Skip to main content

Inverse Problems in Radiative Transfer

  • Reference work entry
  • First Online:
Handbook of Thermal Science and Engineering

Abstract

Inverse problems are ubiquitous in all areas of radiative heat transfer. They can broadly be categorized as inverse design problems, with the goal of inferring a design configuration that satisfies an engineering requirement, and parameter estimation problems, in which an unknown parameter or set of parameters is inferred from measurement data. Both problem types are mathematically ill-posed, due to the fact that the available information is either barely adequate or inadequate to identify a unique or stable solution. This chapter reviews the mathematical properties of inverse problems, along with inverse analysis schemes that have been used to solve inverse problems that arise in radiative transfer. This is followed by a summary of inverse design and parameter estimation problems reported in the literature, along with detailed case studies for an inverse boundary condition design problem and a parametric estimation problem focused on inferring the soot aggregate size distribution from light scattering measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ã…kesson EO, Daun KJ (2008) Parameter selection methods for axisymmetric flame tomography through Tikhonov regularization. Appl Opt 47:407–416

    Article  Google Scholar 

  • Amiri H, Mansouri SH, Coelho PJ (2013) Inverse optimal design of radiant enclosures with participating media: a parametric study. Heat Transf Eng 34:288–302

    Article  Google Scholar 

  • Aster CR, Borchers B, Thurber CH (2013) Parameter estimation and inverse problems, 2nd edn. Academic Press, San Diego

    MATH  Google Scholar 

  • Baranoski G, Bramley R, Rokne JG (2001) Examining the spectrum of radiative transfer systems. Int Comm Heat Mass Transf 28:519–525

    Article  Google Scholar 

  • Beck JV (1968) Surface heat flux determination using an integral method. Nucl Eng Des 7:170–178

    Article  Google Scholar 

  • Berg MJ, Sorensen CM (2013) Internal fields of soot fractal aggregates. J Opt Soc Am A 30:1947–1955

    Article  Google Scholar 

  • Bertsekas DP (1999) Nonlinear programming, 2nd edn. Athena Scientific, Belmont

    MATH  Google Scholar 

  • Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New York

    Google Scholar 

  • Burr DW, Daun KJ, Link O, Thomson KA (2011) Determination of the soot aggregate size distribution from elastic light scattering through Bayesian inference. J Quant Spectrosc Radiat Transf 112:1099–1107

    Article  Google Scholar 

  • Charette A, Boulanger J, Kim HK (2008) An overview on recent radiation transport algorithm development for optical tomography imaging. J Quant Spectrosc Radiat Transf 109:2743–2766

    Article  Google Scholar 

  • Charnigo R et al (2012) Credible intervals for nanoparticle characteristics. J Quant Spectrosc Radiat Transf 113:182–193

    Article  Google Scholar 

  • Chopade RP, Mishra SC, Mahanta P, Maruyama S (2012) Estimation of power of heaters in a radiant furnace for uniform thermal conditions on 3-D irregular shaped objects. Int J Heat Mass Transf 55:4340–4351

    Article  Google Scholar 

  • Cormack AM (1973) Reconstructions of densities from their projections with applications in radiological physics. Phys Med Bio 18:195–207

    Article  Google Scholar 

  • Dasch CJ (1992) One-dimensional tomography: a comparison of Abel, onion-peeling, and filtered backprojection methods. Appl Opt 31:1146–1152

    Article  Google Scholar 

  • Daun KJ, Howell JR (2005) Inverse design methods for radiative transfer systems. J Quant Spectrosc Radiat Transf 93:43–60

    Article  Google Scholar 

  • Daun KJ, Howell JR, Morton DP (2003a) Design of radiant enclosures using inverse and non-linear programming techniques. Inverse Prob Eng 11:541–560

    Article  Google Scholar 

  • Daun KJ, Howell JR, Morton DP (2003b) Geometric optimization of radiant enclosures containing specular surfaces. J. Heat Transf. 125:845–851

    Article  Google Scholar 

  • Daun KJ, Howell JR, Morton DP (2003c) Geometric optimization of radiant enclosures through nonlinear programming. Numer Heat Transf, Part B 43:203–219

    Article  Google Scholar 

  • Daun KJ, Thomson KA, Liu F, Smallwood GJ (2006a) Deconvolution of axisymmetric flame properties using Tikhonov regularization. Appl Opt 45:4638–4646

    Article  Google Scholar 

  • Daun KJ et al (2006b) Comparison of methods for inverse Design of Radiant Enclosures. ASME J Heat Transf 128:269–282

