Skip to main content
Book cover

Sweeteners pp 167–184Cite as

Mass Production of the Taste-Modifying Protein Miraculin in Transgenic Plants

  • Reference work entry
  • First Online:

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Miraculin is a glycoprotein that is found in red berries, which are known as a miracle fruit (Richadella dulcifica; synonym Synsepalum dulcificum) and are produced by a tropical shrub native to West Africa. Miraculin itself is not sweet, but it can convert a sour taste into a sweet taste. Due to its unique properties and potential use as an alternative sweetener, the mass production of miraculin is of interest. However, the plant has low fruit productivity, and there are limited natural sources of miraculin protein. Therefore, heterologous miraculin production based on genetic engineering techniques has been attempted using plants such as tomato, lettuce, and strawberry. The recombinant miraculin protein has been successfully expressed in transgenic tomatoes and lettuce in a genetically stable manner. In addition, a plant factory, which is a closed cultivation system and may be suitable for producing transgenic plants expressing recombinant miraculin, has been developed. Finally, a simple method for purifying miraculin from transgenic tomato fruits was established. In this chapter, we introduce the mass production of recombinant miraculin protein in transgenic tomatoes and lettuce.

This is a preview of subscription content, log in via an institution.

References

  1. Kant R (2005) Sweet proteins-potential replacement for artificial low calorie sweeteners. Nutr J 4:5

    Article  Google Scholar 

  2. Masuda T, Kitabatake N (2006) Developments in biotechnological production of sweet proteins. J Biosci Bioeng 102:375–389

    Article  CAS  Google Scholar 

  3. Witty M (1990) Preprothaumatin II is processed to biological activity in Solanum tuberosum. Biotechnol Lett 12:131–136

    Article  CAS  Google Scholar 

  4. Bartoszewski G, Niedziela A, Szwacka M, Niemirowicz-Szczytt K (2003) Modification of tomato taste in transgenic plants carrying a thaumatin gene from Thaumatococcus daniellii Benth. Plant Breed 122:347–351

    Article  CAS  Google Scholar 

  5. Schestibratov KA, Dolgov SV (2005) Transgenic strawberry plants expressing a thaumatin II gene from demonstrate enhanced resistance to Botrytis cinerea. Sci Hortic 106:177–189

    Article  CAS  Google Scholar 

  6. Lebedev VG, Taran SA, Shmatchenko VV, Dolgov SV (2002) Pear transformation with the gene for super-sweet protein thaumatin II. Acta Hortic 596:199–202

    Article  CAS  Google Scholar 

  7. Szwacka M, Kryzymowska M, Osuch A, Kowalczyk ME, Malepszy S (2002) Variable properties of transgenic cucumber plants containing the thaumatin II gene from Thaumatococcus daniellii. Acta Physiol Plant 24:173–185

    Article  CAS  Google Scholar 

  8. Peñarrubia L, Kim R, Giovannoni J, Kim SH, Fischer RL (1992) Production of the sweet protein monellin in transgenic plants. Nat Biotechnol 10:561–564

    Article  Google Scholar 

  9. Lamphear BJ, Barker DK, Brooks CA, Delaney DE, Lane JR, Beifuss K, Love R, Thompson K, Mayor J, Clough R, Harkey R, Poage M, Drees C, Horn ME, Streatfield SJ, Nikolov Z, Woodard SL, Hood EE, Jilka JM, Howard JA (2005) Expression of the sweet protein brazzein in maize for production of a new commercial sweetener. Plant Biotechnol J 3:103–114

    Article  CAS  Google Scholar 

  10. Kurihara K, Beidler LM (1968) Taste-modifying protein from miracle fruit. Science 161:1241–1243

    Article  CAS  Google Scholar 

  11. Kurihara K, Beidler LM (1969) Mechanism of the action of taste modifying protein. Nature 222:1176–1178

    Article  CAS  Google Scholar 

  12. Theerasilp S, Kurihara Y (1988) Complete purification and characterization of the taste-modifying protein, miraculin, from miracle fruit. J Biol Chem 263:11536–11539

    CAS  Google Scholar 

  13. Theerasilp S, Hitotsuya H, Nakajo S, Nakaya K, Nakamura Y, Kurihara Y (1989) Complete amino acid sequence and structure characterization of the taste-modifying protein, miraculin. J Biol Chem 264:6655–6659

