Skip to main content

Sweet-Tasting Protein Thaumatin: Physical and Chemical Properties

  • Reference work entry
  • First Online:
Sweeteners

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Thaumatin is a sweet-tasting protein isolated from the fruits of Thaumatococcus daniellii Benth, a plant native to tropical West Africa. Thaumatin consists of a single-chain of 207 amino acid residues and elicits sweet taste at only a concentration of 50 nM, a value 100,000 times larger than that of sucrose on a molar basis. The intensely sweet taste of thaumatin has potential as a low-calorie sweetener as well as substitute for sucrose for industrial applications, and it may be useful tool in clarifying the mechanisms how we perceive of sweet taste. Nowadays, thaumatin has widely been used not only a natural sweetener but also as a substance for flavor enhancers as well as masking unpleasant taste in the food and pharmaceutical industries. This chapter describes recent progress as well as historical backgrounds on thaumatin: features of the protein, the recombinant production, the sweetness-determinants, the docking simulation with sweet taste receptors, and the atomic resolution structure with its applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Nabors LO’B, Gelardi RC (1991) Alternative sweeteners. Marcel Dekker, New York

    Google Scholar 

  2. van der Wel H, Loeve K (1972) Isolation and characterization of thaumatin I and II, the sweet-tasting proteins from Thaumatococcus daniellii Benth. Eur J Biochem 31:221–225

    Article  Google Scholar 

  3. van der Wel H (1972) Isolation and characterization of the sweet principal for Dioscoreophyllum cumminsii (Stapf) Diels. FEBS Lett 21:88–90

    Article  Google Scholar 

  4. Moris JA, Cagan RH (1972) Purification of monellin, the sweet principal for Dioscoreophyllum cumminsii. Biochim Biophys Acta 261:114–122

    Article  Google Scholar 

  5. Liu X et al (1993) Purification, complete amino acid sequence and structure characterization of the heat stable sweet protein, mabinlin II. Eur J Biochem 211:281–287

    Article  CAS  Google Scholar 

  6. Yamashita H et al (1990) Purification and complete amino acid sequence of a new type of sweet protein with taste-modifying activity, curculin. J Biol Chem 265:15770–15775

    CAS  Google Scholar 

  7. Shirasuka Y et al (2004) Neoculin as a new taste-modifying protein occurring in the fruit of Curculigo latifolia. Biosci Biotechnol Biochem 68:1403–1407

    Article  CAS  Google Scholar 

  8. Suzuki M et al (2004) Recombinant curculin heterodimer exhibits taste-modifying and sweet-tasting activities. FEBS Lett 573:135–138

    Article  CAS  Google Scholar 

  9. Ming D, Hellekant G (1994) Brazzein, a new high-potency thermostable sweet protein from Pentadiplandra brazzeana B. FEBS Lett 355:106–108

    Article  CAS  Google Scholar 

  10. Masuda T et al (2001) Sweetness and enzymatic activity of lysozyme. J Agric Food Chem 49:4937–4941

    Article  CAS  Google Scholar 

  11. Maehashi K, Udaka S (1998) Sweetness of lysozyme. Biosci Biotechnol Biochem 53:605–606

    Article  Google Scholar 

  12. Etheridge K (1994) The sales and marketing of talin. In: Witty M, Higginbotham JD (eds) Thaumatin. CRC Press, Boca Raton

    Google Scholar 

  13. Faus I (2000) Recent developments in the characterization and biotechnological production of sweet-tasting proteins. Appl Microbiol Biotechnol 53:145–151

    Article  CAS  Google Scholar 

  14. Masuda T, Kitabatake N (2006) Developments in biotechnological production of sweet proteins. J Biosci Bioeng 102:375–389

    Article  CAS  Google Scholar 

  15. van der Wel H et al (1984) Assignment of the disulphide bonds in the sweet-tasting protein thaumatin I. Eur J Biochem 144:41–45

    Article  Google Scholar 

  16. Esposito V et al (2006) The importance of electrostatic potential in the interaction of sweet proteins with the sweet taste receptor. J Mol Biol 360:448–456

