Skip to main content

Monte Carlo Methods for Radiative Transfer

  • Reference work entry
  • First Online:
Handbook of Thermal Science and Engineering

Abstract

The solution of the radiative transfer equation is challenging, especially in the presence of a participating medium, wavelength- and direction-dependent properties, or a complex geometry. The Monte Carlo method that relies on statistical sampling of photon bundles using pseudorandom numbers and probability distributions which are derived based on physical laws is a powerful and robust approach to solving the radiative transfer equation. While the method is computationally demanding even for simple surface exchange problems, introducing complex phenomena does not significantly increase formulation complexity or the required computational power. Therefore, the method has become one of the most widely adopted solution techniques with the increasing computation capacity in the last decades. This chapter introduces the method, presenting general guidelines to adopt it for solution of radiative transfer problems, discussing how to introduce further phenomena such as wavelength- or direction-dependent properties, and improving computational performance. The method is known for its flexibility and can be applied in many different ways. Different strategies are discussed, considering advantages or disadvantages of each for different problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bird GA (1994) Molecular gas dynamics and the direct simulation of gas flows. Clarendon, Oxford

    Google Scholar 

  • Bird GA (1998) Recent advances and current challenges for DSMC. Comput Math Appl 35(1):1–14

    Article  MathSciNet  Google Scholar 

  • Boyle P, Broadie M, Glasserman P (1997) Monte Carlo methods for security pricing. J Econ Dyn Control 21:1267–1321

    Article  MathSciNet  Google Scholar 

  • Case KM (1957) Transfer problems and the reciprocity principle. Rev Mod Phys 29(4):651

    Article  MathSciNet  Google Scholar 

  • Cherkaoui M, Dufresne JL, Fournier R, Grandpeix JY, Lahellec A (1996) Monte Carlo simulation of radiation in gases with a narrow-band model and a net-exchange formulation. J Heat Transf 118(2):401–407

    Article  Google Scholar 

  • Daun KJ, Hollands KGT (2001) Infinitesimal area radiative area analysis using parametric surface representation through NURBS. J Heat Transf 123(2):249–256

    Google Scholar 

  • Daun KJ, Morton DP, Howell JR (2005) Smoothing Monte Carlo exchange factors through constrained maximum likelihood estimation. J Heat Transf 127(10):1124–1128

    Article  Google Scholar 

  • Ertürk H, Howell JR (2010) Efficient signal transport model for remote thermometry in full-scale thermal processing systems. IEEE Trans Semicond Manuf 23(1):132–140

    Article  Google Scholar 

  • Ertürk H, Arınç F, Selçuk N (1997) Accuracy of Monte Carlo method re-examined on a box-shaped furnace problem. In Mengüç MP (ed) Proceedings of second international symposium on radiative heat transfer, Kusadasi, Turkey, Jul 21–25, 1997. Begell House, New York, pp. 85–95

    Google Scholar 

  • Farmer JT, Howell JR (1994a) Monte Carlo prediction of radiative heat transfer in inhomogeneous, anisotropic, nongray media. J Thermophys Heat Transf 8(1):133–139

    Article  Google Scholar 

  • Farmer JT, Howell JR (1994b) Hybrid Monte Carlo/diffusion methods for enhanced solution of radiative transfer in optically thick nongray media. ASME Publications-HTD 276:203–203

    Google Scholar 

  • Farmer JT, Howell JR (1998) Comparison of Monte Carlo strategies for radiative transfer in participating media. Adv Heat Tran 31:333–429

    Article  Google Scholar 

  • Fischetti MV, Laux SE (1993) Monte Carlo study of electron transport in silicon inversion layers. Phys Rev B 48:2244

    Article  Google Scholar 

  • Fournié E, Lasry JM, Lebuchoux J, Lions PL, Touzi N (1999) Applications of Malliavin calculus to Monte Carlo methods in finance. Finance Stochast 3(4):391–412

    Article  MathSciNet  Google Scholar 

  • Glassner AS (ed) (1989) An introduction to ray tracing. Academic Press, San Diego, CA, USA

    Google Scholar 

  • Goodrum PE, Diamond GL, Hassett JM, Johnson DL (1996) Monte Carlo modeling of childhood lead exposure: development of a probabilistic methodology for use with the USEPA IEUBK model for lead in children. Hum Ecol Risk Assess 2:681–708

    Article  Google Scholar 

  • Haji-Sheikh A, Sparrow EM (1967) The solution of heat conduction problems by probability methods. J Heat Transf 89(2):121–130

    Article  Google Scholar 

  • Hammersley JM, Handscomb DC (1964) Monte Carlo methods. Springer, The Netherlands