    CAS  Google Scholar 

  14. Masuda Y, Nirasawa S, Nakaya K, Kurihara Y (1995) Cloning and sequencing of a cDNA encoding a taste-modifying protein, miraculin. Gene 161:175–177

    Article  CAS  Google Scholar 

  15. Igeta H, Tamura Y, Nakaya K, Nakamura Y, Kurihara Y (1991) Determination of disulfide array and subunit structure of taste modifying protein, miraculin. Biochim Biophys Acta 1079:303–307

    Article  CAS  Google Scholar 

  16. Ito K, Asakura T, Morita Y, Nakajima K, Koizumi A, Shimizu-Ibuka A, Masuda K, Ishiguro M, Terada T, Maruyama J, Kitamoto K, Misaka T, Abe K (2007) Microbial production of sensory-active miraculin. Biochem Biophys Res Commun 360:407–411

    Article  CAS  Google Scholar 

  17. Matsuyama T, Satoh M, Nakata R, Aoyama T, Inoue H (2009) Functional expression of miraculin, a taste-modifying protein in Escherichia coli. J Biochem 145:445–450

    Article  CAS  Google Scholar 

  18. Paladino A, Colonna G, Facchiano AM, Constantini S (2010) Functional hypothesis on miraculin’ sweetness by a molecular dynamics approach. Biochem Biophys Res Commun 396:726–730

    Article  CAS  Google Scholar 

  19. Paladino A, Costantini S, Colonna G, Facchiano AM (2008) Molecular modeling of miraculin: structural analysis and functional hypothesis. Biochem Biophys Res Commun 367:26–32

    Article  CAS  Google Scholar 

  20. Koizumi A, Tsuchiya A, Nakajima K, Ito K, Terada T, Shimizu-Ibuka A, Briand L, Asakura T, Misaka T, Abe K (2011) Human sweet taste receptor mediates acid-induced sweetness of miraculin. Proc Natl Acad Sci U S A 108:16819–16824

    Article  CAS  Google Scholar 

  21. Kurihara Y, Nirasawa S (1997) Structures and activities of sweetness inducing substances (miraculin, curculin, strogin) and the heat stable sweet protein, mabinlin. FFI J Jpn 174:67–74

    CAS  Google Scholar 

  22. Kurihara Y (1994) Thaumatin. In: Witty M, Higginbotham JD (eds) Sweet proteins in general. CRC Press, Boca Raton, pp 1–18

    Google Scholar 

  23. Ito K, Sugawara T, Koizumi A, Nakajima K, Shimizu-Ibuka A, Shiroishi M, Asada H, Yurugi-Kobayashi T, Shimamura T, Asakura T, Masuda K, Ishiguro M, Misaka T, Iwata S, Kobayashi T, Abe K (2010) Bulky high-mannose-type N-glycan blocks the taste-modifying activity of miraculin. Biochim Biophys Acta 1800:986–992

    Article  CAS  Google Scholar 

  24. Sun HJ, Cui ML, Ma B, Ezura H (2006) Functional expression of the taste-modifying protein, miraculin, in transgenic lettuce. FEBS Lett 580:620–626

    Article  CAS  Google Scholar 

  25. Sugaya T, Yano M, Sun HJ, Hirai T, Ezura H (2008) Transgenic strawberry expressing a taste-modifying protein, miraculin. Plant Biotechnol 25:329–333

    Article  CAS  Google Scholar 

  26. Sun HJ, Kataoka H, Yano M, Ezura H (2007) Genetically stable expression of functional miraculin, a new type of alternative sweetener, in transgenic tomato plants. Plant Biotechnol J 5:768–777

    Article  CAS  Google Scholar 

  27. Yano M, Hirai T, Kato K, Hiwasa-Tanase K, Fukuda N, Ezura H (2010) Tomato is a suitable material for producing recombinant miraculin protein in genetically stable manner. Plant Sci 178:469–473

    Article  CAS  Google Scholar 

  28. Sun HJ, Uchii S, Watanabe S, Ezura H (2006) A highly efficient transformation protocol for Micro-Tom, a model cultivar for tomato functional genomics. Plant Cell Physiol 47:426–431

    Article  CAS  Google Scholar 

  29. Kim YW, Kato K, Hirai T, Hiwasa-Tanase K, Ezura H (2010) Spatial and developmental profiling of miraculin accumulation in transgenic tomato fruits expressing the miraculin gene constitutively. J Agric Food Chem 58:282–286

