Skip to main content

Transgenic Plants as Producers of Supersweet Protein Thaumatin II

  • Reference work entry
  • First Online:
Book cover Sweeteners

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Thaumatin II is a supersweet protein derived from the West-African plant Thaumatococcus daniellii Benth. It is a perspective low-calorie sugar substitute for food and pharmaceutical industries. Because of the limitations of its natural sources, obtaining recombinant thaumatin using plant-based expression systems is a promising field of research. This review summarizes many years of research focusing on the physicochemical properties of thaumatins I and II, their roles in plants as pathogenesis-related proteins, and the specific characteristics of their taste perception. A special attention is paid to the detailed description of the studies on obtaining transgenic plants that have been transformed with thaumatin II gene in order to improve their agronomic and consumer properties as well as to obtain recombinant thaumatin for industrial use. Further directions of the research focusing on such areas as obtaining transgenic plants to produce recombinant thaumatin and developing the technologies for its isolation and purification are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Yeboa SO, Hilgerand TH, Kroschel J (2003) Thaumatococcus danielli (Benn.) Benth: a natural sweetener from the rain forest zone in west Africa with potential for income generation in small scale farming. In: Proceedings of international research on food security, National Resource Management and Rural Development. Georg-August-Universitat Gottingen. http://www.tropentag.de/2003/abstracts/full/305.pdf

  2. Waliszewski WS, Oppong S, Hall JB, Sinclair FL (2005) Implications of local knowledge of the ecology of a wild super sweetener for its domestication and commercialization in West and Central Africa. Econ Bot 59:231–243

    Article  Google Scholar 

  3. Mackenzie A, Pridham JB, Saunders NA (1985) Changes in the sweet proteins (Thaumatins) in Thaumatococcus danielli fruits during development. Phytochemistry 24:2503–2506

    Article  CAS  Google Scholar 

  4. Higginbotham JD (1979) Protein sweeteners. In: Hough CAM, Parker KJ, Vlitos AJ (eds) Developments in sweeteners. I Applied Science Publications, London

    Google Scholar 

  5. Bonnéhin L (1997) Economic value and role of NTFP in the long term management of forests resources in the Cote d’Ivoire. In: Crafter SA, Awimbo J, Broekhoven AJ (eds) Non-timber forest products values, use and management issues in Africa including examples from Latin America. IUCN, The World Convention Union, Nairobi

    Google Scholar 

  6. van der Wel H, Loeve K (1972) Isolation and characterization of thaumatin I and II, the sweet-tasting proteins from Thaumatococcus daniellii Benth. Eur J Biochem 31:221–225

    Article  Google Scholar 

  7. Edens L, Heslinga L, Klok R, Ledeboer AM, Maat J, Toonen MY, Visser C, Verrips CT (1982) Cloning of cDNA encoding the sweet-tasting plant protein thaumatin and its expression in Escherichia coli. Gene 18:1–12

    Article  CAS  Google Scholar 

  8. Iyengar RB, Smits P, van der Ouderaa F, van der Wel H, van Brouwershaven J, Ravestein P, Richters G, van Wassenaar PD (1979) The complete amino-acid sequence of the sweet protein thaumatin I. Eur J Biochem Y6:193–204

    Article  Google Scholar 

  9. Ide N, Kaneko R, Wada R, Mehta A, Tamaki S, Tsuruta T, Fujita Y, Masuda T, Kitabatake N (2007) Cloning of the thaumatin I cDNA and characterization of recombinant thaumatin I secreted by Pichia pastoris. Biotechnol Prog 23:1023–1030

    CAS  Google Scholar 

  10. Aquilina G, Bories G, Chesson A, Cocconcelli PS, Knecht J, Dierick NA, Gralak MA, Gropp J, Halle I, Hogstrand C, Kroker R, Leng L, Puente SL, Haldorsen A-KL, Mantovani A, Martelli G, Mézes M, Renshaw D, Saarela M, Sejrsen K, Westendorf J (2011) Scientific Opinion on the Safety and Efficacy of thaumatin for all animal species. EFSA J 9:2354 doi:10.2903/j.efsa.2011.2354. www.efsa.europa.eu/efsajournal

