Skip to main content

Transition and Film Boiling

  • Reference work entry
  • First Online:
Handbook of Thermal Science and Engineering
  • 7848 Accesses

Abstract

Transition boiling, minimum film boiling (minimum heat flux), and film boiling are reviewed. The review will address pool and external flow boiling in Sect. 2. A discussion of internal flow boiling, with emphasis on post-critical heat flux regimes, will then follow in Sect. 3.

Pool boiling occurs without an imposed forced flow, where fluid flow is caused by phase change and natural convective only. In external flow boiling, the heated surface may be subject to an imposed fluid flow; however, the fluid field is much larger than the heated surface, and the heat transfer and phase change processes that occur at or near the heated surface have a minimal effect on the properties of the fluid away from the surface. In Sect. 2, the pool boiling curve and boiling regimes are reviewed, followed by a discussion of the phenomenology and theoretical aspects of hysteresis in transition boiling, the minimum film point, and the film boiling regime. Some widely used predictive methods are then presented.

In Sect. 3, the two-phase flow and heat transfer regimes in internal flow boiling in vertical and horizontal flow passages are discussed. Post-critical heat flux heat transfer regimes, including stable film boiling and dispersed droplet film boiling, are then discussed, and widely used predictive methods are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CHF:

Critical heat flux

DNB:

Departure from nucleate boiling

LP:

Leidenfrost point

MFB:

Minimum film boiling

ONB:

Onset of nucleate boiling

OSV:

Onset of significant void

A :

Atomic number

C, CP:

Specific heat and constant-pressure specific heat (J/kg·K)

D :

Diameter (m)

D H :

Hydraulic diameter (m)

F :

Time-averaged fraction of the total heated surface that is in contact with liquid; Chen’s enhancement factor

G :

Mass flux (kg/m2·s)

Ga :

Galileo number

Gr :

Grashof number

\( \overrightarrow{g} \) :

Gravitational acceleration vector (m/s2)

g :

Gravitational constant (= 9.807 m/s2 at sea level)

h :

Heat transfer coefficient (W/m2∙K)

h fg :

Latent heat of vaporization (J/kg)

k :

Thermal conductivity (W/m·K)

L :

Length (m); characteristic length (m)

M :

Molar mass (kg/kmol)

Nu:

Nusselt number

P :

Pressure (N/m2)

Pr:

Prandtl number

q″:

Heat flux (W/m2)

R :

Radius (m)

Re:

Reynolds number

Ref:

Liquid-only Reynolds number

Reg:

Vapor-only Reynolds number

S :

Distance defining intermittency (m); Chen’s suppression factor

Sp :

Superheat number

Sp * :

Modified superheat number

T :

Temperature (K)

t :

Time (s)

u, v :

Velocity (m/s)

x :

Quality

x eq :

Equilibrium quality

X tt :

Martinelli’s factor

α :

Void fraction

α :

Thermal diffusivity (m2/s)

β :

Volumetric thermal expansion coefficient (K−1)

δ :

Film thickness (m)

ε :

Radiative emissivity

λ d :

Fastest-growing wavelength (m)

λ 3D :

Wavelength associated with three-dimensional interfacial waves

λ KH :

Fastest-growing wavelength for two-dimensional Kelvin–Helmholtz instability (m)

λ L :

Laplace length scale (capillary length) (m)

μ :

Viscosity (kg/m·s)

ν :

Kinematic viscosity (m2/s)

θ :

Azimuthal angle (rad); angle of inclination with respect to the horizontal plane (rad or degrees)

θ0,θa,θr:

Equilibrium (static), advancing, and receding contact angles (rad or degrees)

ρ :

Density (kg/m3)

σ :

Surface tension (N/m)

σ SB :

Stefan–Boltzmann constant (5.67 × 10−8 W/m2·K4)

τ :

Shear stress (N/m2)

_:

Area averaged

*:

Calculated at reference temperature

B:

Bubble, vapor bulge

cr:

Critical

eq:

Equilibrium

f:

Saturated liquid

FB:

Film boiling

Film:

Film temperature

FC:

Forced convection

g:

Saturated vapor

L:

Liquid

m:

Mixture, mixture average

NB:

Nucleate boiling

rad:

Radiation

ref:

Reference

sat:

Saturation

TB:

Transition boiling

v:

Vapor when it is not at saturation

W:

Water

w:

Wall

∞:

Ambient associated with a large surface

References

  • Adamson AW, Ling L (1964) The status of contact angle as a thermodynamic property. Adv Chem Ser 43:57–73

