Skip to main content

Thermophysical Properties Measurement and Identification

  • Reference work entry
  • First Online:
  • 7634 Accesses

Abstract

The measurement of thermophysical properties is most often an indirect method, which requires the estimation of some parameters by comparing the experimental data with the mathematical modeling of the experimental bench. Moreover, the development of new materials and systems brings about the need of new methods designed for specific applications. This chapter aims at presenting some inverse methods that are of great interest for nowadays challenging problems related to the measurement of thermophysical properties. The basic concepts of inverse methods are presented, but emphasis is given to the solution of inverse problems within the Bayesian framework, in special, with the Markov Chain Monte Carlo (MCMC) methods. Three illustrative examples of applications are presented, namely: (i) thermal characterization of highly orthotropic carbon fiber composite materials; (ii) thermal characterization of metallic nanofilms for nonvolatile phase change memory; and (iii) simultaneous estimation of spatially varying thermal diffusivity and heat flux.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alifanov OM (1994) Inverse heat transfer problems. Springer-Verlag, New York

    Book  Google Scholar 

  • Alifanov OM, Artyukhin E, Rumyantsev A (1995) Extreme methods for solving ill-posed problems with applications to inverse heat transfer problems. Begell House, New York

    MATH  Google Scholar 

  • ASTM Standard C177 (2004) Standard test method for steady-state heat flux measurements and thermal transmission properties by means of the guarded-hot-plate apparatus. ASTM, West Conshohocken

    Google Scholar 

  • ASTM Standard E1461-01 (2001) Standard test method for thermal diffusivity by the flash method. ASTM, West Conshohocken

    Google Scholar 

  • Bamford M, Batsale J-C, Fudym O (2009) Nodal and modal strategies for longitudinal thermal diffusivity profile estimation. Application to the non destructive evaluation of SiC/SiC composites under uniaxial tensile tests. Infrared Phys Technol 52:1–13. https://doi.org/10.1016/j.infrared.2008.01.002

    Article  Google Scholar 

  • Battaglia J-L, Schick V, Rossignol C, Fudym O, Orlande H, Affonso P (2012) Global estimation of thermal parameters from a picoseconds thermoreflectometry experiment. Int J Thermal Sci 57:17–24

    Article  Google Scholar 

  • Battaglia J-L, Saboul M, Pailhes J, Saci A, Kusiak A, Fudym O (2014) Carbon epoxy composites thermal conductivity at 77 K and 300 K. J Appl Phys 115:223516. https://doi.org/10.1063/1.4882300

    Article  Google Scholar 

  • Bayes T (1763) An essay towards solving a problem in the doctrine of chances, by the late Rv. Mr. Bayes, F.R.S. Communicated by Mr. Price in a letter to John Cannon, M. A. and F.R.S. Phil Trans 53:370–418., 1763. https://doi.org/10.1098/rstl.1763.0053

    Article  MATH  Google Scholar 

  • Beck JV, Arnold KJ (1977) Parameter stimation in engineering and science. Wiley, New York

    Google Scholar 

  • Beck JV, Blackwell B, St. Clair CR (1985) Inverse heat conduction: ill-posed problems. Wiley, New York

    MATH  Google Scholar 

  • Blackwell JVJ (1954) A transient-flow method for determination of thermal constants of insulating materials in bulk part I—theory. J Appl Phys 25:137

    Article  Google Scholar 

  • Calvetti D, Somersalo E (2007) Introduction to Bayesian scientific computing. Springer, New York

    MATH  Google Scholar 

  • Christen J, Fox C (2005) Markov chain Monte Carlo using an approximation. J Comput Graph Stat 14(4):795–810

    Article  MathSciNet  Google Scholar 

  • Fonseca H, Fudym O, Orlande H, Batsale J-C (2010) Nodal predictive error model and Bayesian approach for thermal diffusivity and heat source mapping. Compt Rend Mecanique 338:434–449

    Article  Google Scholar 

  • Fonseca HM, Orlande HRB, Fudym O, Sepúlveda F (2014) A statistical inversion approach for local thermal diffusivity and heat flux simultaneous estimation. Quant InfraRed Therm J 11:170–189. https://doi.org/10.1080/17686733.2014.947860

    Article  Google Scholar 

  • Fudym O, Batsale J-C, Battaglia J-L (2007) Thermophysical properties mapping in semi-infinite longitudinally cracked plates by temperature image processing. Inv Prob Sci Eng 15:163–176

    Article  Google Scholar 

  • Gamerman D, Lopes HF (2006) Markov chain Monte Carlo: stochastic simulation for Bayesian inference, 2nd edn. Chapman & Hall/CRC, Boca Raton

    MATH  Google Scholar 

  • Gelman A, Rubin D (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7:457–472

    Article  Google Scholar 

  • Geweke J (1992) Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. In: Bernardo J, Berger J, Dawid A, Smith A (eds) Bayesian statistics. Oxford University Press, Oxford, UK

    MATH  Google Scholar 

  • Gustavsson M, Karawacki E, Khan E (1981) Determination of the thermal-conductivity tensor and the heat capacity of insulating solids with the transient hot-strip method. J Appl Phys 52:2596

    Article  Google Scholar 

  • Gustavsson M, Karawacki E, Silas E (1994) Thermal conductivity, thermal diffusivity, and specific heat of thin samples from transient measurements with hot disk sensors. Rev Sci Instrum 65:856

    Article  Google Scholar 

  • Haario H, Saksman E, Tamminen J (2001) An adaptive metropolis algorithm. Bernoulli 7:223–242

