FT, Scheurer M, Brauch HJ (2012) Artificial sweeteners a recently recognized class of emerging environmental contaminants: a review. Anal Bioanal Chem 403:2503–2518. doi:10.1007/s00216-012-5892-z

    Article  CAS  Google Scholar 

  30. GRAS (Generally Recognized as Safe) (2013) Code of Federal Regulations Title 21, Parts 172 and 189. Food and Drug Administration (FDA). Available from: http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=172 http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=189. Accessed 20 Mar 2016

  31. Zygler A, Wasik A, Namiésnik J (2010) Retention behaviour of some high-intensity sweeteners on different SPE sorbents. Talanta 82:1742–1748. doi:10.1016/j.talanta.2010.07.070

    Article  CAS  Google Scholar 

  32. Carro-Díaz AM, Lorenzo-Ferreira RA (2013) Molecularly imprinted polymers for sample preparation. In: Alvarez-Lorenzo C, Concheiro A (eds) Handbook of molecularly imprinted polymers. Smithers Rapra Technology, Shropshire. ISBN 978-1-84735-959-9

    Google Scholar 

  33. Yang L, Zhou S, Xiao Y, Tang Y, Xie T (2015) Sensitive simultaneous determination of three sulfanilamide artificial sweeters by capillary electrophoresis with on-line preconcentrationand contactless conductivity detection. Food Chem 188:446–451. doi:10.1016/j.foodchem.2015.04.060

    Article  CAS  Google Scholar 

  34. Chang CS, Yeh TS (2014) Detection of 10 sweeteners in various foods by liquid chromatography/tandem mass spectrometry. J Food Drug Anal 22:318–328. doi:10.1016/j.jfda.2014.01.024

    Article  CAS  Google Scholar 

  35. Bergamo AB, Fracassi da Silva JA, Pereira de Jesus D (2011) Simultaneous determination of aspartame, cyclamate, saccharin and acesulfame-Kin soft drinks and tabletop sweetener formulations by capillary electrophoresis with capacitively coupled contactless conductivity detection. Food Chem 124:1714–1717. doi:10.1016/j.foodchem.2010.07.107

    Article  CAS  Google Scholar 

  36. Botelho Dias C, Dillenburg Meinhart A, Queiroz Pane D, Augusto Ballus C, Teixeira Godoy H (2015) Multivariate optimisation and validation of a method for the separation of five artificial sweeteners by UPLC-DAD in nine food matrices. Food Anal Methods 8:1824–1835. doi:10.1007/s12161-014-0056-8

    Article  Google Scholar 

  37. Ordoñez EY, Rodil R, Quintana JB, Cela R (2015) Determination of artificial sweeteners in beverages with green mobile phases and high temperature liquid chromatography–tandem mass spectrometry. Food Chem 169:162–168. doi:10.1016/j.foodchem.2014.07.132

    Article  Google Scholar 

  38. Lorenzo RA, Pena MT, Fernández P, González P, Carro AM (2015) Artificial sweeteners in beverages by ultra performance liquid chromatography with photodiode array and liquid chromatography tandem mass spectrometry. Food Control 47:43–52. doi:10.1016/j.foodcont.2014.06.035

    Article  CAS  Google Scholar 

  39. Ma K, Li X-J, Wang H-F, Zhao M (2015) Rapid and sensitive method for the determination of eight food additives in red wine by ultra-performance liquid chromatography tandem mass spectrometry. Food Anal Methods 8:203–212. doi:10.1007/s12161-014-9893-8

    Article  Google Scholar 

  40. Kubica P, Namieśnik J, Wasik A (2015) Determination of eight artificial sweeteners and common Stevia rebaudiana glycosides in non-alcoholic and alcoholic beverages by reversed-phase liquid chromatography coupled with tandem mass spectrometry. Anal Bioanal Chem 407:1505–1512. doi:10.1007/s00216-014-8355-x

    Article  CAS  Google Scholar 

  41. de Queiroz Pane D, Botelho Dias C, Dillenburg Meinhart A, Augusto Ballus C, Teixeira Godoy H (2015) Evaluation of the sweetener content in diet/light/zero foods and drinks by HPLC-DAD. J Food Sci Technol 52:6900–6913. doi:10.1007/s13197-015-1816-1