    Article  Google Scholar 

  • Daun KJ, Grauer SJ, Hadwin PJ (2016) Chemical species tomography of turbulent flows: discrete ill-posed and rank deficient problems and the use of prior information. J Quant Spectrosc Radiat Transf 172:58–74

    Article  Google Scholar 

  • Deiveegan M, Balaj C, Venkateshan SP (2006) Comparison of various methods for simultaneous retrieval of surface emissivities and gas properties in gray participating media. ASME J Heat Transf 128:829–837

    Article  Google Scholar 

  • Ertürk H, Ezekoye OA, Howell JR (2002a) Comparison of three regularized solution techniques in a three-dimensional inverse radiation problem. J Quant Spectrosc Radiat Transf 73:307–316

    Article  Google Scholar 

  • Ertürk H, Ezekoye OA, Howell JR (2002b) The application of an inverse formulation in the design of boundary conditions for transient radiating enclosures. ASME J Heat Transf 124:1095–1102

    Article  Google Scholar 

  • Ertürk H, Gamba MEOA, Howell JR (2008) Validation of inverse boundary condition design in a thermometry test bed. J Quant Spectrosc Radiat Transf 109:317–326

    Article  Google Scholar 

  • Farahmand A, Payan S, Hosseini Sarvari S (2012) Geometric optimization of radiative enclosures using PSO algorithm. Int J Therm Sci 60:61–69

    Article  Google Scholar 

  • Fedorov AG, Lee KH, Viskanta R (1998) Inverse optimal design of the radiant heating in materials processing and manufacturing. J Mater Eng Perform 7:719–726

    Article  Google Scholar 

  • Floyd J, Kempf AM (2011) Computed tomography of Chemiluminescence (CTC): high resolution and instantaneous 3-D measurements of a matrix burner. Proc Combust Inst 11:751–758

    Article  Google Scholar 

  • França F, Ezekoye O & Howell J 1999 Inverse determination of heat source distribution in radiative systems with participating media. In: 33rd national heat transfer conference NHTC’99, Albuquerque, NM, USA, 15–17 August 1999

    Google Scholar 

  • França FHR, Ezekoye OA, Howell JR (2001) Inverse boundary design combining radiation and convection heat transfer. ASME J Heat Transf 123:884–891

    Article  Google Scholar 

  • França FHR, Howell JR, Ezekoye OA, Morales JC (2003) Inverse design of thermal systems with dominant radiative transfer. Adv Heat Transf 36:1–110

    Article  Google Scholar 

  • Gill PE, Murray W, Wright MH (1986) Practical optimization. Academic Press, San Diego

    MATH  Google Scholar 

  • Glover F (1986) Future paths for integer programming and links to artificial intelligence. Comput Oper Res 5:533–549

    Article  MathSciNet  Google Scholar 

  • Golub GH, Heath MT, Wahba G (1979) Ceneralized cross-validation as a method for choosing a good ridge parameter. Technometrics 21:215–223

    Article  MathSciNet  Google Scholar 

  • Hadamard J (1923) Lectures on Cauchy's problem in linear differential equations. Yale University Press, New Haven

    MATH  Google Scholar 

  • Haisch C (2012) Optical tomography. Annu Rev Anal Chem 5:57–77

    Article  Google Scholar 

  • Hajimirza S, El Hitti G, Heltzel A, Howell J (2012) Using inverse analysis to find optimum nano-scale radiative surface patterns to enhance solar cell performance. Int J Therm Sci 62:93–102

    Article  Google Scholar 

  • Hall RJ, Bonczyk PA (1990) Sooting flame thermometry using emission/absorption tomography. Appl Opt 29:4590–4598

    Article  Google Scholar 

  • Hansen PC (1999) Rank-deficient and discrete ill-posed problems: numerical aspects of linear inversion. SIAM, Philadelphia

    Google Scholar 

  • Hansen PC, O'Leary DP (1993) The use of the L-curve in the regularization of discrete ill-posed problems. J Sci Comput 14:1487–1503

    MathSciNet  MATH  Google Scholar 

  • Hansen PC, Sekii S, Shibahashi H (1992) The modified truncated SVD method for regularization in general form. SIAM J Sci Stat Comput 13:1142–1150

    Article  MathSciNet  Google Scholar 

  • Harutunian V, Morales JC, Howell JR (1995) Radiation exchange within an enclosure of diffuse-gray surfaces: the inverse problem. In: National heat transfer conference, Portland OR, 1995

    Google Scholar 

  • Hendricks TJ, Howell JR (1996) Absorption/scattering coefficients and scattering phase functions in reticulated porous ceramics. ASME J Heat Transf 118:79–87