    Article  CAS  Google Scholar 

  17. Assadi-Porter FM et al (2010) Key amino acid residues involved in multi-point binding interactions between brazzein, a sweet protein, and the T1R2-T1R3 human sweet receptor. J Mol Biol 398:584–599

    Article  CAS  Google Scholar 

  18. Jin Z et al (2003) Critical regions for the sweetness of brazzein. FEBS Lett 544:33–37

    Article  CAS  Google Scholar 

  19. Somoza JR, Cho JM, Kim SH (1995) The taste-active regions of monellin, a potently sweet protein. Chem Senses 20:61–68

    Article  CAS  Google Scholar 

  20. Xue WF et al (2009) Role of protein surface charge in monellin sweetness. Biochim Biophys Acta 1794:410–420

    Article  CAS  Google Scholar 

  21. Kurimoto E et al (2007) Curculin exhibits sweet-tasting and taste-modifying activities through its distinct molecular surface. J Biol Chem 282:33252–33256

    Article  CAS  Google Scholar 

  22. Nakajima K et al (2008) Acid-induced sweetness of neoculin is ascribed to its pH-dependent agonistic-antagonistic interaction with human sweet taste receptor. FASEB J 22:2323–2330

    Article  CAS  Google Scholar 

  23. Masuda T, Ide N, Kitabatake N (2005) Effects of chemical modification of lysine residues on the sweetness of lysozyme. Chem Senses 30:253–264

    Article  CAS  Google Scholar 

  24. Masuda T, Ide N, Kitabatake N (2005) Structure-sweetness relationship in egg white lysozyme: role of lysine and arginine residues on the elicitation of lysozyme sweetness. Chem Senses 30:667–681

    Article  CAS  Google Scholar 

  25. Asherie N et al (2009) Tartrate chirality determines thaumatin crystal habit. Cryst Growth Des 9:4189–4198

    Article  CAS  Google Scholar 

  26. Masuda T et al (2011) High-resolution structure of the recombinant sweet-tasting protein thaumatin I. Acta Crystallogr Sect F Struct Biol Cryst Commun 67:652–658

    Article  CAS  Google Scholar 

  27. Masuda T et al (2012) Atomic structure of the sweet-tasting protein thaumatin I at pH 8.0 reveals the large disulfide-rich region in domain II to be sensitive to a pH change. Biochem Biophys Res Commun 419:72–76

    Article  CAS  Google Scholar 

  28. Masuda T, Mikami B, Tani F (2014) Atomic structure of recombinant thaumatin II reveals flexible conformations in two residues critical for sweetness and three consecutive glycine residues. Biochimie 106:33–38

    Article  CAS  Google Scholar 

  29. Hobbs JR, Munger SD, Conn GL (2007) Monellin (MNEI) at 1.15 Å resolution. Acta Crystallogr Sect F Struct Biol Cryst Commun 63:162–167

    Article  CAS  Google Scholar 

  30. Danieli WF (1852) On the Synsepalum dulcificum, De Cand; or miraculous berry of Western Africa. Pharmaceutical J 11:445–448

    Google Scholar 

  31. Danieli WF (1855) Katemfe, or the miraculous fruit of Soudan. Pharmaceutical J 14:158–159

    Google Scholar 

  32. Higginbotham JD (1979) Protein sweeteners. In: Hough CAM, Parker KJ, Viltos AJ (eds) Developments in sweeteners I. Applied Science, London

    Google Scholar 

  33. Inglett GE, May JF (1968) Tropical plants with unusual taste properties. Econ Bot 22:326–331

    Article  Google Scholar 

  34. Mackenzie A et al (1985) Changes in the sweet proteins (thaumatins) in Thaumatococcus Danielli fruits during development. Phytochemistry 11:2503–2506

    Article  Google Scholar 

  35. Higginbotham JD (1977) Useful taste properties of amino acids and proteins. In: Birch GC, Brennan JG, Parker KJ (eds) Sensory properties of foods. Applied Science, London

    Google Scholar 

  36. Iyengar RB et al (1979) The complete amino-acid sequence of the sweet protein thaumatin I. Eur J Biochem 96:193–204

    Article  CAS  Google Scholar 

  37. Edens L et al (1982) Cloning of cDNA encoding the sweet-tasting plant protein thaumatin and its expression in Escherichia coli. Gene 18:1–12