    Article  Google Scholar 

  42. Sakai H, Yamashita A, Tamura M, Uyama A, Mochizuki N (2015) Simultaneous determination of sweeteners in beverages by LC-MS/MS. Food Addit Contam Part A 32:808–816. doi:10.1080/19440049.2015.1018341

    Article  CAS  Google Scholar 

  43. Ohtsuki T, Sato K, Abe Y, Sugimoto N, Akiyama H (2015) Quantification of acesulfame potassium in processed foods by quantitative 1H NMR. Talanta 131:712–718. doi:10.1016/j.talanta.2014.08.002

    Article  CAS  Google Scholar 

  44. Shah R, Farris S, De Jager LS, Begley TH (2015) A novel method for the simultaneous determination of 14 sweeteners of regulatory interest using UHPLC-MS/MS. Food Addit Contam Part A 32:141–151. doi:10.1080/19440049.2014.994111

    Article  CAS  Google Scholar 

  45. Hu F, Xu L, Luan F, Liu H, Gao Y (2013) Determination of neotame in non-alcoholic beverage by capillary zone electrophoresis. J Sci Food Agric 93:3334–3338. doi:10.1002/jsfa.6181

    Article  CAS  Google Scholar 

  46. Zygler A, Wasik A, Kot-Wasik A, Namieśnik J (2011) Determination of nine high-intensity sweeteners in various foods by high-performance liquid chromatography with mass spectrometric detection. Anal Bioanal Chem 400:2159–2172. doi:10.1007/s00216-011-4937-z

    Article  CAS  Google Scholar 

  47. Hashemi M, Habibi A, Jahanshahi N (2011) Determination of cyclamate in artificial sweeteners and beverages using headspace single-drop microextraction and gas chromatography flame-ionisation detection. Food Chem 124:1258–1263. doi:10.1016/j.foodchem.2010.07.057

    Article  CAS  Google Scholar 

  48. Moein MM, Javanbakht M, Karimi M, Akbari-adergani B (2015) Molecularly imprinted sol–gel nanofibers based solid phase microextraction coupled on-line with high performance liquid chromatography for selective determination of acesulfame. Talanta 134:340–347. doi:10.1016/j.talanta.2014.11.011

    Article  CAS  Google Scholar 

  49. Richardson SD (2010) Environmental mass spectrometry: emerging contaminants and current issues. Anal Chem 82:4742–4774. doi:10.1021/ac101102d

    Article  CAS  Google Scholar 

  50. Richardson SD, Ternes TA (2014) Water analysis: emerging contaminants and current issues. Anal Chem 86:2813–2848. doi:10.1021/ac500508t

    Article  CAS  Google Scholar 

  51. Tollefsen KE, Nizzetto L, Huggett DB (2012) Presence, fate and effects of the intense sweetener sucralose in the aquatic environment. Sci Total Environ 438:510–516. doi:10.1016/j.scitotenv.2012.08.060

    Article  CAS  Google Scholar 

  52. Marinovich M, Galli CL, Bosetti C, Gallus S, La Vecchia C (2013) Aspartame, low-calorie sweeteners and disease: regulatory safety and epidemiological issues. Food Chem Toxicol 60:109–115. doi:10.1016/j.fct.2013.07.040

    Article  CAS  Google Scholar 

  53. Lemus-Mondaca R, Vega-Gálvez A, Zura-Bravo L, Ah-Hen K (2012) Stevia rebaudiana Bertoni, source of a high-potency natural sweetener: a comprehensive review on the biochemical, nutritional and functional aspects. Food Chem 132:1121–1132. doi:10.1016/j.foodchem.2011.11.140

    Article  CAS  Google Scholar 

  54. Backe WJ, FieldIs JA (2012) SPE necessary for environmental analysis? A quantitative comparison of matrix effects from large-volume injection and solid-phase extraction based methods. Environ Sci Technol 46:6750–6758. doi:10.1021/es300235z

    Article  CAS  Google Scholar 

  55. Wu M, Qian Y, Boyd JM, Hrudey SE, Le XC, Li XF (2014) Direct large volume injection ultra-high performance liquid chromatography-tandem mass spectrometry determination of artificial sweeteners sucralose and acesulfame in well water. J Chromatogr A 1359:156–161. doi:10.1016/j.chroma.2014.07.035

    Article  CAS  Google Scholar 

  56. Berset JD, Ochsenbein N (2012) Stability considerations of aspartame in the direct analysis of artificial sweeteners in water samples using high-performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS). Chemosphere 88:563–569. doi:10.1016/j.chemosphere.2012.03.030