    Article  Google Scholar 

  • Ho C-H, ÖzÅŸik MN (1988) Inverse radiation problems in inhomogeneous media. J Quant Spectrosc Radiat Transf 40:533–560

    Article  Google Scholar 

  • Hosseini Sarvari SM (2007) Optimal geometry design of radiative enclosures using the genetic algorithm. Numer Heat Transf, Part A 52:127–143

    Article  Google Scholar 

  • Hosseini Sarvari S, Howell J, Mansouri S (2003) Inverse boundary design conduction-radiation problem in irregular two-dimensional domains. Numer Heat Transf, Part B 44:209–224

    Article  Google Scholar 

  • Howell JR, Mengüç MP, Siegel R (2016) Thermal radiation heat transfer, 6th edn. CRC Press, Boca Raton

    Google Scholar 

  • Huber FJT, Will S, Daun KJ (2016) Sizing aerosolized fractal nanoparticle aggregates through Bayesian analysis of wide-angle light scattering (WALS) data. J Quant Spectrosc Radiat Transf 184:27–39

    Article  Google Scholar 

  • Jaynes ET (1957) Information theory and statistical mechanics. Phys Rev 106:620–630

    Article  MathSciNet  Google Scholar 

  • Jones MR (1999) Inverse analysis of radiative transfer systems. ASME J Heat Transf 121:481–484

    Article  Google Scholar 

  • Kaipio J, Somersalo E (2005) Statistical and computational inverse problems. Springer, Berlin

    MATH  Google Scholar 

  • Kashif M et al (2012) Soot volume fraction fields in unsteady axis-symmetric flames by continuous laser extinction technique. Opt Express 20:28742–28751

    Article  Google Scholar 

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. Perth WA (ed) IEEE international conference on neural networks, pp. 1942–1948

    Google Scholar 

  • Kiefer J, Wolfowitz J (1952) Stochastic estimation of the maximum of a regression function. Ann Math Stat 23:462–466

    Article  MathSciNet  Google Scholar 

  • Kim KW, Baek SW (2004) Inverse surface radiation analysis in an axisymmetric cylinderical enclosure using a hybrid genetic algorithm. Numer Heat Transf, Part A 46:367–381

    Article  Google Scholar 

  • Kim KW, Baek SW (2007) Inverse radiation–conduction design problem in a participating concentric cylindrical medium. Int J Heat Mass Transf 50:2828–2837

    Article  Google Scholar 

  • Kirkpatrick S, Gelatt CD Jr, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680

    Article  MathSciNet  Google Scholar 

  • Kowsary F, Pooladvand KPA (2007) Regularized variable metric method versus the conjugate gradient method in solution of radiative boundary design problem. J Quant Spectrosc Radiat Transf 108:277–294

    Article  Google Scholar 

  • Kudo K et al (1996) Solution of the inverse radiative load problem using the singular value decomposition technique. JSME Int J, Ser B 39:808–814

    Article  Google Scholar 

  • Leduc G, Monchoux F, Thellier F (2004) Inverse radiative design in human thermal environment. Int J Heat Mass Transf 47:3291–3300

    Article  Google Scholar 

  • Lee KH, Kim KW (2015) Performance comparison of particle swarm optimization and genetic algorithm for inverse surface radiation problem. Int J Heat Mass Transf 88:330–337

    Article  Google Scholar 

  • Lee KH, Baek SW, Kim KW (2008) Inverse radiation analysis using repulsive particle swarm optimization algorithm. Int J Heat Mass Transf 51:2772–2783

    Article  Google Scholar 

  • Marston AJ, Daun KJ, Collins MR (2012) Geometric optimization of radiant enclosures containing specularly-reflecting surfaces through quasi-Monte Carlo simulation. Numer Heat Transf, Part A 59:81–97

    Article  Google Scholar 

  • McCann H, Wright P, Daun K (2015) Chemical species tomography. In: Industrial Tomography: Systems and applications. Woodhead Publishing, Sawston, pp 135–174

    Chapter  Google Scholar 

  • McCormick NJ (1992) Inverse radiative transfer problems: a review. Nucl Sci Eng 112:185–198

    Article  Google Scholar 

  • Mengüç PM, Dutta P (1994) Scattering tomography and its application to sooting diffusion flames. ASME J Heat Transf 144:144–151

    Article  Google Scholar 

  • Metropolis N et al (1953) Equations of state calculations by fast computing machines. J Chem Phys 21:1087–1092