    Article  CAS  Google Scholar 

  38. Lee JH et al (1988) Expression of synthetic thaumatin genes in yeast. Biochemistry 27:5101–5107

    Article  CAS  Google Scholar 

  39. Ide N et al (2007) Cloning of the thaumatin I cDNA and characterization of recombinant thaumatin I secreted by Pichia pastoris. Biotechnol Prog 23:1023–1030

    CAS  Google Scholar 

  40. Faus I et al (1996) Expression of a synthetic gene encoding the sweet-tasting protein thaumatin in Escherichia coli. Biochem Biophys Res Commun 229:121–127

    Article  CAS  Google Scholar 

  41. Daniell S et al (2000) Refolding the sweet-tasting protein thaumatin II from insoluble inclusion bodies synthesised in Escherichia coli. Food Chem 71:105–110

    Article  CAS  Google Scholar 

  42. Illingworth C, Larson G, Hellekant G (1988) Secretion of the sweet-tasting plant protein thaumatin by Bacillus subtilis. Biotechnol Lett 10:587–592

    Article  CAS  Google Scholar 

  43. Illingworth C, Larson G, Hellekant G (1989) Secretion of the sweet-tasting plant protein thaumatin by Streptomyces lividans. J Ind Microbiol 4:37–42

    Article  CAS  Google Scholar 

  44. Hahm YT, Batt CA (1990) Expression and secretion of thaumatin from Aspergillus oryzae. Agric Biol Chem 54:2513–2520

    Article  CAS  Google Scholar 

  45. Faus I et al (1997) Expression of a synthetic gene encoding the sweet-tasting protein thaumatin in the filamentous fungus Penicillium roquefortii. Biotechnol Lett 19:1185–1191

    Article  CAS  Google Scholar 

  46. Faus I et al (1998) Secretion of the sweet-tasting protein thaumatin by recombinant strains of Aspergillus niger var. awamori. Appl Microbiol Biotechnol 49:393–398

    Article  CAS  Google Scholar 

  47. Moralejo FJ et al (1999) Thaumatin production in Aspergillus awamori by use of expression cassettes with strong fungal promoters and high gene dosage. Appl Environ Microbiol 65:1168–1174

    CAS  Google Scholar 

  48. Moralejo FJ et al (2002) Silencing of the Aspergillopepsin B (pepB) gene of Aspergillus awamori by antisense RNA expression or protease removal by gene disruption results in a large increase in thaumatin production. Appl Environ Microbiol 68:3550–3559

    Article  CAS  Google Scholar 

  49. Moralejo FJ et al (2000) Overexpression and lack of degradation of thaumatin in an aspergillopepsin A-defective mutant of Aspergillus awamori containing an insertion in the pepA gene. Appl Microbiol Bioetechnol 54:772–777

    Article  CAS  Google Scholar 

  50. Moralejo FJ et al (2001) A defined level of protein disulfide isomerase expression is required for optimal secretion of thaumatin by Aspergillus awamori. Mol Genet Genomics 266:246–253

    Article  CAS  Google Scholar 

  51. Lombraña M et al (2004) Modulation of Aspergillus awamori thaumatin secretion by modification of bipA gene expression. Appl Environ Microbiol 70:5145–5152

    Article  CAS  Google Scholar 

  52. Edens L et al (1984) Synthesis and processing of the plant protein thaumatin in yeast. Cell 37:629–633

    Article  CAS  Google Scholar 

  53. Edens L, van der Wel H (1985) Microbial synthesis of the sweet-tasting plant protein thaumatin. Trends Biotechnol 3:61–64

    Article  CAS  Google Scholar 

  54. Weickmann JL, Blair LC, Wilcox GL (1994) High level expression of thaumatin in Saccharomyces cerevisiae. In: Witty M, Higginbotham JD (eds) Thaumatin. CRC Press, Boca Raton

    Google Scholar 

  55. Cregg JM et al (2000) Recombinant protein expression in Pichia pastoris. Mol Biotechnol 16:23–52

    Article  CAS  Google Scholar 

  56. Cereghino JL, Cregg JM (2000) Heterologous protein production in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24:45–66