    Article  CAS  Google Scholar 

  57. Scheurer M, Brauch HJ, Lange FT (2009) Analysis and occurrence of seven artificial sweetenersnin German waste water and surface water and in soil aquifer treatment (SAT). Anal Bioanal Chem 394:1585–1594. doi:10.1007/s00216-009-2881-y

    Article  CAS  Google Scholar 

  58. Ordoñez EY, Quintana JB, Rodil R, Cela R (2012) Determination of artificial sweeteners in water samples by solid-phase extraction and liquid chromatography–tandem mass spectrometry. J Chromatogr A 1256:197–205. doi:10.1016/j.chroma.2012.07.073

    Article  Google Scholar 

  59. Salas D, Borrull F, Fontanals N, Marcé RM (2015) Hydrophilic interaction liquid chromatography coupled to high-resolution mass spectrometry to determine artificial sweeteners in environmental waters. Anal Bioanal Chem 407:4277–4285. doi:10.1007/s00216-014-8330-6

    Article  CAS  Google Scholar 

  60. Arbeláez P, Borrull F, Pocurull E, Marcé RM (2015) Determination of high-intensity sweeteners in river water and wastewater by solid-phase extraction and liquid chromatography–tandem mass spectrometry. J Chromatogr A 1393:106–114. doi:10.1016/j.chroma.2015.03.035

    Article  Google Scholar 

  61. Gan Z, Sun H, Feng B, Wang R, Zhang Y (2013) Occurrence of seven artificial sweeteners in the aquatic environment and precipitation of Tianjin, China. Water Res 47:4928–4937. doi:10.1016/j.watres.2013.05.038

    Article  CAS  Google Scholar 

  62. Gan Z, Sun H, Wang R, Feng B (2013) A novel solid-phase extraction for the concentration of sweeteners in water and analysis by ion-pair liquid chromatography–triple quadrupole mass spectrometry. J Chromatogr A 1274:87–96. doi:10.1016/j.chroma.2012.11.081

    Article  CAS  Google Scholar 

  63. Tran NH, Hu J, Ong SL (2013) Simultaneous determination of PPCPs, EDCs, and artificial sweeteners in environmental water samples using a single-step SPE coupled with HPLC–MS/MS and isotope dilution. Talanta 113:82–92. doi:10.1016/j.talanta.2013.03.072

    Article  CAS  Google Scholar 

  64. Buerge IJ, Buser HR, Kahle M, Muller MD, Poiger T (2009) Ubiquitous occurrence of the artificial sweetener acesulfame in the aquatic environment: an ideal chemical marker of domestic wastewater in groundwater. Environ Sci Technol 43:4381–4385. doi:10.1021/es900126x

    Article  CAS  Google Scholar 

  65. Van Stempvoort RD, Roy JW, Brown SJ, Bickerton G (2011) Artificial sweeteners as potential tracers in groundwater in urban environments. J Hydrol 401:126–133. doi:10.1016/j.jhydrol.2011.02.013

    Article  Google Scholar 

  66. Hillebrand O, Nödler K, Sauter M, Licha T (2015) Multitracer experiment to evaluate the attenuation of selected organic micropollutants in a karst aquifer. Sci Total Environ 506–507:338–343. doi:10.1016/j.scitotenv.2014.10.102

    Article  Google Scholar 

  67. Zirlewagen J, Licha T, Schiperski F, Nödler K, Scheytt T (2016) Use of two artificial sweeteners, cyclamate and acesulfame, to identify and quantify wastewater contributions in a karst spring. Sci Total Environ 547:356–365. doi:10.1016/j.scitotenv.2015.12.112

    Article  CAS  Google Scholar 

  68. Roy JW, Van Stempvoort DR, Bickerton G (2014) Artificial sweeteners as potential tracers of municipal landfill leachate. Environ Pollut 184:89–93. doi:10.1016/j.envpol.2013.08.021

    Article  CAS  Google Scholar 

  69. Oppenheimer J, Eaton A, Badruzzaman M, Haghani AW, Jacangelo JG (2011) Occurrence and suitability of sucralose as an indicator compound of wastewater loading to surface waters in urbanized regions. Water Res 45:4019–4027. doi:10.1016/j.watres.2011.05.014