    Article  Google Scholar 

  • Auracher H, Buchholtz M (2005) Experiments on the fundamental mechanisms of boiling heat transfer. J Braz Soc of Mech Sci Eng 27(1):1–22. Available on Internet at: http://www.scielo.br/pdf/jbsmse/v27n1/25372 (July, 2017)

  • Auracher H, Marquardt W (2002) Experimental studies of boiling mechanisms in all boiling regimes under steady-state and transient conditions. Int J Therm Sci 41:586–598

    Article  Google Scholar 

  • Bailey NA (1971) Film boiling on submerged vertical cylinders. AEEW-M1051

    Google Scholar 

  • Baumeister KJ, Hamill TD (1967) Laminar flow analysis of film boiling from a horizontal wire. NASA TN D-4035

    Google Scholar 

  • Baumeister KJ, Simon FF (1973) Leidenfrost temperature – its correlation for liquid metals, cryogens, hydrocarbons, and water. J Heat Transf 95:166–173

    Article  Google Scholar 

  • Berenson PJ (1960) Transition boiling from a horizontal surface. MIT Heat Transfer Lab. Tech. Rpt. No. 17, March 1960

    Google Scholar 

  • Berenson PL (1961) Film-boiling heat transfer from a horizontal surface. J Heat Transf 83:351–358

    Article  Google Scholar 

  • Berenson PJ (1962) Experiments on pool boiling heat transfer. Int J Heat Mass Transfer 5:985–999

    Article  Google Scholar 

  • Bernardin JD, Mudawar I (1999) The Leidenfrost point: experimental study and assessment of existing models. J Heat Transf 121:894–903

    Article  Google Scholar 

  • Biance A-L, Clanet C, Quere D (2003) Leidenfrost Drops Phys Fluids 15:1632–1637

    Article  Google Scholar 

  • Bjonard TA, Griffith P (1977) PWR blowdown heat transfer. In: Jones OC, Bankoff SG (eds) Symposium on thermal and hydraulic aspects of nuclear reactor safety, vol 1. ASME, New York

    Google Scholar 

  • Blum J, Marquardt W, Auracher H (1996) Stability of boiling systems. Int J Heat Mass Transf 39:3021–3033

    Article  Google Scholar 

  • Breen BP, Westwater JW (1962) Effect of diameter of horizontal tubes on film boiling heat transfer. Chem Eng Prog 58(7):67–72

    Google Scholar 

  • Bromley LA (1950) Heat transfer in stable film boiling. Chem Eng Prog Symp Ser 46:221–227

    Google Scholar 

  • Bromley LA, LeRoy NR, Robbers JA (1953) Heat transfer in forced convection film boiling. Ind Eng Chem 45:2639–2646

    Article  Google Scholar 

  • Bui TD (1984) Film and transition boiling heat transfer on vertical surfaces. PhD thesis, University of California at Los Angeles

    Google Scholar 

  • Bui TD, Dhir VK (1985a) Transition boiling heat transfer on a vertical surface. J Heat Transf 107:756–763

    Article  Google Scholar 

  • Bui TD, Dhir VK (1985b) Film boiling heat transfer on an isothermal vertical surface. J Heat Transf 107:764–771

    Article  Google Scholar 

  • Carey VP (2008) Liquid–vapor phase-change phenomena, 2nd edn. CRC Press, New York

    Google Scholar 

  • Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–550

    Article  Google Scholar 

  • Chang Y-P (1959) Wave theory of heat transfer in film boiling. J Heat Transf 81:1–12

    Google Scholar 

  • Chen JC (1966) Correlation for boiling heat transfer to saturated fluids in convective flow. Ind Eng Chem Res 5:322–329

    Google Scholar 

  • Collier JG (1981) Forced convection boiling. In: Bergles AE, Collier JG, Delhaye JM, Hewitt GF, Mayinger F (eds) Two-phase flow and heat transfer in power and process industries. Hemisphere, Washington, DC

    Google Scholar 

  • Collier JG, Thome JR (2004) Convective boiling and condensation, 3rd edn. Clarendon Press, Oxford

    Google Scholar 

  • Dhir VK (1991) Nucleate and transition boiling heat transfer under pool and external flow conditions. Int J Heat Fluid Flow 12:290–314

    Article  Google Scholar 

  • Dhir VK (1998) Boiling heat transfer. Annual Rev Fluid Mech 30:265–401

    Article  Google Scholar 

  • Dhir VK, Liaw SP (1989) Framework for a unified model for nucleate and transition pool boiling. J Heat Transf 111:739–746

