Skip to main content

Radiative Transfer in Combustion Systems

  • Reference work entry
  • First Online:
Handbook of Thermal Science and Engineering
  • 7780 Accesses

Abstract

Thermal radiation is an important heat transfer mode in many combustion systems. This article addresses experimental and computational works on radiative transfer in these systems. Attention is restricted to works where thermal radiation was accurately measured or simulated. The effects of radiative transfer in laminar flames and a few works where these effects were investigated are discussed first. Then, turbulent free flames are addressed. The importance of non-gray models for reliable prediction of thermal radiation, especially in nonluminous gaseous flames, is emphasized. The interaction between turbulence and radiation is also highlighted. Confined turbulent flames in laboratory combustion chambers are addressed next, beginning with gaseous flames and then discussing radiative transfer in liquid spray and coal flames. Finally, industrial applications are considered, namely, gas turbine combustors, industrial furnaces, and utility boilers, and a brief reference to other applications is made. A few general conclusions are summarized in the last section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams BR, Smith PJ (1995) Modelling effects of soot and turbulence-radiation coupling on radiative transfer in turbulent gaseous combustion. Combust Sci Technol 109:121–140

    Article  Google Scholar 

  • Ahluwalia RK, Im KH (1994) Spectral radiative heat transfer in coal fired furnaces using a hybrid technique. J Inst Energy 67:23–29

    Google Scholar 

  • Amaya J (2010) Unsteady coupled convection, conduction and radiation simulations on parallel architectures for combustion applications. PhD thesis, University of Toulouse

    Google Scholar 

  • Andersson K, Johansson R, Hjärtstam S, Johnsson F, Leckner B (2008) Radiation intensity of lignite-fired oxy-fuel flames. Exp Thermal Fluid Sci 33:67–76

    Article  Google Scholar 

  • Ates C, Ozen G, Selçuk N, Kulah G (2016) Radiative heat transfer in strongly forward scattering media of circulating fluidized bed combustors. J Quant Spectrosc Radiat Transf 182:264–276

    Article  Google Scholar 

  • Bäckström D, Johansson R, Andersson K, Johnsson F, Clausen S, Fateev A (2014) Measurement and modeling of particle radiation in coal flames. Energy Fuel 28:2199–2210

    Article  Google Scholar 

  • Bäckström D, Johansson R, Andersson K, Wiinikka H, Fredriksson C (2015) On the use of alternative fuels in rotary kiln burners – an experimental and modelling study of the effect on the radiative heat transfer conditions. Fuel Process Technol 138:210–220

    Article  Google Scholar 

  • Baek SW, Kim HS, Yu MJ, Kang SJ, Kim MY (2002) Application of the extended weighted sum of gray gases model to light fuel oil spray combustion. Combust Sci Technol 174:37–70

    Google Scholar 

  • Barlow RS, Frank JH (1998) Effects of turbulence on species mass fractions in methane/air jet flames. Proc Combust Inst 27:1087–1095

    Article  Google Scholar 

  • Borjini MN, Guedri K, Saïd R (2007) Modeling of radiative heat transfer in 3D complex boiler with non-gray sooting media. J Quant Spectrosc Radiat Transf 105:167–179

    Article  Google Scholar 

  • Bressloff N (1999) The influence of soot loading on weighted sum of grey gases solutions to the radiative transfer equation across mixtures of gases and soot. Int J Heat Mass Transf 42:3469–3480

    Article  Google Scholar 

  • Centeno FR, Brittes R, França FHR, Ezekoye OA (2015) Evaluation of gas radiation heat transfer in a 2D axisymmetric geometry using the line-by-line integration and WSGG models. J Quant Spectrosc Radiat Transf 156:1–11

    Article  Google Scholar 

  • Choi CE, Baek SW (1996) Numerical analysis of a spray combustion with nongray radiation using weighted sum of gray gases model. Combust Sci Technol 115:297–315

    Article  Google Scholar 

  • Clements AG, Black S, Szuhanszki J, Stechły K, Pranzitelli A, Nimmo W, Pourkashanian M (2015) LES and RANS of air and oxy-coal combustion in a pilot-scale facility: predictions of radiative heat transfer. Fuel 151:146–155