    Article  CAS  Google Scholar 

  70. Batchu SR, Quinete N, Panditi VR, Gardinali PR (2013) Online solid phase extraction liquid chromatography tandem mass spectrometry (SPE-LC-MS/MS) method for the determination of sucralose in reclaimed and drinking waters and its photo degradation in natural waters from South Florida. Chem Cent J 7:141–149. doi:10.1186/1752-153X-7-141

    Article  Google Scholar 

  71. Batchu SR, Ramirez CE, Gardinali PR (2015) Rapid ultra-trace analysis of sucralose in multiple-origin aqueous samples by online solid-phase extraction coupled to high-resolution mass spectrometry. Anal Bioanal Chem 407:3717–3725. doi:10.1007/s00216-015-8593-6

    Article  CAS  Google Scholar 

  72. http://ec.europa.eu/environment/waste/sludge/index.htm. Accessed 15 Mar 2016

  73. Council Directive (1986) Council Directive of 12 June 1986 on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture. Off J Eur Communities 181:0006–0012

    Google Scholar 

  74. Brorström-Lundén E, Svenson A, Viktor T, Woldegiorgis A, Remberger M, Kaj L, Dye C, Bjerke A, Schlabach M (2008) Measurements of sucralose in the Swedish Screening Program 2007. PART I. Sucralose in surface waters and STP samples. Swedish Environmental Research Institute, Stockholm

    Google Scholar 

  75. Brorström-Lundén E, Svenson A, Viktor T, Woldegiorgis A, Remberger M, Kaj L, Dye C, Bjerke A, Schlabach M (2008) Measurements of sucralose in the Swedish Screening Program 2007. PART II. Sucralose in biota samples and regional STP samples. Swedish Environmental Research Institute, Stockholm

    Google Scholar 

  76. Ordoñez EY, Quintana JB, Rodil R, Cela R (2013) Determination of artificial sweeteners in sewage sludge samples using pressurised liquid extraction and liquid chromatography–tandem mass spectrometry. J Chromatogr A 1320:10–16. doi:10.1016/j.chroma.2013.10.049

    Article  Google Scholar 

  77. Arbeláez P, Borrull F, Marcé RM, Pocurull E (2015) Trace-level determination of sweeteners in sewage sludge using selective pressurized liquid extraction and liquid chromatography–tandem mass spectrometry. J Chromatogr A 1408:15–21. doi:10.1016/j.chroma.2015.07.001

    Article  Google Scholar 

  78. Subedi B, Kannan K (2014) Fate of artificial sweeteners in wastewater treatment plants in New York State, U.S.A. Environ Sci Technol 48:13668–13674. doi:10.1021/es504769c

    Article  CAS  Google Scholar 

  79. Subedi B, Lee S, Moon H-B, Kannan K (2014) Emission of artificial sweeteners, select pharmaceuticals, and personal care products through sewage sludge from wastewater treatment plants in Korea. Environ Int 68:33–40. doi:10.1016/j.envint.2014.03.006

    Article  CAS  Google Scholar 

  80. Gan Z, Sun H, Yao Y, Zhao Y, Li Y, Zhang Y, Hu H, Wang R (2014) Distribution of artificial sweeteners in dust and soil in China and their seasonal variations in the environment of Tianjin. Sci Total Environ 488–489:168–175. doi:10.1016/j.scitotenv.2014.04.084

    Article  Google Scholar 

  81. Rowe RC, Sheskey PJ, Cook WG, Fenton ME (2012) Handbook of pharmaceutical excipients, 7th edn. Pharmaceutical Press/American Pharmacists Association, Philadelphia. ISBN 978 0 85711 027 5

    Google Scholar 

  82. Pifferi G, Restani P (2003) The safety of pharmaceutical excipients. Il Farmaco 58:541–550. doi:10.1016/S0014-827X(03)00079-X

    Article  CAS  Google Scholar 

  83. Balbani APS, Stelzer LB, Montovani JC (2006) Pharmaceutical excipients and the information on drug labels. Rev Bras Otorrinolaringol 72:400–406

    Article  Google Scholar 

  84. Corrêa de Carvalho R, Pereira Netto AD, Ferreira de Carvalho Marques F (2014) Simultaneous determination of strontium ranelate and aspartame in pharmaceutical formulation for the treatment of postmenopausal osteoporosis by capillary zone electrophoresis. Microchem J 117:214–219. doi:10.1016/j.microc.2014.06.024