    Article  CAS  Google Scholar 

  30. Hirai T, Sato M, Toyooka K, Sun HJ, Yano M, Ezura H (2010) Miraculin, a taste-modifying protein is secreted into intercellular spaces in plant cells. J Plant Physiol 167:209–215

    Article  CAS  Google Scholar 

  31. Desai PN, Shrivastava N, Padh H (2010) Production of heterologous proteins in plants: strategies for optimal expression. Biotechnol Adv 28:427–435

    Article  CAS  Google Scholar 

  32. Fluhr R, Kuhlemeier C, Nagy F, Chua NH (1986) Organ-specific and light-induced expression of plant genes. Science 232:1106–1112

    Article  CAS  Google Scholar 

  33. Kaulen H, Schell J, Kreuzaler F (1986) Light-induced expression of the chimeric chalcone synthase-NPTII gene in tobacco cells. EMBO J 5:1–8

    CAS  Google Scholar 

  34. Stougaard J, Sandal NN, Gron A, Kuhle A, Marcker KA (1987) 50 Analysis of the soybean leghaemoglobin lbc3 gene: regulatory elements required for promoter activity and organ specificity. EMBO J 6:3565–3569

    CAS  Google Scholar 

  35. Williamson JD, Hirsch-Wyncott ME, Larkins BA, Gelvin SB (1989) Differential accumulation of a transcript driven by the CaMV 35S promoter in transgenic tobacco. Plant Physiol 90:1570–1576

    Article  CAS  Google Scholar 

  36. Twyman RM, Stoger E, Schillberg S, Christou P, Fischer R (2003) Molecular farming in plants: host systems and expression technology. Trends Biotechnol 21:570–578

    Article  CAS  Google Scholar 

  37. Hirai T, Kim YW, Kato K, Hiwasa-Tanase K, Ezura H (2011) Uniform accumulation of recombinant miraculin protein in transgenic tomato fruit using a fruit-ripening-specific E8 promoter. Transgenic Res 20:1285–1292

    Article  CAS  Google Scholar 

  38. Deikman J, Fischer RL (1988) Interaction of a DNA binding factor with the 50-flanking region of an ethylene-responsive fruit ripening gene from tomato. EMBO J 7:3315–3320

    CAS  Google Scholar 

  39. Lincoln JE, Fischer RL (1988) Diverse mechanisms for the regulation of ethylene-inducible gene expression. Mol Gen Genet 212:71–75

    Article  CAS  Google Scholar 

  40. Lincoln JE, Fischer RL (1988) Regulation of gene expression by ethylene in wild-type and rin tomato (Lycopersicon esculentum) fruit. Plant Physiol 88:370–374

    Article  CAS  Google Scholar 

  41. Lin HH, Huang LF, Su HC, Jeng ST (2009) Effect of the multiple polyadenylation signal AAUAAA on mRNA 30-end formation and gene expression. Planta 230:699–712

    Article  CAS  Google Scholar 

  42. Nagaya S, Kawamura K, Shinmyo A, Kato K (2010) The HSP terminator of Arabidopsis thaliana increases gene expression in plant cells. Plant Cell Physiol 51:328–532

    Article  CAS  Google Scholar 

  43. Ingelbrecht ILW, Herman LMF, Dekeyser RA, Van Montagu MC, Depicker AG (1989) Different 30 end regions strongly influence the level of gene expression in plant cells. Plant Cell 1:671–680

    CAS  Google Scholar 

  44. Hiwasa-Tanase K, Nyarubona M, Hirai T, Kato K, Ichikawa T, Ezura H (2011) High-level accumulation of recombinant miraculin protein in transgenic tomatoes expressing a synthetic miraculin gene with optimized codon usage terminated by the native miraculin terminator. Plant Cell Rep 30:113–124

    Article  CAS  Google Scholar 

  45. Kato K, Yoshida R, Kikuzaki A, Hirai T, Kuroda H, Hiwasa-Tanase K, Takane K, Ezura H, Mizoguchi T (2010) Molecular breeding of tomato lines for mass production of miraculin in a plant factory. J Agric Food Chem 58:9505–9510