    Article  Google Scholar 

  • Coelho PJ (2002) Numerical simulation of radiative heat transfer from non-gray gases in three-dimensional enclosures. J Quant Spectrosc Radiat Transf 74:307–328

    Article  Google Scholar 

  • Coelho PJ (2004) Detailed numerical simulation of radiative transfer in a non-luminous turbulent jet diffusion flame. Combust Flame 136:481–492

    Article  Google Scholar 

  • Coelho PJ (2007) Numerical simulation of the interaction between turbulence and radiation in reactive flows. Prog Energy Combust Sci 33:311–383

    Article  Google Scholar 

  • Coelho PJ (2009) Approximate solutions of the filtered radiative transfer equation in large eddy simulations of turbulent reactive flows. Combust Flame 156:1099–1110

    Article  Google Scholar 

  • Coelho PJ (2012) Turbulence-radiation interaction: from theory to application in numerical simulations. J Heat Transf 134:031001

    Article  Google Scholar 

  • Coelho PJ, Teerling OJ, Roekaerts D (2003) Spectral radiative effects and turbulence/radiation interaction in a nonluminous turbulent jet diffusion flame. Combust Flame 133:75–91

    Article  Google Scholar 

  • Coelho PJ, Mancini M, Roekaerts DJEM (2015) Thermal radiation. In: Vervisch L, Roekaerts D (eds) Best practice guidelines – computational fluid dynamics of turbulent combustion. Ercoftac, pp 77–143

    Google Scholar 

  • Demarco R, Consalvi J, Fuentes A, Melis S (2011) Assessment of radiative property models in non-gray sooting media. Int J Therm Sci 50:1672–1684

    Article  Google Scholar 

  • Demarco R, Nmira F, Consalvi JL (2013) Influence of thermal radiation on soot production in laminar axisymmetric diffusion flames. J Quant Spectrosc Radiat Transf 120:52–69

    Article  Google Scholar 

  • Edge P, Gubba SR, Ma L, Porter R, Pourkashanian M, Williams A (2011) LES modelling of air and oxy-fuel pulverised coal combustion – impact on flame properties. Proc Combust Inst 33:2709–2716

    Article  Google Scholar 

  • Faeth GM, Gore JP, Chuech SG, Jeng S-M (1989) Radiation from turbulent diffusion flames. In: Tien CL, Chawla TC (eds) Annual reviews of numerical fluid mechanics and heat transfer. Hemisphere, New York, pp 1–38

    Google Scholar 

  • Fischer BA, Moss JB (1998) The influence of pressure on soot production and radiation in turbulent kerosine spray flames. Combust Sci Technol 138:43–61

    Article  Google Scholar 

  • Frank JH, Barlow RS, Lundquist C (2000) Radiation and nitric oxide formation in turbulent non-premixed jet flames. Proc Combust Inst 28:447–454

    Article  Google Scholar 

  • Gore JP, Ip U-S, Sivathanu YR (1992) Coupled structure and radiation analysis of acetylene/air flames. J Heat Transf 114:487–493

    Article  Google Scholar 

  • Goutiere V, Liu F, Charette A (2000) An assessment of real-gas modelling in 2D enclosures. J Quant Spectrosc Radiat Transf 64:299–326

    Article  Google Scholar 

  • Guo H, Smallwood GJ (2007) The interaction between soot and NO formation in a laminar axisymmetric coflow ethylene/air diffusion flame. Combust Flame 149:225–233

    Article  Google Scholar 

  • Gupta A, Haworth DC, Modest MF (2013) Turbulence-radiation interactions in large-eddy simulations of luminous and nonluminous nonpremixed flames. Proc Combust Inst 34:1281–1288

    Article  Google Scholar 

  • Habibi A, Merci B, Roekaerts D (2007) Turbulence radiation interaction in Reynolds-averaged Navier-stokes simulations of nonpremixed piloted turbulent laboratory-scale flames. Combust Flame 151:303–320

    Article  Google Scholar 

  • Han SH, Baek SW, Kim MY (2009) Transient radiative heating characteristics of slabs in a walking beam type reheating furnace. Int J Heat Mass Transf 52:1005–1011

    Article  Google Scholar 

  • Hartick JW, Tacke M, Früchtel G, Hassel EP, Janicka J (1996) Interaction of turbulence and radiation in confined diffusion flames. In: 26th symposium (international) on combustion, The Combustion Institute, pp 75–82