    Article  CAS  Google Scholar 

  57. Macauley-Patrick S et al (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast 22:249–270

    Article  CAS  Google Scholar 

  58. Masuda T et al (2004) Cloning, expression, and characterization of recombinant sweet-protein thaumatin II using the methylotrophic yeast Pichia pastoris. Biotechnol Bioeng 85:761–769

    Article  CAS  Google Scholar 

  59. Masuda T, Ueno Y, Kitabatake N (2005) High yield secretion of the sweet-tasting protein lysozyme from the yeast Pichia pastoris. Protein Expr Purif 39:35–42

    Article  CAS  Google Scholar 

  60. Ide N, Masuda T, Kitabatake N (2007) Effects of pre- and pro-sequence of thaumatin on the secretion by Pichia pastoris. Biochem Biophys Res Commun 363:708–714

    Article  CAS  Google Scholar 

  61. Ohta K et al (2008) Critical molecular regions for elicitation of the sweetness of the sweet-tasting protein, thaumatin I. FEBS J 275:3644–3652

    Article  CAS  Google Scholar 

  62. Masuda T et al (2010) High-yield secretion of the recombinant sweet-tasting protein thaumatin I. Food Sci Technol Res 16:585–592

    Article  CAS  Google Scholar 

  63. Poirier N et al (2012) Efficient production and characterization of the sweet-tasting brazzein secreted by the yeast Pichia pastoris. J Agric Food Chem 60:9807–9814

    Article  CAS  Google Scholar 

  64. Scorer CA et al (1994) Rapid selection using G418 of high copy number transformants of Pichia pastoris for high-level foreign gene expression. Bio/Technology 12:181–184

    CAS  Google Scholar 

  65. Tuite MF, Clare JJ, Romanos MA (1999) Expressing cloned genes in the yeasts Saccharomyces cerevisiae and Pichia pastoris. In: Higgins SJ, Hames BD (eds) Protein expression. Oxford University Press, New York

    Google Scholar 

  66. Witty M (1990) Preprothaumatin II is processed to biological activity in Solanum tuberosum. Biotechnol Lett 12:131–136

    Article  CAS  Google Scholar 

  67. Szwacka M et al (2002) Variable properties of transgenic cucumber plants containing the thaumatin II gene from Thaumatococcus daniellii. Acta Physiol Plant 24:173–185

    Article  CAS  Google Scholar 

  68. Lebedev VG et al (2002) Pear transformation with the gene for supersweet protein thaumatin II. Acta Hortic 596:199–202

    Article  CAS  Google Scholar 

  69. Bartoszewski G et al (2003) Modification of tomato taste in transgenic plants carrying a thaumatin gene from Thaumatococcus daniellii Benth. Plant Breed 122:347–351

    Article  CAS  Google Scholar 

  70. Schestibratov KA, Dolgov SV (2005) Transgenic strawberry plants expressing a thaumatin II gene demonstrate enhanced resistance to Botrytis cinerea. Sci Hortic 106:177–189

    Article  CAS  Google Scholar 

  71. Firsov A et al (2012) Transgenic tomato plants as supersweet protein thaumatin II producers. Appl Biochem Microbiol 48:746–751

    Article  CAS  Google Scholar 

  72. Firsov A et al (2016) Purification and characterization of recombinant supersweet protein thaumatin II from tomato fruit. Protein Expr Purif 123:1–5

    Article  CAS  Google Scholar 

  73. Van der Wel H (1994) Structure-activity relationship in the thaumatin molecule. In: Witty M, Higginbotham JD (eds) Thaumatin. CRC Press, Boca Raton

    Google Scholar 

  74. Van der Wel H, Bel WJ (1976) Effect of acetylation and methylation on the sweetness intensity of thaumatin I. Chem Senses Flavor 2:211–218

    Article  CAS  Google Scholar 

  75. Van der Wel H (1986) The sweet proteins. In: Hudson BJF (ed) Developments in food proteins. Applied Science, London

    Google Scholar 

  76. Shamil S, Beynon RJ (1990) A structure-activity study of thaumatin using pyridoxal 5′-phosphate (PLP) as a prove. Chem Senses 15:457–469

    Article  CAS  Google Scholar 

  77. Kaneko R, Kitabatake N (2001) Structure-sweetness relationship study of sweet protein thaumatin: importance of lysine residues. Chem Senses 26:167–177