    Article  CAS  Google Scholar 

  46. Matsui T, Takita E, Sato T, Aizawa M, Ki M, Kadoyama Y, Hirano K, Kinjo S, Asao H, Kawamoto K, Kariya H, Makino S, Hamabata T, Sawada K, Kato K (2011) Production of double repeated B subunit of Shiga toxin 2e at high levels in transgenic lettuce plants as vaccine material for porcine edema disease. Transgenic Res 20:735–748

    Article  CAS  Google Scholar 

  47. Hirai T, Kurokawa N, Duhita N, Hiwasa-Tanase K, Kato K, Kato K, Ezura H (2011) The HSP terminator of Arabidopsis thaliana induces extremely high-level accumulation of miraculin protein in transgenic tomato. J Agric Food Chem 59:9942–9949

    Article  CAS  Google Scholar 

  48. Leelavathi S, Reddy VS (2003) Cloroplast expression of His-tagged GUS-fusions: a general strategy to overproduce and purify foreign proteins using transplastomic plants as bioreactors. Mol Breed 11:49–58

    Article  CAS  Google Scholar 

  49. Meyers B, Zaltsman A, Lacroix B, Kozlovsky SV, Krichevsky A (2010) Nuclear and plastid genetic engineering of plants: comparison of opportunities and challenges. Biotechnol Adv 28:747–756

    Article  CAS  Google Scholar 

  50. Staub JM, Garcia B, Graves J, Hajdukiewicz PT, Hunter P, Nehra N, Paradkar V, Schlittler M, Carroll JA, Spatola L, Ward D, Ye G, Russell DA (2000) High-yield production of a human therapeutic protein in tobacco chloroplasts. Nat Biotechnol 18:333–338

    Article  CAS  Google Scholar 

  51. Daniell H (2006) Production of biopharmaceuticals and vaccines in plants via the chloroplast genome. Biotechnol J 1:1071–1079

    Article  CAS  Google Scholar 

  52. Maliga P (2003) Progress towards commercialization of plastid transformation technology. Trends Biotechnol 121:20–28

    Article  Google Scholar 

  53. Kawabe A, Miyashita NT (2003) Patterns of codon usage bias in three dicot and four monocot plant species. Genes Genet Syst 78:343–352

    Article  CAS  Google Scholar 

  54. Liu Q, Xue Q (2005) Comparative studies on codon usage pattern of chloroplasts and their host nuclear genes in four plant species. J Genet 84:55–62

    Article  CAS  Google Scholar 

  55. Murray EE, Lotzer J, Eberle M (1989) Codon usage in plant genes. Nucleic Acids Res 17:477–498

    Article  CAS  Google Scholar 

  56. Peng RH, Yao QH, Xiong AS, Cheng ZM, Li Y (2006) Codonmodifications and an endoplasmic reticulum-targeting sequence additively enhance expression of an Aspergillus phytase gene in transgenic canola. Plant Cell Res 25:124–132

    Article  CAS  Google Scholar 

  57. Perlak FJ, Fuchs RL, Dean DA, McPherson SL, Fischhoff DA (1991) Modification of the coding sequence enhances plant expression of insect control protein genes. Proc Natl Acad Sci U S A 88:3324–3328

    Article  CAS  Google Scholar 

  58. Rouwendal GJ, Mendes O, Wolbert EJH, Boer AD (1997) Enhanced expression in tobacco of the gene encoding green fluorescent protein by modification of its codon usage. Plant Mol Biol 33:989–999

    Article  CAS  Google Scholar 

  59. Xue GP, Patel M, Johnson JS, Smyth DJ, Vickers CE (2003) Selectable marker-free transgenic barley producing a high level of cellulose (1,4-b-glucanase) in developing grains. Plant Cell Rep 21:1088–1094

    Article  CAS  Google Scholar 

  60. Gustafsson C, Govindarajan S, Minshull J (2004) Codon bias and heterologous protein expression. Trends Biotechnol 22:346–353

    Article  CAS  Google Scholar 

  61. Kim YW, Hirai T, Kato K, Hiwasa-Tanase K, Ezura H (2010) Gene dosage and genetic background affect miraculin accumulation in transgenic tomato fruits. Plant Biotechnol 27:333–338

    Article  CAS  Google Scholar 

  62. Kato K, Maruyama S, Hirai T, Hiwasa-Tanase K, Mizoguchi T, Goto E, Ezura H (2011) A trial of production of the plant-derived high-value recombinant protein in a plant factory: photosynthetic photon fluxes affect the accumulation of recombinant miraculin in transgenic tomato fruits. Plant Signal Behav 8:1172–1179