    Article  Google Scholar 

  • Mitchell M (1996) An introduction to genetic algorithms. MIT Press, Cambridge

    MATH  Google Scholar 

  • Modest MF (2013) Radiative heat transfer, 3rd edn. Academic Press, San Diego

    Google Scholar 

  • Moré J, Sorensen D (1983) Computing a trust region step. SIAM J Sci Stat Comput 3:553–572

    Article  MathSciNet  Google Scholar 

  • Morozov VA (1968) On the discrepancy principle for solving operator equations by the method of regularization. Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki 8:295–309

    Google Scholar 

  • Mossi AC, Vielmo HA, França FHR, Howell JR (2008) Inverse design involving combined radiative and turbulent convective heat transfer. Int. J. Heat Mass Trans. 51:3217–3226

    Article  Google Scholar 

  • ÖzÅŸik MN, Orlande HRB (2000) Inverse heat transfer: fundamentals and applications. CRC Press, Boca Raton

    Google Scholar 

  • Porter JM, Larsen ME, Wesley BJ, Howell JR (2006) Metaheuristic optimization of a discrete Array of radiant heaters. ASME J Heat Transf 128:1031–1040

    Article  Google Scholar 

  • Pourshaghaghy A, Pooladvand K, Kowsary F, Karimi-Zand K (2006) An inverse radiation boundary design problem for an enclosure filled with an emitting, absorbing, and scattering media. Int Commun Heat Mass Transf 33:381–390

    Article  Google Scholar 

  • Randrianalisoa J, Baillis D, Pilon L (2006) Improved inverse method for radiative characteristics of closed-cell absorbing porous media. AIAA J Thermo Heat Transf 20:871–883

    Article  Google Scholar 

  • Ren T, Modest MF (2016) Temperature profile inversion from carbon-dioxide spectral intensities through Tikhonov regularization. AIAA J Thermo Heat Transf 30:211–218

    Article  Google Scholar 

  • Ren T, Modest MF, Fateev A, Clausen S (2015) An inverse radiation model for optical determination of temperature and species concentration: development and validation. J Quant Spectrosc Radiat Transf 151:198–209

    Article  Google Scholar 

  • Rukolaine SA (2015) Shape optimization of radiant enclosures with specular-diffuse surfaces by means of a random search and gradient minimization. J Quant Spectrosc Radiat Transf 151:174–191

    Article  Google Scholar 

  • Safavinejad A, Mansouri SH, Sakurai A, Maruyama S (2009) Optimal number and location of heaters in 2-D radiant enclosures composed of specular and diffuse surfaces using micro-genetic algorithm. Appl Therm Eng 29:1075–1085

    Article  Google Scholar 

  • Santoro RJ, Semerjian HJ, Emmerman P, Goulard R (1981) Optical tomography for flow field diagnostics. Int J Heat Mass Transf 24:1139–1150

    Article  Google Scholar 

  • Silva Neto AJ, ÖzÅŸik MN (1995) An inverse problem of simultaneous estimation of radiation phase function, albedo and optical thickness. J Quant Spectrosc Radiat Transf 53:397–409

    Article  Google Scholar 

  • Sorensen C (2001) Light scattering from fractal aggregates: a review. Aerosol Sci Technol 35:648–687

    Article  Google Scholar 

  • di Stasio S et al (2006) Synchrotron SAXS 〈in situ〉identification of three different size modes for soot nanoparticles in a diffusion flame. Carbon 44:1267–1279

    Article  Google Scholar 

  • Tan JY, Liu LH (2009) Inverse geometry design of radiating enclosure filled with participating media using a meshless method. Numer Heat Transf, Part A 56:132–152

    Article  Google Scholar 

  • Tikhonov AN, Arsenin VY (1977) Solution of ill-posed problems. Winston and Sons, Washington, DC

    MATH  Google Scholar 

  • von Toussaint U (2011) Bayesian inference in physics. Rev Mod Phys 83:943–999

    Article  Google Scholar 

  • Wing GM, Zhart JD (1991) A primer on integral equations of the first kind: the problem of deconvolution and unfolding. SIAM, Philadelphia

    Book  Google Scholar 

  • Winston R (1991) Nonimaging optics. Sci Am 264:76–81

    Article  Google Scholar 

  • Wright P et al (2010) High speed chemical species tomography in a multi-cylinder automotive engine. Chem Eng J 158:2–10

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyle J. Daun .

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Daun, K.J. (2018). Inverse Problems in Radiative Transfer. In: Handbook of Thermal Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-26695-4_64

Download citation

Publish with us

Policies and ethics