  11. Mortensen A (2006) Sweeteners permitted in the European Union: safety aspects. Scand J Food Nutr 50:104–116

    Article  Google Scholar 

  12. Newberne P, Smith RL, Doull J, Feron VJ, Goodman JI, Munro IC, Portoghese PS, Waddell WJ, Wagner BM, Weil CS, Adams TB, Hallagan JB (2000) GRAS flavoring substances. The 19th publication by the flavor and extract manufacturers’ Association’s Expert Panel on recent progress in the consideration of flavoring ingredients generally recognized as safe under the Food Additives Amendment. Food Technol 54:66–84

    Google Scholar 

  13. Breiteneder H (2004) Thaumatin-like proteins – a new family of pollen and fruit allergens. Allergy 59:479–481

    Article  Google Scholar 

  14. Veličković TĆ, Gavrović-Jankulović M (2014) Food allergens. Biochemistry and molecular nutrition. Springer Science + Business Media, New York

    Google Scholar 

  15. Masuda T, Kitabatake N (2006) Developments in biotechnological production of sweet proteins. J Biosci Bioeng 102:375–389

    Article  CAS  Google Scholar 

  16. Selitrennikoff CP (2001) Antifungal proteins. Appl Environ Microbiol 67:2883–2894

    Article  CAS  Google Scholar 

  17. van Loon LC, Rep M, Pieterse CM (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    Article  Google Scholar 

  18. Schestibratov KA, Dolgov SV (2005) Transgenic strawberry plants expressing a thaumatin II gene demonstrate enhanced resistance to Botrytis cinerea. Sci Hortic 106:177–189

    Article  CAS  Google Scholar 

  19. Popowich EA, Firsov AP, Mitiouchkina TY, Filipenya VL, Dolgov SV, Reshetnikov VN (2007) Agrobacterium-mediated transformation of Hyacinthus orientalis with thaumatin II gene to control fungal diseases. Plant Cell Tissue Organ Cult 90:237–244

    Article  CAS  Google Scholar 

  20. Luchakivska YS, Komarnytskii IK, Kurchenko IM, Yurieva OM, Zhytkevich NV, Kuchuk MV (2015) Construction and analysis of the transgenic carrot and celery plants expressing the recombinant thaumatin II protein. Biopolym Cell 31:285–293

    Article  Google Scholar 

  21. Witty M (1990) Preprothaumatin II is processed to biological activity in Solanum tuberosum. Biotechnol Lett 12:131–136

    Article  CAS  Google Scholar 

  22. Witty M, Harvey WJ (1990) Sensory evaluation of transgenic Solanum tuberosum producing r-thaumatin II. N Z J Crop Hortic Sci 18:77–80

    Article  CAS  Google Scholar 

  23. Szwacka M, Krzymowska M, Osuch A, Kowalczyk ME, Malepszy S (2002) Variable properties of transgenic cucumber plants containing the thaumatin II gene from Thaumatococcus daniellii. Acta Physiol Plant 24:173–185

    Article  CAS  Google Scholar 

  24. Lebedev VG, Taran SA, Shmatchenko VV, Dolgov SV (2002) Pear transformation with the gene for supersweet protein thaumatin II. Acta Hortic 596:199–202

    Article  CAS  Google Scholar 

  25. Bartoszewski G, Niedziela A, Szwacka M, Niemirowicz-Szczytt K (2003) Modification of tomato taste in transgenic plants carrying a thaumatin gene from Thaumatococcus daniellii Benth. Plant Breed 122:347–351

    Article  CAS  Google Scholar 

  26. Dolgov SV, Schestibratov KA, Mikhailov RV (2004) Apple transformation with the gene of supersweet protein thaumatin II. Acta Hortic 663:507–510

    Article  CAS  Google Scholar 

  27. Dolgov SV, Lebedev VG, Firsov AP (2011) Pear fruit taste modification by thaumatin II gene expression. Acta Hortic 909:67–73