    Article  Google Scholar 

  • Hoogendoorn CJ (1996) Full modelling of industrial furnaces and boilers. In: Chan SH (ed) Transport phenomena in combustion, vol 2. Taylor Francis, Washington, DC, pp 1177–1188

    Google Scholar 

  • Hottel HC, Sarofim AF (1967) Radiative transfer. McGraw-Hill, New York

    Google Scholar 

  • Howell JR, Siegel R, Mengüç MP (2011) Thermal radiation heat transfer, 5th edn. CRC Press, Boca Raton

    Google Scholar 

  • International Workshop on Measurement and Computation of Turbulent Nonpremixed Flames. http://www.ca.sandia.gov/TNF/abstract.html. Accessed 29 July 2016

  • Jayachandran J, Zhao R, Egolfopoulos FN (2014) Determination of laminar flame speeds using stagnation and spherically expanding flames: molecular transport and radiation effects. Combust Flame 161:2305–2316

    Article  Google Scholar 

  • Johansson R, Leckner B, Andersson K, Johnsson F (2013) Influence of particle and gas radiation in oxy-fuel combustion. Int J Heat Mass Transf 65:143–152

    Article  Google Scholar 

  • Ju Y, Masuya G, Liu F, Hattori Y, Riechelmann D (2000) Asymptotic analysis of radiation extinction of stretched premixed flames. Int J Heat Mass Transf 43:231–239

    Article  Google Scholar 

  • Klason T, Bai XS, Bahador M, Nilsson TK, Sundén B (2008) Investigation of radiative heat transfer in fixed bed biomass furnaces. Fuel 87:2141–2153

    Article  Google Scholar 

  • Krebs W, Koch R, Bauer HJ, Kneer R, Wittig S (1994) Effect of turbulence on radiative heat transfer inside a model combustor. In: Proceedings of Eurotherm seminar no. 37 – heat transfer in radiating and combusting systems 2, Saluggia, pp 349–362

    Google Scholar 

  • Krebs W, Koch R, Ganz B, Eigenmann L, Wittig S (1996) Effect of temperature and concentration fluctuations on radiative heat transfer in turbulent flames. In: 26th symposium (international) on combustion, The Combustion Institute, pp 2763–2770

    Article  Google Scholar 

  • Krishnamoorthy K (2013) A new weighted-sum-of-gray-gases model for oxy-combustion scenarios. Int J Energy Res 37:1752–1763

    Article  Google Scholar 

  • Lallemant N, Sayre A, Weber R (1996) Evaluation of emissivity correlations for H2O-CO2-N2/air mixtures and coupling with solution methods of the radiative transfer equation. Prog Energy Combust Sci 22:543–574

    Article  Google Scholar 

  • Lallemant N, Breussin F, Weber R, Ekman T, Dugue J, Samaniego JM, Charon O, Van den Hoogen AJ, Van der Bemt J, Fujisaki W, Imanari T, Nakamura T, Iino K (2000) Flame structure, heat transfer and pollutant emissions characteristics of oxy-natural gas flames in the 0.7–1 MW thermal input range. J Inst Energy 71:169–182

    Google Scholar 

  • Lee S, Baek SW, Kim MY, Sohn YM (2007) Numerical investigation of the combustion characteristics and nitric oxide formation in a municipal waste incinerator. Numer Heat Transf Part A 52:713–735

    Article  Google Scholar 

  • Li G, Modest MF (2002) Application of composition PDF methods in the investigation of turbulence-radiation interactions. J Quant Spectrosc Radiat Transf 73:461–472

    Article  Google Scholar 

  • Li G, Modest MF (2003) Importance of turbulence-radiation interactions in turbulent diffusion jet flames. J Heat Transf 125:831–838

    Article  Google Scholar 

  • Liu F, Becker H, Bindar Y (1998) A comparative study of radiative heat transfer modelling in gas-fired furnaces using the simple grey gas and the weighted-sum-of-grey-gases models. Int J Heat Mass Transf 41:3357–3371

    Article  Google Scholar 

  • Liu F, Guo H, Smallwood GJ (2004a) Effects of radiation model on the modeling of a laminar coflow methane/air diffusion flame. Combust Flame 138:136–154