    Article  Google Scholar 

  63. Hobbs SLA, Kpodar P, DeLong CMO (1990) The effect of T-DNA copy number, position and methylation on reporter gene expression in tobacco transformants. Plant Mol Biol 15:851–864

    Article  CAS  Google Scholar 

  64. Jorgensen RA, Cluste PD, English J, Que Q, Napoli C (1996) Chalcone synthase cosuppression phenotypes in petunia flowers: comparison of sense vs. antisense constructs and single copy vs. complex T-DNA sequences. Plant Mol Biol 31:957–973

    Article  CAS  Google Scholar 

  65. Meyer P (1996) Repeat-induced gene silencing: common mechanisms in plants and fungi. Biol Chem Hoppe Seyler 377:87–95

    Article  CAS  Google Scholar 

  66. Doran PM (2006) Foreign protein degradation and instability in plants and plant tissue cultures. Trends Biotechnol 24:426–432

    Article  CAS  Google Scholar 

  67. Almeida DPF, Huber DJ (1999) Apoplastic pH and inorganic ion levels in tomato fruit: a potential means for regulation of cell wall metabolism during ripening. Physiol Plant 105:506–512

    Article  CAS  Google Scholar 

  68. Hirai T, Fukukawa G, Kakuta H, Fukuda N, Ezura H (2010) Production of recombinant miraculin using transgenic tomato in a closed-cultivation system. J Agric Food Chem 58:6096–6101

    Article  CAS  Google Scholar 

  69. Torres AC, Cantliffe DJ, Laughner B, Bienie M, Nagata R, Ashraf M, Ferl RJ (1993) Stable transformation of lettuce cultivar South Bay from cotyledon explants. Plant Cell Tissue Org Cult 34:279–285

    Article  CAS  Google Scholar 

  70. Curtis IS, Power JB, McCabe M, de Laat A, Davey MR (1994) Promoter-GUS fusions in lettuce. In: Abstracts 4th Int Congr Plant Mol Biol (Abstract no. 1682). The International Society for Plant Molecular Biology, Amsterdam

    Google Scholar 

  71. McCabe MS, Schepers F, van der Arend A, Mohapatra U, de Laat AMM, Power JB, Davey MR (1999) Increased stable inheritance of herbicide resistance in transgenic lettuce carrying a petE promoter-bar gene compared with a CaMV 35S-bar gene. Theor Appl Genet 99:587–592

    Article  CAS  Google Scholar 

  72. Park BJ, Liu Z, Kanno A, Kameya T (2005) Increased tolerance to salt- and water-deficit stress in transgenic lettuce (Lactuca sativa L.) by constitutive expression of LEA. Plant Growth Regul 45:165–171

    Article  CAS  Google Scholar 

  73. Teeri TH, Lehvaslaiho H, Frank M, Uotila J, Heino P, Palva ET, Montagu VM, Herrera-Estrella L (1989) Gene fusions to lac Z reveal new expression patterns of chimeric genes in transgenic plants. EMBO J 8:343–350

    CAS  Google Scholar 

  74. Comai L, Moran P, Maslyar D (1990) Novel and useful properties of a chimeric plant promoter combining CaMV 35S and MAS elements. Plant Mol Biol 15:373–381

    Article  CAS  Google Scholar 

  75. Muller E, Lorz H, Lutticke S (1996) Variability of transgene expression in clonal cell lines of wheat. Plant Sci 114:71–82

    Article  Google Scholar 

  76. Weiler KS, Wakimoto BT (1995) Heterochromatin and gene expression in Drosophila. Annu Rev Genet 29:577–605

    Article  CAS  Google Scholar 

  77. Srivastava V, Vasil V, Vasil IK (1996) Molecular characterization of the fate of transgenes in transformed wheat (Triticum aestivum L.) Theor Appl Genet 92:1031–1037

    Article  CAS  Google Scholar 

  78. Monia BP, Ecker DJ, Crooke ST (1990) New perspectives on the structure and function of ubiquitin. Biotechnology 8:209–215

    CAS  Google Scholar 

  79. Ozkaynak E, Finley D, Solomon MJ, Varhavsky A (1987) The yeast ubiquitin genes: a family of natural gene fusions. EMBO J 6:1429–1439