    Article  CAS  Google Scholar 

  78. Kitabatake N, Kusunoki M (1994) Role of arginine and lysine residues in sweetness expression of thaumatin. In: Kurihara K, Suzuki N, Ogawa H (eds) Olfaction and taste XI. Springer, Japan

    Google Scholar 

  79. Kim S-H, Weickmann JL (1994) Crystal structure of thaumatin I and its correlation to biochemical and mutational studies. In: Witty M, Higginbotham JD (eds) Thaumatin. CRC Press, Boca Raton

    Google Scholar 

  80. Ohta K et al (2011) Introduction of a negative charge at Arg82 in thaumatin abolished responses to human T1R2-T1R3 sweet receptors. Biochem Biophys Res Commun 413:41–45

    Article  CAS  Google Scholar 

  81. Temussi PA (2011) Determinants of sweetness in proteins: a topological approach. J Mol Recognit 24:1033–1042

    Article  Google Scholar 

  82. Masuda T et al (2016) A hypersweet protein: removal of the specific negative charge at Asp21 enhances thaumatin sweetness. Sci Rep 6:20255

    Article  CAS  Google Scholar 

  83. Slootstra JW et al (1995) Possible active site of the sweet-tasting protein thaumatin. Chem Senses 20:535–543

    Article  CAS  Google Scholar 

  84. Hoon MA et al (1999) Putative mammalian taste receptors: a class of taste-specific GPCRs with distinct topographic selectivity. Cell 96:541–551

    Article  CAS  Google Scholar 

  85. Kitagawa M et al (2001) Molecular genetic identification of a candidate receptor gene for sweet taste. Biochem Biophys Res Commun 283:236–242

    Article  CAS  Google Scholar 

  86. Max M et al (2001) Tas1r3, encoding a new candidate taste receptor, is allelic to the sweet responsiveness locus Sac. Nat Genet 28:58–63

    CAS  Google Scholar 

  87. Montmayeur JP et al (2001) A candidate taste receptor gene near a sweet taste locus. Nat Neurosci 4:492–498

    Article  CAS  Google Scholar 

  88. Sainz E et al (2001) Identification of a novel member of the T1R family of putative taste receptors. J Neurochem 77:896–903

    Article  CAS  Google Scholar 

  89. Nelson G et al (2001) Mammalian sweet taste receptors. Cell 106:381–390

    Article  CAS  Google Scholar 

  90. Hellekant G, Danilova V (1996) Species differences toward sweeteners. Food Chem 56:323–328

    Article  CAS  Google Scholar 

  91. Liu B et al (2011) Molecular mechanism of species-dependent sweet taste toward artificial sweeteners. J Neurosci 31:11070–11076

    Article  CAS  Google Scholar 

  92. Jiang P et al (2004) The cystein-rich region of T1R3 determines responses to intensely sweet proteins. J Biol Chem 279:45068–45075

    Article  CAS  Google Scholar 

  93. Xu H et al (2004) Different functional roles of T1R subunits in the heteromeric taste receptors. Proc Natl Acad Sci U S A 101:14258–14263

    Article  CAS  Google Scholar 

  94. Koizumi A et al (2007) Taste-modifying sweet protein, neoculin, is received at human T1R3 amino terminal domain. Biochem Biophys Res Commun 358:585–589

    Article  CAS  Google Scholar 

  95. Ohta K et al (2011) The cysteine-rich domain of human T1R3 is necessary for the interaction between human T1R2-T1R3 sweet receptors and a sweet-tasting protein, thaumatin. Biochem Biophys Res Commun 406:435–438

    Article  CAS  Google Scholar 

  96. Jiang P et al (2005) Lactisole interacts with the transmembrane domains of human T1R3 to inhibit sweet taste. J Biol Chem 280:15238–15246

    Article  CAS  Google Scholar 

  97. Masuda T et al (2013) Five amino acid residues in cysteine-rich domain of human T1R3 were involved in the response for sweet-tasting protein, thaumatin. Biochimie 95:1502–1505