    Book  Google Scholar 

  • Henyey LG, Greenstein JL (1941) Diffuse radiation in the galaxy. Astrophys J 93:70–83

    Article  Google Scholar 

  • Howell JR (1968) Applications of Monte Carlo to heat transfer problems. Adv Heat Tran 5:1–54

    Google Scholar 

  • Howell JR (1998) The Monte Carlo method in radiative heat transfer. J Heat Transf 120(3):547–560

    Article  Google Scholar 

  • Howell JR, Perlmutter M (1964) Monte Carlo solution of thermal transfer through radiant media between gray walls. J Heat Transf 86(1):116–122

    Article  Google Scholar 

  • Howell JR, Mengüç MP, Siegel R (2016) Thermal radiation heat transfer, 6th edn. CRC Press, Boca Raton

    Google Scholar 

  • Hsu PF, Farmer JT (1997) Benchmark solutions of radiative heat transfer within nonhomogeneous participating media using the Monte Carlo and YIX method. J Heat Transf 119(1):185–188

    Article  Google Scholar 

  • Larsen ME, Howell JR (1986) Least-squares smoothing of direct-exchange areas in zonal analysis. J Heat Transf 108(1):239–242

    Article  Google Scholar 

  • Maurente A, Vielmo HA, França FHR (2007) A Monte Carlo implementation to solve radiation heat transfer in non-uniform media with spectrally dependent properties. J Quant Spectrosc Radiat Transf 108(2):295–307

    Article  Google Scholar 

  • Mazumder S, Majumdar A (2001) Monte Carlo study of phonon transport in solid thin films including dispersion and polarization. J Heat Transf 123:749–759

    Article  Google Scholar 

  • Metropolis N (1987) The beginning of the Monte Carlo method. Los Alamos Sci 15(584):125–130

    MathSciNet  Google Scholar 

  • Modest MF (2003) Backward Monte Carlo simulations in radiative heat transfer. J Heat Transf 125(1):57–62

    Article  MathSciNet  Google Scholar 

  • Nielsen R, Wakeley J (2001) Distinguishing migration from isolation: a Markov chain Monte Carlo approach. Genetics 158(2):885–896

    Google Scholar 

  • Papadrakakis M, Lagaros ND (2002) Reliability-based structural optimization using neural networks and Monte Carlo simulation. Comput Methods Appl Mech Eng 191:3491–3507

    Article  Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical Recipes. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Renshaw E, Gibson GJ (1998) Can Markov chain Monte Carlo be usefully applied to stochastic processes with hidden birth times? Inverse Prob 14:1581–1606

    Article  MathSciNet  Google Scholar 

  • Rogers DF, Adams JA (1989) Mathematical elements for computer graphics. McGraw-Hill, New York

    Google Scholar 

  • Sherman RP, Ho YYK, Dalal SR (1999) Conditions for convergence of Monte Carlo EM sequences with an application to product diffusion modeling. Econ J 2(2):248–267

    MathSciNet  MATH  Google Scholar 

  • Taussky O, Todd J (1956) Generation and testing of pseudo-random numbers. In: Symposium on Monte Carlo methods, vol 11. Wiley, New York

    Google Scholar 

  • Walters DV, Buckius RO (1992) Rigorous development for radiation heat transfer in nonhomogeneous absorbing, emitting and scattering media. Int J Heat Mass Transf 35(12):3323–3333

    Article  Google Scholar 

  • Walters DV, Buckius RO (1994) Monte Carlo methods for radiative heat transfer in scattering media. Annu Rev Heat Transf 5(5)

    Article  Google Scholar 

  • Wang A, Modest MF (2007) Spectral Monte Carlo models for nongray radiation analyses in inhomogeneous participating media. Int J Heat Mass Transf 50(19):3877–3889

    Article  Google Scholar 

  • Wang L, Yang J, Modest MF, Haworth DC (2007) Application of the full-spectrum k-distribution method to photon Monte Carlo solvers. J Quant Spectrosc Radiat Transf 104(2):297–304

    Article  Google Scholar 

  • Wong BT, Mengüç MP (2004) Monte Carlo methods in radiative transfer and electron-beam processing. J Quant Spectrosc Radiat Transf 84(4):437–450

    Article  Google Scholar 

  • Wong BT, Mengüç MP (2008) Thermal transport for applications in micro/Nanomachining. Springer, New York

    Book  Google Scholar 

  • Yang WJ, Taniguchi H, Kazuhiko K, Wen-Jei Yang HT (1995) Radiative heat transfer by the Monte Carlo method. Adv Heat Tran 27

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakan Ertürk .

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ertürk, H., Howell, J.R. (2018). Monte Carlo Methods for Radiative Transfer. In: Handbook of Thermal Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-26695-4_57

Download citation

Publish with us

Policies and ethics