    Article  Google Scholar 

  85. Pereira Vistuba J, Danielli Dolzana M, Vitali L, Leal de Oliveira MA, Micke GA (2015) Sub-minute method for simultaneous determination of aspartame, cyclamate, acesulfame-K and saccharin in food and pharmaceutical samples by capillary zone electrophoresis. J Chromatogr A 1396:148–152. doi:10.1016/j.chroma.2015.03.070

    Article  Google Scholar 

  86. Grembecka M, Szefer P (2012) Simultaneous determination of caffeine and aspartame in diet supplements and non-alcoholic beverages using liquid-chromatography coupled to corona CAD and UV-DAD detectors. Food Anal Methods 5:1010–1017. doi:10.1007/s12161-011-9334-x

    Article  Google Scholar 

  87. Singh M, Kumar A, Tarannum N (2013) Water-compatible ‘aspartame’-imprinted polymer grafted on silica surface for selective recognition in aqueous solution. Anal Bioanal Chem 405:4245–4252. doi:10.1007/s00216-013-6812-6

    Article  CAS  Google Scholar 

  88. Núñez O, Gallart-Ayala H, Martins CPB, Lucci P (2012) New trends in fast liquid chromatography for food and environmental analysis. J Chromatogr A 1228:298–323. doi:10.1016/j.chroma.2011.10.091

    Article  Google Scholar 

  89. Dossi N, Toniolo R, Susmel S, Pizzariello A, Bontempelli G (2006) Simultaneous RP-LC determination of additives in soft drinks. Chromatographia 63:557–562. doi:10.1365/s10337-006-0793-y

    Article  CAS  Google Scholar 

  90. Cantarelli MA, Pellerano RG, Marchevsky EJ, Camiña JM (2009) Simultaneous determination of aspartame and acesulfame-K by molecular absorption spectrophotometry using multivariate calibration and validation by high performance liquid chromatography. Food Chem 115:1128–1132. doi:10.1016/j.foodchem.2008.12.101

    Article  CAS  Google Scholar 

  91. Kailasam S (2010) Ultrafast and sensitive analysis of sweeteners, preservatives and flavorants in nonalcoholic beverages using the Agilent 1290 Infinity LC system Agilent Technologies, Inc. Publication Number 5990-5590EN. www.agilent.com/chem/1290

  92. Pedjie N (2010) Analysis of common sweeteners and additives in beverages with the PerkinElmer Flexar FX-15 System equipped with a PDA Detector PerkinElmer, Inc. 009473_01. www.perkinelmer.com

  93. Wasik A, McCourt J, Buchgraber M (2007) Simultaneous determination of nine intense sweeteners in foodstuffs by high performance liquid chromatography and evaporative light scattering detection – development and single-laboratory validation. J Chromatogr A 1157:187–196. doi:10.1016/j.chroma.2007.04.068

    Article  CAS  Google Scholar 

  94. Kruve A, Rebane R, Kipper K, Oldekop ML, Evard H, Herodes K, Ravio P, Leito I (2015) Tutorial review on validation of liquid chromatography–mass spectrometry methods: part I. Anal Chim Acta 870:29–44. doi:10.1016/j.aca.2015.02.017

    Article  CAS  Google Scholar 

  95. Kruve A, Rebane R, Kipper K, Oldekop ML, Evard H, Herodes K, Ravio P, Leito I (2015) Tutorial review on validation of liquid chromatography–mass spectrometry methods: part II. Anal Chim Acta 870:8–28. doi:10.1016/j.aca.2015.02.016

    Article  CAS  Google Scholar 

  96. Yang DJ, Chen B (2009) Simultaneous determination of nonnutritive sweeteners in foods by HPLC/ESI-MS. J Agric Food Chem 57:3022–3027. doi:10.1021/jf803988u

    Article  CAS  Google Scholar 

  97. Hird SJ, Lau BPY, Schuhmacher R, Krska R (2014) Liquid chromatography-mass spectrometry for the determination of chemical contaminants in food. Trends Anal Chem 59:59–72. doi:10.1016/j.trac.2014.04.005

    Article  CAS  Google Scholar 

  98. Loos R, Gawlik BM, Boettcher K, Locoro G, Contini S, Bidoglio G (2009) Sucralose screening in European surface waters using a solid-phase extraction-liquid chromatography–triple quadrupole mass spectrometry method. J Chromatogr A 1216:1126–1131. doi:10.1016/j.chroma.2008.12.048