    Article  Google Scholar 

  • Liu F, Guo H, Smallwood GJ, El-Hafi M (2004b) Effects of gas and soot radiation on soot formation in counterflow ethylene diffusion flames. J Quant Spectrosc Radiat Transf 84:501–511

    Article  Google Scholar 

  • Marakis JG, Papapavlou C, Kakaras E (2000) A parametric study of radiative heat transfer in pulverised coal furnaces. Int J Heat Mass Transf 43:2961–2971

    Article  Google Scholar 

  • Mazumder S, Modest MF (1999) A probability density function approach to modelling turbulence-radiation interactions in nonluminous flames. Int J Heat Mass Transf 42:971–991

    Article  Google Scholar 

  • Mehta RS, Haworth DC, Modest MF (2010a) Composition PDF/photon Monte Carlo modeling of moderately sooting turbulent jet flames. Combust Flame 157:982–994

    Article  Google Scholar 

  • Mehta RS, Modest MF, Haworth DC (2010b) Radiation characteristics and turbulence radiation interactions in sooting turbulent jet flames. Combust Theory Model 14:105–124

    Article  Google Scholar 

  • Mengüç MP, Viskanta R (1987) A sensitivity analysis for radiative heat transfer in a pulverized coal-fired furnace. Combust Sci Technol 51:51–74

    Article  Google Scholar 

  • Mengüç MP, Viskanta R, Ferguson CR (1985) Multidimensional modeling of radiative heat transfer in diesel engines. SAE paper No. 850503

    Google Scholar 

  • Modest MF (2013) Radiative heat transfer, 3rd edn. Academic, New York

    Google Scholar 

  • Modest MF, Haworth DC (2016) Radiative heat transfer in turbulent combustion systems: theory and applications. Springer, Cham

    Book  Google Scholar 

  • Mujeebu MA, Abdullah MZ, Mohamadb AA, Bakar MZA (2010) Trends in modeling of porous media combustion. Prog Energy Combust Sci 36:627–650

    Article  Google Scholar 

  • Nakod P, Krishnamoorthy G, Sami M, Orsino S (2013) A comparative evaluation of gray and non-gray radiation modelling strategies in oxy-coal combustion simulations. Appl Therm Eng 54:422–432

    Article  Google Scholar 

  • Pal G, Gupta A, Modest MF, Haworth DC (2015) Comparison of accuracy and computational expense of radiation models in simulation of non-premixed turbulent jet flames. Combust Flame 162:2487–2495

    Article  Google Scholar 

  • Pedot T, Cuenot B, Riber E, Poinsot T (2016) Coupled heat transfers in a refinery furnace in view of fouling prediction. J Heat Transf 138:072101

    Article  Google Scholar 

  • Poinsot T, Veynante D (2005) Theoretical and numerical combustion, 2nd edn. Edwards Inc, Philadelphia

    Google Scholar 

  • Poitou D, Amaya J, El Hafi M, Cuénot B (2012) Analysis of the interaction between turbulent combustion and thermal radiation using unsteady coupled LES/DOM simulations. Combust Flame 159:1605–1618

    Article  Google Scholar 

  • Roy SP, Ge W, Cai J, Modest MF (2016) Multiphase radiative heat transfer calculations in high-pressure spray combustion simulations. In: Proceedings of the 8th international symposium on radiative transfer, Cappadocia

    Google Scholar 

  • Sayre A, Lallemant N, Dugué J, Weber R (1994a) Scaling characteristics of the aerodynamics and low NOx properties of industrial natural gas burners: the scaling 400 study, part IV: the 300 kW BERL test results. IFRF Report F 40/y/11

    Google Scholar 

  • Sayre A, Lallemant N, Dugué J, Weber R (1994b) Effect of radiation on nitrogen oxide emissions from nonsooty swirling flames of natural gas. In: 25th symposium (international) on combustion, The Combustion Institute, pp 235–242

    Article  Google Scholar 

  • Smart JP, Patel R, Riley GS (2010) Oxy-fuel combustion of coal and biomass, the effect on radiative and convective heat transfer and burnout. Combust Flame 157:2230–2240

    Article  Google Scholar 

  • Song TH, Viskanta R (1987) Interaction of radiation with turbulence: application to a combustion system. J Thermophys Heat Transf 1:56–62