    Article  Google Scholar 

  • Dhir VK, Purohit GP (1978) Subcooled film-boiling heat transfer from spheres. Nucl Eng Des 47:49–66

    Article  Google Scholar 

  • Drew TB, Mueller C (1937) Boiling Trans AIChE 33:449–473

    Google Scholar 

  • Faghri M, Zhang Y (2006) Transport phenomena in multiphase systems. Elsevier/Academic Press, New York

    Google Scholar 

  • Fan L-W, Li J-Q, Su Y-Y, Wang H-L, Ji T, Yu Z-T (2016) Subcooled pool film boiling heat transfer from spheres with superhydrophobic surfaces: an experimental study. J Heat Transf 138: paper no. 021503

    Article  Google Scholar 

  • Farahat MM, Nasr TN (1978) Nature convection film boiling from spheres to saturated liquids, an integral approach. Int J Heat Mass Transf 21:256–258

    Article  Google Scholar 

  • Forrest E, Williamson E, Buongiorno J, Hu L-W, Rubner M, Cohen R (2010) Augmentation of nucleate boiling heat transfer and critical heat flux using nanoparticle thin-film coatings. Int J Heat Mass Transf 53:58–67

    Article  Google Scholar 

  • Frederking THK, Clark JA (1963) Natural convection film boiling on a sphere. Adv Cryog Eng 8:501–506

    Google Scholar 

  • Ghiaasiaan SM (2011) Convective heat and mass transfer. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Ghiaasiaan SM (2017) Two-phase flow, boiling and condensation in conventional and miniature system. 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Gopalan P, Kandlikar SG (2014) Contact line characteristics of liquid-gas interfaces. Microfluids Nanofluids 16:999–1008

    Article  Google Scholar 

  • Gottfried BS, Lee CJ, Bell KJ (1966) The Leidenfrost phenomenon: film boiling of liquid droplets on a flat plate. Int J Heat Mass Transf 9:1167–1187

    Article  Google Scholar 

  • Groeneveld DC (1973) Post-dryout heat transfer at reactor operating conditions. American Nuclear Society Topical Meeting on Water Reactor Safety, Salt Lake City

    Google Scholar 

  • Groeneveld DC (1986) The onset of dry sheath condition – a new definition of dryout. Nucl Eng Des 92:135–140

    Article  Google Scholar 

  • Groeneveld DC, Snoek CW (1986) A comprehensive examination of heat transfer correlations suitable for reactor safety analysis. In: Hewitt GF, Delhaye JM, Zuber N (eds) Multiphase science and technology, vol 2. Hemisphere, Washington, DC, pp 181–274

    Chapter  Google Scholar 

  • Groeneveld DC, Stewart JC (1982) The minimum film boiling temperature for water during film boiling collapse. In: Proceedings of the 7th international heat transfer conference, vol 4, Munich, 6–10 Sept 1982, pp 303–308

    Google Scholar 

  • Groeneveld DC, Leung LKH, Vasic AZ, Guo YJ, Cheng SC (2003) A look-up table for fully-developed film boiling heat transfer. Nucl Eng Des 225:83–97

    Article  Google Scholar 

  • Hamill TD, Baumeister KJ (1967) Film boiling from a horizontal surface as an optimal boundary value process. In: Proceedings third international heat transfer conference, Chicago, vol 4. A.I.Ch.E., New York, pp 59–64

    Google Scholar 

  • Haramura Y (1999) Critical heat flux in pool boiling, Chapter 6. In: Kandlikar SG, Shoji M, Dhir VK (eds) Handbook of phase change. Taylor and Francis, London

    Google Scholar 

  • Hendricks RC, Baumeister KJ (1969) Film boiling from submerged spheres. NASA TND-5124

    Google Scholar 

  • Henry RE (1974) A correlation for the minimum film boiling temperature. AIChE Sympos Ser 70(138):81–90

    Google Scholar 

  • Hohl R, Blum J, Buchholz M, Lüttich T, Auracher H, Marquardt W (2001) Model-based experimental analysis of pool boiling heat transfer with controlled wall temperature transients. Int J Heat Mass Transf 44:2225–2238

    Article  Google Scholar 

  • Hsu YY, Westwater JW (1960) Approximate theory for film boiling on vertical surfaces. Eng Prog Symp Sen 56, 30, 15–24