    Article  CAS  Google Scholar 

  28. Korneeva I, Firsov A, Lebedev V, Schestibratov K, Pushin A, Shulga O, Dolgov S (2005) Expression and subcellular localization of PR-5 protein with different signal sequences in transgenic tomato and tobacco plants. Revue de Cytologie et Biologie végétales – Le Botaniste 28:260–267

    Google Scholar 

  29. Schestibratov KA, Dolgov SV (2007) Genetic engineering of strawberry for taste improvement and enhanced disease resistance by introduction of thau II gene. In: Xu Z, Li J, Xue Y, Yang W (eds) Biotechnology and sustainable agriculture 2006 and beyond: proceedings of the 11th IAPTC&B congress. Springer, Beijing/Dordrecht

    Google Scholar 

  30. Rajam MV, Chandola N, Saiprasad Goud P, Singh D, Kashyap V, Choudhary ML, Sihachakr D (2007) Thaumatin gene confers resistance to fungal pathogens as well as tolerance to abiotic stresses in transgenic tobacco plants. Biol Plant 51:135–141

    Article  CAS  Google Scholar 

  31. Sidorova T, Miroshnichenko D, Dolgov S, Tjukavin G (2013) Transgenic carrot expressing thaumatin II gene has enhanced resistance against Fusarium avenaceum. Acta Hortic 974:123–130

    Article  Google Scholar 

  32. Lee J-H, Weickmann JL, Koduri RK, Ghosh-Dastidar P, Saito K, Blair LC, Date T, Lai JS, Hollenberg SM, Kendall RL (1988) Expression of synthetic thaumatin genes in yeast. Biochemistry 27:5101–5107

    Article  CAS  Google Scholar 

  33. Kaneko R, Kitabatake N (2001) Structure-sweetness relationship in thaumatin: importance of lysine residues. Chem Senses 26:167–177

    Article  CAS  Google Scholar 

  34. Ledeboer AM, Theo Verrips C, Dekker BMM (1984) Cloning of the natural gene for the sweet-tasting plant protein thaumatin. Gene 30:23–32

    Article  CAS  Google Scholar 

  35. Van der Wel H, Iyengar RB, Brouwershaven JV, Wassenaar PDV, Bel WJ, Ouderaa FJGVD (1984) Assignment of the disulfide bonds in the sweet-tasting protein thaumatin I. Eur J Biochem 144:41–45

    Article  Google Scholar 

  36. Teixeira SCM, Blakeley MP, Leal RMF, Gillespie SM, Mitchell EP, Forsyth VT (2010) Sweet neutron crystallography. Acta Cryst D66:1139–1143

    Google Scholar 

  37. Masuda T, Ohta K, Mikami B, Kitabatake N (2011) High-resolution structure of the recombinant sweet-tasting protein thaumatin I. Acta Crystallogr Sect F: Struct Biol Cryst Commun F67:652–658

    Article  Google Scholar 

  38. Masuda T, Ohta K, Tani F, Mikami B, Kitabatake N (2011) Crystal structure of the sweet-tasting protein thaumatin II at 1.27Å. Biochem Biophys Res Commun 410:457–460

    Article  CAS  Google Scholar 

  39. Masuda T, Ohta K, Mikami B, Kitabatake N, Tani F (2012) Atomic structure of the sweet-tasting protein thaumatin I at pH 8.0 reveals the large disulfide-rich region in domain II to be sensitive to a pH change. Biochem Biophys Res Commun 419:72–76

    Article  CAS  Google Scholar 

  40. Masuda T, Mikami B, Tani F (2014) Atomic structure of recombinant thaumatin II reveals flexible conformations in two residues critical for sweetness and three consecutive glycine residues. Biochimie 106:33–38

    Article  CAS  Google Scholar 

  41. Kaneko R, Kitabatake N (2001) Sweetness of sweet protein Thaumatin is more thermoresistant under acid conditions than under neutral or alkaline conditions. Biosci Biotechnol Biochem 65:409–413