    Article  CAS  Google Scholar 

  98. Ide N et al (2009) Interactions of the sweet-tasting proteins thaumatin and lysozyme with the human sweet-taste receptor. J Agric Food Chem 57:5884–5890

    Article  CAS  Google Scholar 

  99. Liu B et al (2015) Functional characterization of the heterodimeric sweet taste receptor T1R2 and T1R3 from a New World monkey species (squirrel monkey) and its response to sweet-tasting proteins. Biochem Biophys Res Commun 427:431–437

    Article  CAS  Google Scholar 

  100. Damak S et al (2003) Detection of sweet and umami taste in the absence of taste receptor T1r3. Science 301:850–853

    Article  CAS  Google Scholar 

  101. Temussi PA (2002) Why are sweet proteins sweet? Interaction of brazzein, monellin and thaumatin with the T1R2-T1R3 receptor. FEBS Lett 526:1–4

    Article  CAS  Google Scholar 

  102. Kunishima N et al (2000) Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature 407:971–977

    Article  CAS  Google Scholar 

  103. Koiwa H et al (1999) Crystal structure of tobacco PR-5d protein at 1.8 Ǻ resolution reveals a conserved acidic cleft structure in antifungal thaumatin-like proteins. J Mol Biol 286:1137–1145

    Article  CAS  Google Scholar 

  104. Dudler R, Mauch F, Reimmann C (1994) Thaumatin-like proteins. In: Witty M, Higginbotham JD (eds) Thaumatin. CRC Press, Boca Raton

    Google Scholar 

  105. Peng Z et al (1997) Taste properties of grape (Vitis vinifera) pathogenesis-related proteins isolated from wine. J Agric Food Chem 45:4639–4643

    Article  CAS  Google Scholar 

  106. de Vos AM et al (1985) Three-dimensional structure of thaumatin I, an intensely sweet protein. Proc Natl Acad Sci U S A 82:1406–1409

    Article  Google Scholar 

  107. Ogata CM et al (1992) Crystal structure of a sweet tasting protein thaumatin I, at 1.65 Å resolution. J Mol Biol 228:893–908

    Google Scholar 

  108. Ko TP et al (1994) Structures of three crystal forms of the sweet protein thaumatin. Acta Crystallogr Sect D Struct Biol Cryst Commun 50:813–825

    Article  CAS  Google Scholar 

  109. Charron C, Giegé R, Lorber B (2004) Structure of thaumatin in a hexagonal space group: comparison of packing contacts in four crystal lattices. Acta Crystallogr Sect D Struct Biol Cryst Commun 60:83–89

    Article  CAS  Google Scholar 

  110. Asherie N et al (2008) Solubility of thaumatin. Crystal Growth Des 8:1815–1817

    Article  CAS  Google Scholar 

  111. Asherie N et al (2008) Effects of protein purity and precipitant stereochemistry on the crystallization of thaumatin. Crystal Growth Des 12:4200–4207

    Article  CAS  Google Scholar 

  112. Masuda T et al (2011) Crystal structure of the sweet-tasting protein thaumatin II at 1.27 Å. Biochem Biophys Res Commun 410:457–460

    Article  CAS  Google Scholar 

  113. Teixeira SC et al (2008) A preliminary neutron crystallographic study of thaumatin. Acta Crystallogr Sect F Struct Biol Cryst Commun 64:378–381

    Article  CAS  Google Scholar 

  114. Teixeira SC et al (2010) Sweet neutron crystallography. Acta Crystallogr Sect D Struct Biol Cryst Commun 66:1139–1143

    Article  CAS  Google Scholar 

  115. Charron C et al (2002) Crystallization in the presence of glycerol displaces water molecules in the structure of thaumatin. Acta Crystallogr Sect D Struct Biol Cryst Commun 58:2060–2065

    Article  CAS  Google Scholar 

  116. Ng JD et al (1997) Comparative analysis of thaumatin crystals grown on earth and in microgravity. Acta Crystallogr Sect D Struct Biol Cryst Commun 53:724–733

    Article  Google Scholar 

  117. Warkentin M (2010) Glass transition in thaumatin crystals revealed through temperature-dependent radiation-sensitivity measurements. Acta Crystallogr Sect D Struct Biol Cryst Commun 66:1092–1100