    Article  Google Scholar 

  • Song TH, Viskanta R (1988) Prediction of the thermal performance of an industrial natural gas-fired furnace. Gas Wärme Int 37:22–30

    Google Scholar 

  • Song G, Bjørge T, Holen J, Magnussen BF (1997) Simulation of fluid flow and gaseous radiation heat transfer in a natural gas-fired furnace. Int J Numer Methods Heat Fluid Flow 7:169–180

    Article  Google Scholar 

  • Stefanidis GD, Van Geem KM, Heynderickx GJ, Marin GB (2008) Evaluation of high-emissivity coatings in steam cracking furnaces using a non-grey gas radiation model. Chem Eng J 137:411–421

    Article  Google Scholar 

  • Ströhle J (2003) Spectral modelling of radiative heat transfer in industrial furnaces. PhD thesis, University of Stuttgart

    Google Scholar 

  • Sundén B, Faghri M (eds) (2008) Transport phenomena in fires. WIT Press, Southampton

    Google Scholar 

  • Tessé L, Dupoirieux F, Taine J (2004) Monte Carlo modelling of radiative transfer in a turbulent sooty flame. Int J Heat Mass Transf 47:555–572

    Article  Google Scholar 

  • Tsuji H, Gupta AK, Hasegawa T, Katsuki M, Kishimoto K, Morita M (2003) High temperature air combustion: from energy conservation to pollution reduction. CRC Press, Boca Raton

    Google Scholar 

  • Varma KR, Mengüç MP (1989) Effects of particulate concentrations on temperature and heat flux distributions in a pulverized-coal fired furnace. Int J Energy Res 13:555–572

    Article  Google Scholar 

  • Viskanta R (2005) Radiative transfer in combustion systems: fundamentals & applications. Begell House, New York

    Google Scholar 

  • Viskanta R, Mengüç MP (1987) Radiation heat transfer in combustion systems. Prog Energy Combust Sci 13:97–160

    Article  Google Scholar 

  • Wang A, Modest MF (2008) Monte Carlo simulation of radiative heat transfer and turbulence interactions in methane/air jet flames. J Quant Spectrosc Radiat Transf 109:269–279

    Article  Google Scholar 

  • Wang L, Haworth DC, Turns SR, Modest MF (2005) Interactions among soot, thermal radiation, and NOx emissions in oxygen-enriched turbulent nonpremixed flames: a computational fluid dynamics modeling study. Combust Flame 141:170–179

    Article  Google Scholar 

  • Wang HY, Chen WH, Law CK (2007) Extinction of counterflow diffusion flames with radiative heat loss and nonunity Lewis numbers. Combust Flame 148:100–116

    Article  Google Scholar 

  • Wu B, Roy SP, Modest MF, Zhao X (2016) Monte Carlo modeling of radiative transfer in a pulverized coal jet flame. In: Proceedings of the 8th international symposium radiative transfer, Cappadocia

    Google Scholar 

  • Yu MJ, Baek SW, Kang SJ (2001) Modeling of pulverized coal combustion with non-gray gas radiation effects. Combust Sci Technol 166:151–174

    Article  Google Scholar 

  • Zhao XY, Haworth DC, Ren T, Modest MF (2013) A transport probability density function/photon Monte Carlo method for high-temperature oxy-natural gas combustion with spectral gas and wall radiation. Combust Theory Model 17:354–381

    Article  Google Scholar 

  • Zheng Y, Barlow RS, Gore JP (2003a) Measurements and calculations of spectral radiation intensities for turbulent non-premixed and partially premixed flames. J Heat Transf 125:678–686

    Article  Google Scholar 

  • Zheng Y, Barlow RS, Gore JP (2003b) Spectral radiation properties of partially premixed turbulent flames. J Heat Transf 125:1065–1073

    Article  Google Scholar 

  • Zhu XL, Gore JP (2005) Radiation effects on combustion and pollutant emissions of high-pressure opposed flow methane/air diffusion flames. Combust Flame 141:118–130

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Portuguese Science and Technology Foundation (FCT), through IDMEC, under LAETA, project UID/EMS/50022/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro J. Coelho .

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Coelho, P.J. (2018). Radiative Transfer in Combustion Systems. In: Handbook of Thermal Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-26695-4_61

Download citation

Publish with us

Policies and ethics