    Article  CAS  Google Scholar 

  42. Elemo BO, Adu OB (2005) Studies of some functional properties of thaumatin, a protein sweetener. Jormar 2:48–55

    Google Scholar 

  43. Fan SG, Wu GJ (2005) Plant proteinase inhibitors against phytophagous insects. Bot Bull Acad Sin 46:273–292

    CAS  Google Scholar 

  44. Roberts W, Selitrennikoff CP (1990) Zeamatin, an antifungal protein from maize with membrane-permeabilizing activity. J Gen Microbiol 136:1771–1778

    Article  CAS  Google Scholar 

  45. Lindley MG (2012) Natural high-potency sweeteners. In: O’Donnell K, Kearsley MW (eds) Sweeteners and sugar alternatives in food technology, 2nd edn. Wiley, Chichester

    Google Scholar 

  46. Hellekant G, Danilova V (1996) Species differences toward sweeteners. Food Chem 56:323–328

    Article  CAS  Google Scholar 

  47. Liu B, Ha M, Meng X-Y, Kaur T, Khaleduzzaman M, Zhang Z, Jiang P, Li X, Cui M (2011) Molecular mechanism of species-dependent sweet taste toward artificial sweeteners. J Neurosci 31:11070–11076

    Article  CAS  Google Scholar 

  48. Faus I, Sisniega H (2003) Sweet-tasting proteins. In: Fahnestock SR, Steinbüchel A (eds) Biopolymers, polyamides and complex proteinaceous materials II, vol 8. Wiley-VCH, New York

    Google Scholar 

  49. DuBois GE, Walters DE, Schiffman SS, Warwick ZS, Booth BJ, Pecore SD, Gibes K, Carr BT, Brands LM (1991) Concentration-response relationships of sweeteners. In: Walters DE, Orthoefer FT, DuBois GE (eds) Sweeteners, discovery, molecular design and chemoreception, vol 450, ACS symposium series. ACS, Washington, DC

    Chapter  Google Scholar 

  50. van der Wel H, Bel WJ (1980) Enzymatic properties of the sweet-tasting proteins thaumatin and monellin after partial reduction. Eur J Biochem 104:413–418

    Article  Google Scholar 

  51. Daniell S, Mellits KH, Faus I, Connerton I (2000) Refolding the sweet-tasting protein thaumatin II from insoluble inclusion bodies synthesised in Escherichia coli. Food Chem 71:105–110

    Article  CAS  Google Scholar 

  52. Damak S, Rong M, Yasumatsu K, Kokrashvili Z, Varadarajan V, Zou S, Jiang P, Ninomiya Y, Margolskee RF (2003) Detection of sweet and umami taste in the absence of taste receptor T1r3. Science 301:850–853

    Article  CAS  Google Scholar 

  53. Wintjens R, Viet TMVN, Mbosso E, Huet J (2011) Hypothesis/review: the structural basis of sweetness perception of sweet-tasting plant proteins can be deduced from sequence analysis. Plant Sci 181:347–354

    Article  CAS  Google Scholar 

  54. Chandrashekar J, Hoon MA, Ryba NJ, Zuker CS (2006) The receptors and cells for mammalian taste. Nature 444:288–294

    Article  CAS  Google Scholar 

  55. Assadi-Porter FM, Tonelli M, Maillet E, Hallenga K, Benard O, Max M, Markley JL (2008) Direct NMR detection of the binding of functional ligands to the human sweet receptor, a heterodimeric family 3 GPCR. J Am Chem Soc 130:7212–7213

    Article  CAS  Google Scholar 

  56. Li X (2009) T1R receptors mediate mammalian sweet and umami taste. Am J Clin Nutr 9:733S–737S

    Article  Google Scholar 

  57. Picone D, Temussi PA (2012) Dissimilar sweet proteins from plants: oddities or normal components? Plant Sci 195:135–142

    Article  CAS  Google Scholar 

  58. Temussi PA (2002) Why are sweet proteins sweet? Interaction of brazzein, monellin and thaumatin with the T1R2-T1R3 receptor. FEBS Lett 526:1–4