    Article  CAS  Google Scholar 

  99. Mawhinney DB, Young RB, Vanderford BJ, Borch T, Snyder SA (2011) Artificial sweetener sucralose in U.S. drinking water systems. Environ Sci Technol 45:8716–8722. doi:10.1021/es202404c

    Article  CAS  Google Scholar 

  100. Minten J, Adolfsson-Erici M, Björlenius B, Alsberg T (2011) A method for the analysis of sucralose with electrospray LC/MS in recipient waters and in sewage effluent subjected to tertiary treatment technologies. Int J Environ Anal Chem 91:357–366. doi:10.1080/03067310903582333

    Article  CAS  Google Scholar 

  101. Ferrer I, Zweigenbaum JA, Thurman EM (2013) Analytical methodologies for the detection of sucralose in water. Anal Chem 85:9581–9587. doi:10.1021/ac4016984

    Article  CAS  Google Scholar 

  102. Mead RN, Morgan JB, Avery GB Jr, Kieber RJ, Kirk AM, Skrabal SA, Willey JD (2009) Occurrence of the artificial sweetener sucralose in coastal and marine waters of the United States. Mar Chem 116:13–17. doi:10.1016/j.marchem.2009.09.005

    Article  CAS  Google Scholar 

  103. Morlock GE, Schuele L, Grashorn S (2011) Development of a quantitative high-performance thin-layer chromatographic method for sucralose in sewage effluent, surface water, and drinking water. J Chromatogr A 1218:2745–2753. doi:10.1016/j.chroma.2010.11.063

    Article  CAS  Google Scholar 

  104. Yu S, Zhu B, Lv F, Li S, Huang W (2012) Rapid analysis of cyclamate in foods and beverages by gas chromatography-electron capture detector (GC-ECD). Food Chem 134:2424–2429. doi:10.1016/j.foodchem.2012.04.028

    Article  CAS  Google Scholar 

  105. Mazurek S, Szostak R (2011) Quantification of aspartame in commercial sweeteners by FT-Raman spectroscopy. Food Chem 125:1051–1057. doi:10.1016/j.foodchem.2010.09.075

    Article  CAS  Google Scholar 

  106. Maes P, Monakhova YB, Kuballa T, Reusch H, Lachenmeier DW (2012) Qualitative and quantitative control of carbonated cola beverages using 1H NMR spectroscopy. J Agric Food Chem 60:2778–2784. doi:10.1021/jf204777m

    Article  CAS  Google Scholar 

  107. Herrmannová M, Krivánková L, Bartos M, Vytras K (2006) Direct simultaneous determination of eight sweeteners in foods by capillary isotachophoresis. J Sep Sci 29:1132–1137. doi:10.1016/j.foodchem.2010.07.107

    Article  Google Scholar 

  108. Stojkovic M, Mai TD, Hauser PC (2013) Determination of artificial sweeteners by capillary electrophoresis with contactless conductivity detection optimized by hydrodynamic pumping. Anal Chim Acta 787:254–259. doi:10.1016/j.aca.2013.05.039

    Article  CAS  Google Scholar 

  109. Wu Y, Li J, Zhao S, Ding X (2016) Simultaneous determination of 11 food additives by micellar electrokinetic capillary chromatography. Food Anal Methods 9:589–595. doi:10.1007/s12161-015-0225-4

    Article  Google Scholar 

  110. Moein MM, Abdel-Rehim A, Abdel-Rehim M (2015) Microextraction by packed sorbent (MEPS). Trends Anal Chem 67:34–44. doi:10.1016/j.trac.2014.12.003

    Article  CAS  Google Scholar 

  111. Lorenzo RA, Carro AM, Concheiro A, Alvarez-Lorenzo C (2015) Stimuli-responsive materials in analytical separation. Anal Bioanal Chem 407:4927–4948. doi:10.1007/s00216-015-8679-1

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Spanish Ministry of Science and Innovation (Project AGL-2014-53647-R) and the Dirección General de Tráfico (Ministry of Interior, Spain), Project SPIP2015-01838, and FEDER for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa A. Lorenzo Ferreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lorenzo Ferreira, R.A., Lage Yusty, M.A., Carro Díaz, A.M. (2018). Analytical Strategies to Determine Artificial Sweeteners by Liquid Chromatography-Mass Spectrometry. In: Mérillon, JM., Ramawat, K. (eds) Sweeteners. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-27027-2_19

Download citation

Publish with us

Policies and ethics