    CAS  Google Scholar 

  80. Callis J, Vierstra RD (1989) Ubiquitin and ubiquitin genes in higher plants. Oxford Surv Plant Mol Biol 6:1–30

    CAS  Google Scholar 

  81. Burke TJ, Callis J, Viestra RD (1988) Characterization of a polyubiquitin gene from Arabidopsis thaliana. Mol Gen Genet 213:435–443

    Article  CAS  Google Scholar 

  82. Cornejo MJ, Luth D, Blankenship KM, Anderson OD, Blechl AE (1993) Activity of a maize ubiquitin promoter in transgenic rice. Plant Mol Biol 23:567–581

    Article  CAS  Google Scholar 

  83. Callis J, Raasch JA, Vierstra RD (1990) Ubiquitin extension proteins of Arabidopsis thaliana. J Biol Chem 265:12486–12493

    CAS  Google Scholar 

  84. Binet MN, Weil JH, Tessier LH (1991) Structure and expression of sunflower ubiquitin genes. Plant Mol Biol 17:395–407

    Article  CAS  Google Scholar 

  85. Garbarino JE, Rockhold DR, Belknap WR (1992) Expression of stress responsive ubiquitin genes in potato tubers. Plant Mol Biol 20:235–244

    Article  CAS  Google Scholar 

  86. Wang J, Jiang J, Oard JH (2000) Structure, expression and promoter activity of two poly ubiquitin genes from rice (Oryza sativa L.) Plant Sci 156:201–211

    Article  CAS  Google Scholar 

  87. Hirai T, Shohael AM, Kim YW, Yano M, Ezura H (2011) Ubiquitin promoter-terminator cassette promotes genetically stable expression of the taste-modifying protein miraculin in transgenic lettuce. Plant Cell Rep 30:2255–2265

    Article  CAS  Google Scholar 

  88. Chen WP, Gu X, Liang GH, Muthukrishnan S, Chen PD, Liu DJ, Gill BS (1998) Introduction and constitutive expression of a rice chitinase gene in bread wheat using biolistic bombardment and the bar gene as a selectable marker. Theor Appl Genet 97:1296–1306

    Article  CAS  Google Scholar 

  89. Chen WP, Chen PD, Liu DJ, Kynast R, Friebe B, Velazhahan R, Muthukrishnan S, Gill BS (1999) Development of wheat scab symptoms is delayed in transgenic wheat plants that constitutively express a rice thaumatin-like protein gene. Theor Appl Genet 99:755–760

    Article  CAS  Google Scholar 

  90. Morimoto T, Torii T, Hashimoto Y (1995) Optimal control of physiological processes of plants in a green plant factory. Control Eng Pract 3:505–511

    Article  Google Scholar 

  91. Hiwasa-Tanase K, Ezura H (2016) Molecular breeding to create optimized crops: from genetic manipulation to potential applications in plant factory. Front Plant Sci 7:539

    Article  Google Scholar 

  92. Brouwer JN, Van Der Wei H, Francke A, Hemming G (1968) Miraculin, the sweetness inducing protein miracle fruit. Nature 220:373–374

    Article  CAS  Google Scholar 

  93. Giroux EL, Henkin RI (1974) Purification and some properties of miraculin, a glycoprotein from Synsepalum dulcificum which provokes sweetness and blocks sourness. J Agric Food Chem 22:594–601

    Article  Google Scholar 

  94. Armah GE, Achel DG, Acquaah RA, Belew M (1999) Purification of miraculin glycoprotein using tandem hydrophobic interaction chromatography. United States Patent #5886155

    Google Scholar 

  95. Duhita N, Hiwasa-Tanase K, Yoshida S, Ezura H (2009) Single-step purification of native miraculin using immobilized metal affinity chromatography. J Agric Food Chem 57:5148–5151

    Article  CAS  Google Scholar 

  96. Duhita N, Hiwasa-Tanase K, Yoshida S, Ezura H (2011) A simple method for purifying undenatured miraculin from transgenic tomato fruits. Plant Biotechnol 28:281–286

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Ezura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ezura, H., Hiwasa-Tanase, K. (2018). Mass Production of the Taste-Modifying Protein Miraculin in Transgenic Plants. In: Mérillon, JM., Ramawat, K. (eds) Sweeteners. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-27027-2_17

Download citation

Publish with us

Policies and ethics