    Google Scholar 

  • Hsu YY, Graham RW (1986) Transport processes in boiling and two-phase systems. American Nuclear Society, La Grange Park

    Google Scholar 

  • Hwang GS, Kaviany M (2006) Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux. Int J Heat Mass Transf 49:844–849

    Article  Google Scholar 

  • Johanssen K (1991) Low quality transition and inverted annular flow film boiling of water: an updated review. Exp Therm Fluid Sci 4:497–509

    Article  Google Scholar 

  • Kalinin EK (1969) Investigation of the crisis of film boiling in channels. In: Two-phase flow and heat transfer in rod bundles, ASME Winter annual meeting, Los Angeles, pp 89–94

    Google Scholar 

  • Kim JH, Rainey KN, You SM, Pak JY (2002) Mechanism of nucleate boiling heat transfer enhancement from microporous surfaces in saturated FC-72. J Heat Transf 124:500–506

    Article  Google Scholar 

  • Kim H, DeWitt G, McKrell T, Buongiorno J, Hu L-W (2009) On the quenching of steel and zircaloy spheres in water-based nanofluids with alumina, silica and diamond nanoparticles. Int J Multiphase Flow 35:427–438

    Article  Google Scholar 

  • Kim H, Buongiorno J, Hu L-W, McKrell T (2010) Nanoparticle deposition effects on the minimum heat flux point and quench front speed during quenching in water-based alumina nanofluids. Int J Heat Mass Transf 53:1542–1553

    Article  Google Scholar 

  • Klimenko VV (1981) Film boiling on a horizontal plate – new correlation. Int J Heat Mass Transf 24:69–79

    Article  Google Scholar 

  • Koh JCY (1962) Analysis of film boiling on vertical surface. J Heat Transf 84:55–62

    Article  Google Scholar 

  • Leonard JE, Sun KH, Anderson JGM, Dix GE, Yuoh T (1978) Calculation of low flow boiling heat transfer for BWR LOCA analysis. Report NEDO-20566–1 Rev. 1. General Electric Company, San Jose

    Google Scholar 

  • Liaw SP, Dhir VK (1986) Effect of surface wettability on transition boiling heat transfer from a vertical surface. Proc Int Heat Transfer Conf, 8th, San Francisco, 4:2031–2036

    Google Scholar 

  • Lienhard JH, Wong PTY (1964) The dominant unstable wavelength and minimum heat flux during film boiling on a horizontal cylinder. Trans ASME Ser C J Heat Transf 86:220–226

    Article  Google Scholar 

  • Lubin BT (1969) Analytical derivation for total heat transfer coefficient in stable film boiling from vertical plate. J Heat Transf 91:452–453

    Article  Google Scholar 

  • Moreaux F, Chevrier JC, Beck G (1975) Destabilization of film boiling by means of a thermal resistance. Int J Multiphase Flow 2:183–190

    Article  Google Scholar 

  • Nagai N, Nishio S (1996) Leidenfrost temperature on an extremely smooth surface. Exp Therm Fluid Sci 12:373–379

    Article  Google Scholar 

  • Nishio S (1983) Study of minimum heat flux point of boiling heat transfer around a sphere. Trans Jap Soc Mech Engrs, Ser B 49:1185–l194

    Article  Google Scholar 

  • Nishio S (1987) Prediction technique for minimum-heat flux (MHF) -point condition of saturated pool boiling. Int J Heat Mass Transf 30:2045–2057

    Article  Google Scholar 

  • Nishio S, Ohtake H (1992) Natural convection film boiling heat transfer (3rd report: film boiling from horizontal cylinder in middle and small diameter regions). JSME Int J (Series II) 35:580–588

    Google Scholar 

  • Nishio S, Ohtake H (1993) Vapor-film-unit model and heat transfer correlation for natural convection film boiling with wave motion under subcooled conditions. J Heat Mass Transf 36:2541–2552

    Article  Google Scholar 

  • Nishio S, Uemura M, Sakaguchi K (1987) Film boiling heat transfer and minimum­heat-flux (MHF)-point condition in subcooled pool boiling. JSME lnt J Ser B 30(266):1274–1281

    Google Scholar 

  • Nukiyama S (1934) The maximum and minimum values of heat Q transmitted from metal to boiling water under atmospheric pressure. J Jpn Soc Mech Eng 37:367–374

    Google Scholar 

  • Ohtaki H, Koizumi Y (2006) Derivation of correlation and liquid-solid contact model of transition boiling heat transfer. JSME Int J Ser B 49(2):343–351