    Article  MathSciNet  Google Scholar 

  • Hadamard J (1923) Lectures on Cauchy’s problem in linear differential equations. Yale University Press, New Haven

    MATH  Google Scholar 

  • Hastings WK (1970) Monte Carlo sampling methods using markov chains and their applications. Biometrika 57:97–109

    Article  MathSciNet  Google Scholar 

  • Hensel E (1991) Inverse theory and applications for engineers. Prentice Hall, New Jersey

    Google Scholar 

  • Kaipio J, Fox C (2011) The Bayesian framework for inverse problems in heat transfer. Heat Trans Eng 32:718–753

    Article  Google Scholar 

  • Kaipio J, Somersalo E (2004) Statistical and computational inverse problems, Applied mathematical sciences, vol 160. Springer-Verlag, New York

    MATH  Google Scholar 

  • Klarsfeld S (1984) Guarded plate method for thermal conductivity measurements. Comp Therm Prop Meas Meth 1:169–230

    Google Scholar 

  • Kurpisz K, Nowak AJ (1995) Inverse thermal problems. WIT Press, Southampton

    MATH  Google Scholar 

  • Ladevie B, Batsale J-C, Fudym O (2000) A new simple device to estimate thermophysical properties of insulating materials. Int Comm Heat Mass Transfer 27:473–484

    Article  Google Scholar 

  • Lee PM (2004) Bayesian statistics. Oxford University Press, London

    MATH  Google Scholar 

  • Maillet D, André S, Batsale JC, Degiovanni A, Moyne C (2000) Thermal quadrupoles: solving the heat equation through integral transforms. Wiley, John

    MATH  Google Scholar 

  • Metropolis N, Rosenbluth A, Rosenbluth M, Teller A, Teller E (1953) Equation of state calculation by fast computing machines. J Chem Phys 21:1087–1092

    Article  Google Scholar 

  • Nissinen, A., (2011), Modelling errors in electrical impedance tomography, Dissertation in forestry and natural sciences, University of Eastern Finland

    Google Scholar 

  • Nissinen A, Heikkinen L, Kaipio J (2008) The Bayesian approximation error approach for electrical impedance tomography – experimental results. Meas Sci Technol 19:015501

    Article  Google Scholar 

  • Nissinen A, Heikkinen L, Kolehmainen V, Kaipio J (2009) Compensation of errors due to discretization, domain truncation and unknown contact impedances in electrical impedance tomography. Meas Sci Technol 20:13. 105504

    Article  Google Scholar 

  • Nissinen A, Kolehmainen V, Kaipio J (2011a) Compensation of modeling errors due to unknown boundary domain in electrical impedance tomography. IEEE Trans Med Im 30:231–242

    Article  Google Scholar 

  • Nissinen A, Kolehmainen V, Kaipio J (2011b) Reconstruction of domain boundary and conductivity in electrical impedance tomography using the approximation error approach. Int J Uncertainty Quant 1:203–222

    Article  MathSciNet  Google Scholar 

  • Orlande, H. R. B. (2012), Inverse problems in heat transfer: new trends on solution methodologies and applications, J Heat Transfer, v.134, p.031011-1.

    Article  MathSciNet  Google Scholar 

  • Orlande H, Fudym F, Maillet D, Cotta R (2011) Thermal measurements and inverse techniques. CRC Press, Boca Raton

    Google Scholar 

  • Orlande HRB, Dulikravich GS, Neumayer M, Watzenig D, Colaço M (2014) Accelerated Bayesian inference for the estimation of spatially varying heat flux in a heat conduction problem. Num Heat Transfer, Part A Appl 65:1–25

    Article  Google Scholar 

  • Ozisik MN, Orlande HRB (2000) Inverse heat transfer: fundamentals and applications. Taylor and Francis, New York

    Google Scholar 

  • Parker W, Jenkins R, Butler C, Abbott G (1961) Flash method of determining thermal diffusivity, heat capacity and thermal conductivity. J Appl Phys 32(9):1679–1684

    Article  Google Scholar 

  • Rigacci B, Ladevie H, Sallée B, Chevalier P, Achard OF (2002) Measurements of comparative apparent thermal conductivity of large monolithic silica aerogels for transparent superinsulation application. High Temp High Press 34:549–559

    Article  Google Scholar 

  • Sabatier PC (1978) Applied inverse problems. Springer Verlag, Hamburg

    Book  Google Scholar 

  • Silver N (2012) The signal and the noise. Penguin Press, New York

    Google Scholar 

  • Tan S, Fox C, Nicholls G (2006) Inverse problems, Course notes for physics, vol 707. University of Auckland, New Zealand

    Google Scholar 

  • Tikhonov AN, Arsenin VY (1977) Solution of Ill-posed problems. Winston & Sons, Washington, DC

    MATH  Google Scholar 

  • Vogel C (2002) Computational methods for inverse problems. SIAM, New York

    Book  Google Scholar 

  • Winkler R (2003) An introduction to Bayesian inference and decision. Probabilistic Publishing, Gainsville

    Google Scholar 

  • Woodbury K (2002) Inverse engineering handbook. CRC Press, Boca Raton

    Book  Google Scholar 

Download references

Acknowledgments

The support provided by CNRS (France), CNPq (Brazil), CAPES (Brazil), and FAPERJ (Brazil – State of Rio de Janeiro) is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helcio R. B. Orlande .

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Orlande, H.R.B., Fudym, O. (2018). Thermophysical Properties Measurement and Identification. In: Handbook of Thermal Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-26695-4_5

Download citation

Publish with us

Policies and ethics