    Article  CAS  Google Scholar 

  118. Warkentin M (2012) Spatial distribution of radiation damage to crystalline proteins at 25-300 K. Acta Crystallogr Sect D Struct Biol Cryst Commun 68:1108–1117

    Article  CAS  Google Scholar 

  119. Chapman HN et al (2011) Femtosecond X-ray protein nanocrystallography. Nature 470:73–77

    Article  CAS  Google Scholar 

  120. Neutze R et al (2000) Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406:752–757

    Article  CAS  Google Scholar 

  121. Emma P et al (2010) First lasing and operation of an ångstrom-wavelength free-electron laser. Nat Photonics 4:641–647

    Article  CAS  Google Scholar 

  122. Schlichting I, Miao J (2012) Emerging opportunities in structural biology with X-ray free-electron lasers. Curr Opin Struct Biol 22:613–626

    Article  CAS  Google Scholar 

  123. Barty A et al (2012) Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements. Nat Photonics 6:35–40

    Article  CAS  Google Scholar 

  124. Ishikawa T et al (2012) A compact X-ray free-electron laser emitting in the sub-ångström region. Nat Photonics 6:540–544

    Article  CAS  Google Scholar 

  125. Sugahara M et al (2015) Grease matrix as a versatile carrier of proteins for serial crystallography. Nat Methods 12:61–63

    Article  CAS  Google Scholar 

  126. Nass K et al (2016) Protein structure determination by single-wavelength anomalous diffraction phasing of X-ray free-electron laser data. IUCrJ 3:180–191

    Article  CAS  Google Scholar 

  127. Kaneko R, Kitabatake N (1999) Heat-induced formation of intermolecular disulfide linkages between thaumatin molecules that do not contain cysteine residues. J Agric Food Chem 47:4950–4955

    Article  CAS  Google Scholar 

  128. Sugiyama et al (2012) Growth of protein crystals in hydrogels prevents osmotic shock. J Am Chem Soc 134:5786–5789

    Google Scholar 

  129. Sauter et al (2002) Towards Atomic Resolution with Crystals Grown in Gel: The Case of Thaumatin Seen at Room Temperature. Proteins 48:146–150

    Google Scholar 

  130. Teplitsky et al (2015) High throughput screening using acoustic droplet ejection to combine protein crystals and chemical libraries on crystallization plates at high density. J Struct Biol 191:49–58

    Google Scholar 

  131. Wagner et al (2016) In-vacuum long-wavelength macromolecular crystallography. Acta Crystallogr D Struct Biol 72:430–439

    Google Scholar 

  132. Zander et al (2015) Meshandcollect: An Automated Multi-Crystal Data-Collection Workflow for Synchrotron Macromolecular Crystallography Beamlines. Acta Crystallogr D Biol Crystallogr 71:2328–2343

    Google Scholar 

  133. Cipriani et al (2012) Crystal Direct: A New Method for Automated Crystal Harvesting Based on Laser-Induced Photoablation of Thin Films. Acta Crystallogr D Biol Crystallogr 68:1393–1399

    Google Scholar 

  134. Nanao et al (2005) Improving Radiation-Damage Substructures for Rip. Acta Crystallogr D Biol Crystallogr 61:1227–1237

    Google Scholar 

  135. Kissick et al (2013) Towards protein-crystal centering using second-harmonic generation (SHG) microscopy. Acta Crystallogr D Biol Crystallogr 69:843–851

    Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid for Young Scientists (B) (T.M., no. 19780074) and Scientific Research (C) (T.M., no. 22580105, 25450167) from The Japan Society for the Promotion of Science. The structure of thaumatin was determined at BL26B1, BL38B1, and BL44XU in SPring-8 (proposal number 2009A1379, 2009B1096, 2010B1064, 2011B1073, 2012A1048, 2012B1067, 2013A1053, 2013B1069, 2014A1063, 2014B1181, 2014B1339, 2014B2020, 2015A1037, 2015B2037, 2016A2548, 2016A2552).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuya Masuda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Masuda, T. (2018). Sweet-Tasting Protein Thaumatin: Physical and Chemical Properties. In: Mérillon, JM., Ramawat, K. (eds) Sweeteners. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-27027-2_10

Download citation

Publish with us

Policies and ethics