    Article  CAS  Google Scholar 

  59. Tancredi T, Pastore A, Salvadori S, Esposito V, Temussi PA (2004) Interaction of sweet proteins with their receptor. A conformational study of peptides corresponding to loops of brazzein, monellin and thaumatin. Eur J Biochem 271:2231–2240

    Article  CAS  Google Scholar 

  60. Esposito V, Gallucci R, Picone D, Saviano G, Tancredi T, Temussi PA (2006) The importance of electrostatic potential in the interaction of sweet proteins with the sweet taste receptor. J Mol Biol 360:448–456

    Article  CAS  Google Scholar 

  61. Ohta K, Masuda T, Ide N, Kitabatake N (2008) Critical molecular regions for elicitation of the sweetness of the sweet-tasting protein, thaumatin I. FEBS J 275:3644–3652

    Article  CAS  Google Scholar 

  62. Ohta K, Masuda T, Tani F, Kitabatake N (2011) Introduction of a negative charge at Arg82 in thaumatin abolished responses to human T1R2–T1R3 sweet receptors. Biochem Biophys Res Commun 413:41–45

    Article  CAS  Google Scholar 

  63. Masuda T, Taguchi W, Sano A, Ohta K, Kitabatake N, Tani F (2013) Five amino acid residues in cysteine-rich domain of human T1R3 were involved in the response for sweet-tasting protein, thaumatin. Biochimie 95:1502–1505

    Article  CAS  Google Scholar 

  64. Masuda T, Ohta K, Ojiro N, Murata K, Mikami B, Tani F, Temussi PA, Kitabatake N (2016) A hypersweet protein: removal of the specific negative charge at Asp21 enhances thaumatin sweetness. Sci Rep 6:20255. doi:10.1038/srep20255

    Article  CAS  Google Scholar 

  65. Hulo N, Bairoch A, Bulliard V, Cerutti L, Cuche BA, de Castro E, Lachaize C, Langendijk-Genevaux PS, Sigrist CJ (2008) The 20 years of PROSITE. Nucleic Acids Res 36(database issue):D245–D249

    CAS  Google Scholar 

  66. Liu J-J, Sturrock R, Ekramoddoullah AKM (2010) The superfamily of thaumatin-like proteins: its origin, evolution, and expression towards biological function. Plant Cell Rep 29:419–436

    Article  CAS  Google Scholar 

  67. Velazhahan R, Datta SK, Muthukrishnan S (1999) The PR-5 family: thaumatin-like proteins in plants. In: Datta SK, Muthukrishnan S (eds) Pathogenesis-related proteins in plants. CRC Press, Boca Raton

    Google Scholar 

  68. Campos MA, Silva MS, Magalhaes CP, Ribeiro SG, Sarto RPD, Vieira EA, Grossi de Sa MF (2008) Expression in Escherichia coli, purification, refolding and antifungal activity of an osmotin from Solanum nigrum. Microb Cell Factories 7:7

    Article  Google Scholar 

  69. Veronese P, Ruiz MT, Coca MA, Hernandez-Lopez A, Lee H, Ibeas JI, Damsz B, Pardo JM, Hasegawa PM, Bressan RA, Narasimhan ML (2003) In defense against pathogens: both plant sentinels and foot soldiers need to know the enemy. Plant Physiol 131:1580–1590

    Article  CAS  Google Scholar 

  70. Trudel J, Grenier J, Potvin C, Asselin A (1998) Several thaumatinlike proteins bind to 1, 3-glucans. Plant Physiol 118:1431–1438

    Article  CAS  Google Scholar 

  71. Grenier J, Potvin C, Trudel J, Asselin A (1999) Some thaumatin-like proteins hydrolyse polymeric β-1, 3-glucans. Plant J 19:473–480

    Article  CAS  Google Scholar 

  72. Grenier J, Potvin C, Asselin A (2000) Some fungi express β-1,3-glucanases similar to thaumatin-like proteins. Mycologia 92:841–848