    Article  Google Scholar 

  • Olek S, Zvirin Y (1988) The relation between the rewetting temperature and the liquid-solid contact angle. Int J Heat Mass Transf 31:898–902

    Article  Google Scholar 

  • Patel B, Bell KJ (1966) The Leidenfrost phenomenon for extended liquid masses. Chem Eng Prog Symp Ser 62:62–71

    Google Scholar 

  • Pron’ko VG, Bulanova LB (1978) Experimental investigation of the thermodynamic crisis of film boiling. J Eng Phys 34:534–539

    Article  Google Scholar 

  • Ramilison JM, Lienhard JH (1987) Transition boiling heat transfer and the film transition regime. J Heat Transf 109:746–752

    Article  Google Scholar 

  • Ramu K, Weisman J (1974) A method for the correlation of transition boiling heat transfer data. In: Proceedings of the fifth international heat transfer conference, Tokyo, vol IV, B4.4

    Google Scholar 

  • RELAP5-3D Code Development Team (2012) RELAP5-3D code manuals, Version 2.3, vols 1–5, INEEL-EXT-98-00834

    Google Scholar 

  • Roy Chowdhury SK, Winterton RSH (1985) Surface effects in pool boiling. Int J Heat Mass Transf 28:1881–1889

    Article  Google Scholar 

  • Sakurai A, Shiotsu M, Hata K (1984). Fastest heat transfer after stable film destruction at the minimum film boiling point. In: Proceedings of the 21st National Hwt Transfer Svmp, Japan, pp 469–471

    Google Scholar 

  • Sakurai A, Shiotsu M, Hata K (1990a) A general correlation for pool film boiling heat transfer from a horizontal cylinder to subcooled liquid. Part 1 – a theoretical pool film boiling heat transfer model including radiation contribution and its analytical solution. J Heat Transf 112:430–441

    Article  Google Scholar 

  • Sakurai A, Shiotsu M, Hata K (1990b) A general correlation for pool film boiling heat transfer from a horizontal cylinder to subcooled liquid. Part 2 – experimental data for various liquids and its correlation. J Heat Transf 112:442–450

    Google Scholar 

  • Segev A, Bankoff G (1980) The role of adsorption in determining the minimum film boiling temperature. Int J Heat Mass Transf 23:637–642

    Article  Google Scholar 

  • Stewart JC, Groeneveld DC (1981) Low-quality and subcooled film boiling of water at elevated pressures. Nucl Eng Des 67:259–272

    Article  Google Scholar 

  • TCI Thermalhydraulics Consultants Inc (2017) www.magma.ca/~thermal/

  • Tso CP, Low HG, Ng SM (1990) Pool film boiling from sphere to saturated and subcooled liquids of Freon-12 and Freon-22. Int J Heat Fluid Flow 11:154–159

    Article  Google Scholar 

  • Vakarelski IU, Patankar NA, Marston JO, Chan DYC, Thoroddsen ST (2012) Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces. Nature 489(7415):274–277

    Article  Google Scholar 

  • Vijaykumar R, Dhir VK (1992a) An experimental study of subcooled film boiling on a vertical surface – hydrodynamic aspects. J Heat Transf 114:161–168

    Article  Google Scholar 

  • Vijaykumar R, Dhir VK (1992b) An experimental study of subcooled film boiling on a vertical surface – thermal aspects. J Heat Transf 114:169–178

    Article  Google Scholar 

  • Weisman J (1981) Studies of transition boiling heat transfer at pressure from 1–4 bar, EPRI NP-1899

    Google Scholar 

  • Witte LC, Lienhard JH (1982) On the existence of two transition boiling curves. Int J Heat Mass Transf 25:771–779

    Article  Google Scholar 

  • Yao S-C, Henry RE (1978) An investigation of the minimum film boiling temperature on horizontal surfaces. J Heat Transf 100:260–267

    Article  Google Scholar 

  • Zhukov UM, Kazakov GM, Kovalev SA, Kuzma-Kitcha YA (1975) Heat transfer in boiling of liquids on surfaces coated with low thermal conductivity films. Heat Transf Sov Res 7(3):16–26

    Google Scholar 

  • Zuber N (1959) Hydrodynamic aspects of boiling heat transfer. USAEC Rep AECU-4439

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mostafa Ghiaasiaan .

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ghiaasiaan, S.M. (2018). Transition and Film Boiling. In: Handbook of Thermal Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-26695-4_42

Download citation

Publish with us

Policies and ethics