    Article  CAS  Google Scholar 

  73. Fierens E, Rombouts S, Gebruers K, Goesaert H, Brijs K, Beaugrand J, Volckaert G, Van Campenhout S, Proost P, Courtin CM, Delcour JA (2007) TLXI, a novel type of xylanase inhibitor from wheat (Triticum aestivum) belonging to the thaumatin family. Biochem J 403:583–591

    Article  CAS  Google Scholar 

  74. Szwacka M, Burza W, Zawirska-Wojtasiak R, Goslinski M, Twardowska A, Gajc-Wolska J, Kosieradzka I, Kiełkiewicz M (2012) Genetically modified crops expressing 35S-thaumatin II transgene: sensory properties and food safety aspects. Compr Rev Food Sci Food Saf 11:174–186

    Article  CAS  Google Scholar 

  75. Zawirska-Wojtasiak R, Gośliński M, Szwacka M, Gajc-Wolska J, Mildner-Szkudlarz S (2009) Aroma evaluation of transgenic, thaumatin II-producing cucumber fruits. J Food Sci 74:C204–C210

    Article  CAS  Google Scholar 

  76. Higginbotham JD (1983) Recent developments in non-nutritive sweeteners. In: Grenby TH, Parker KJ, Lindley MG (eds) Developments in sweeteners II. Applied Science, London

    Google Scholar 

  77. Stahl R, Luhrs R, Dargatz H (2009) Thaumatin from transgenic barley. US Patent 20,090,031,458

    Google Scholar 

  78. Pham NB, Schäfer H, Wink M (2012) Production and secretion of recombinant thaumatin in tobacco hairy root cultures. Biotechnol J 7:537–545

    Article  CAS  Google Scholar 

  79. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  Google Scholar 

  80. Goodin MM, Dietzgen RG, Schichnes D, Ruzin S, Jackson AO (2002) pGD vectors: versatile tools for the expression of green and red fluorescent protein fusions in agroinfiltrated plant leaves. Plant J 31:375–383

    Article  CAS  Google Scholar 

  81. Pushin AS, Ovchinnikova EV, Shul’ga OA, Firsov AP, Dolgov SV (2008) Accumulation of a supersweet protein thaumatin II in apoplast of tobacco transgenic plants. Biotechnol Russia 6:40–54

    Google Scholar 

  82. Parashina EV, Serdobinskii LA, Kalle EG, Lavrova NV, Avetisov VA, Lunin VG, Naroditskii BS (2000) Genetic engineering of oilseed rape and tomato plants expressing a radish defensin gene. Russ J Plant Physiol 47:417–423

    CAS  Google Scholar 

  83. Firsov AP, Pushin AS, Korneeva IV, Dolgov SV (2012) Transgenic tomato plants as supersweet protein thaumatin II producers. Appl Biochem Microbiol 48:746–751

    Article  CAS  Google Scholar 

  84. Floss DM, Falkenburg D, Conrad U (2007) Production of vaccines and therapeutic antibodies for veterinary applications in transgenic plants: an overview. Transgenic Res 16:315–332

    Article  CAS  Google Scholar 

  85. Firsov A, Shaloiko L, Kozlov O, Vinokurov L, Vainstein A, Dolgov S (2016) Purification and characterization of recombinant supersweet protein thaumatin II from tomato fruit. Protein Expr Purif 123:1–5. doi:10.1016/j.pep.2016.03.002

    Article  CAS  Google Scholar 

  86. Timerbaev V, Okuneva A, Pushin A, Dolgov S (2014) Production of marker-free transgenic tomato plants using inducible site-specific recombinase and a bifunctional selectable gene, IAPB 2014, 13rd international association of plant biotechnology congress 2014, Melbourne

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Firsov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Firsov, A.P., Pushin, A.S., Dolgov, S.V. (2018). Transgenic Plants as Producers of Supersweet Protein Thaumatin II. In: Mérillon, JM., Ramawat, K. (eds) Sweeteners. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-27027-2_11

Download citation

Publish with us

Policies and ethics