Skip to main content

Process Intensification

  • Reference work entry
  • First Online:
Handbook of Thermal Science and Engineering

Abstract

Process intensification is a broad technology category with the objective to reduce size and/or improve efficiency of chemical or biotechnology processes. This objective can be achieved in many ways, including shrinking equipment size, combining unit operations, and changing the method of operation (e.g., energy sources, process control, reaction routes, solvents, etc.). Many process intensification approaches rely on heat transfer equipment, either as a unit operation with reduced size (e.g., compact heat exchanger) or as an integrated component of a multifunctional unit operation (e.g., microreactors and heat-integrated distillation). In this chapter, applications of heat transfer equipment in process intensification are surveyed, with the notable exception that compact heat exchangers are explicitly addressed in Chap. 36, “Compact Heat Exchangers.” Specifically, this chapter is an overview of process-intensified heat transfer equipment, including microchannel and other process-intensified heat exchangers, compact reactors, and heat-integrated separations. The discussion on applications is followed by a commercial outlook for heat transfer equipment in process-intensified systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Application note (2016) Fast scale up of microreactor technology from lab scale to production, No. 1 The Paal-Knorr synthesis, 2016. http://www.access2flow.com/?Technology. Accessed on 4 Apr 2016

  • Anuar S, Villegas C, Mugo SM, Curtis JM (2011) The development of flow-through bio-catalyst microreactors from silica micro structured fibers for lipid transformations. Lipids 46(6):545–555

    Article  Google Scholar 

  • Barad S, Makwana M (2014) Numerical investigation of single phase fluid flow and heat transfer in rectangular micro channel using nanofluids as a cooling liquid. Int J Eng Res App 4(8):133–137

    Google Scholar 

  • Bell I, Groll E (2011) Air-side particulate fouling of microchannel heat exchangers: experimental comparison of air-side pressure drop and heat transfer with plate-fin heat exchanger. App Ther Eng 31:742–749

    Article  Google Scholar 

  • Bergles A (1998) Techniques to enhance heat transfer. In: Rohsenow W, Hartnett J, Cho Y (eds) Handbook of heat transfer, 3rd edn. McGraw Hill, New York, pp 11.1–11.76

    Google Scholar 

  • Bianco V, Manca O, Nardini S, Vafai K (2015) Heat transfer enhancement with nanofluids. CRC Press, Boca Raton

    Book  Google Scholar 

  • Brandner JJ, Benzinger W, Schygulla U, Zimmermann S, Schubert K (2007) Metallic micro heat exchangers: properties, applications and long term stability. In: Müller-Steinhagen H, Malayeri MR, Watkinson AP (eds) Proceedings of 7th international conference on heat exchanger fouling and cleaning – challenges and opportunities, Tomar, 1–6 July 2007. ECI symposium series, vol RP5. Engineering conferences international, New York

    Google Scholar 

  • Brooks KP, Rassat SD, TeGrotenhuis WE (2005) Development of a microchannel in situ propellant production system, PNNL-15456. Pacific Northwest National Laboratory, Richland

    Google Scholar 

  • Charpentier JC (2007) In the frame of globalization and sustainability, process intensification, a path to the future of chemical and process engineering (molecules into money). Chem Eng J 134:84–92

    Article  Google Scholar 

  • Chen J, Xu D (2015) Radical quenching of methane-air premixed flame in microreactors using detailed chemical kinetics. Sci Study Res 16(3):215–227

    Google Scholar 

  • Chughtai I, Iqbal W, Din G, Mehdi S, Khan I, Inayat M, Jin J (2013) Investigation of liquid phase axial dispersion in Taylor bubble flow by radiotracer residence time distribution analysis. EPJ Web Conf 50:01002-1–01002-4

    Article  Google Scholar 

  • de Rijke A (2007) Development of a concentric internally heat integrated distillation column (HIDiC) Dissertation, Technische Universiteit Delft

    Google Scholar 

  • Deutschmann O, Tischer S, Correa C, Chatterjee D, Kleditzsch S, Janardhanan VM, Mladenov N, Minh HD, Karadeniz H, Hettel M (2014) DETCHEM software package, 2.5 edn. www.detchem.com, Karlsruhe

  • Ding YL, Chen HS, Wang L, Yang CY, He YR, Yang W, Lee WP, Zhang LL, Huo R (2007) Heat transfer intensification. Kona-Powder Part 25:23–28

    Article  Google Scholar 

  • Dizaji H, Jafarmadar S (2014) Heat transfer enhancement due to air bubble injection into a horizontal double pipe heat exchanger. Intl J Automot Eng 4:902–910

    Google Scholar 

  • Fanelli M, Arora R, Glass A, Litt R, Qiu D, Silva L, Tonkovich A, Weidert D (2007) Micro-scale distillation – I: simulation. WIT Trans Eng Sci 56:205–213

    Google Scholar 

  • Glover WB (2004) Selecting evaporators for process applications. Chem Eng Progress Dec 2004:26–33

    Google Scholar 

  • Gourdon C, Elgue S, Prat L (2015) What are the needs for process intensification? Oil Gas Sci Technol 70(3):463–473

    Article  Google Scholar 

  • Guidat R, Vizza Abrial A (2015) Advanced flow reactor technology for continuous industrial production. Specialty Chemicals Magazine, Nov 2015, 30–32

    Google Scholar 

  • Gurav S (2013) Parametric comparison of heat transfer in helical and straight tube-in-tube heat exchanger. Intl J of Sci Res 4:990–993

    Google Scholar 

  • Gururatana S, Li X (2013) Heat transfer enhancement of small scale heat sinks using vibrating pin fin. Am J Appl Sci 10(8):801–809

    Article  Google Scholar 

  • Haenggi D, Meszaros I (1999) Vapour recompression: distillation without steam. Sulzer Technical Review 1 pp. 32–34

    Google Scholar 

  • Harmsen J (2010) Process intensification in the petrochemicals industry: drivers and hurdles for commercial implementation. Chem Eng Process 49:70–73

    Article  Google Scholar 

  • Hartman R, Jensen K (2009) Microchemical systems for continuous-flow synthesis. Lab Chip 9:2495–2507

    Article  Google Scholar 

  • Hettel M, Diehm C, Bonart H, Deutschmann O (2015) Numerical simulation of a structured catalytic methane reformer by DUO: the new computational interface for OpenFOAM and DETCHEM. Catal Today 258:230–240

    Article  Google Scholar 

  • Horval Rotary Heat Exchangers (2015) Handbook for design, installation and operation. http://www.hovalpartners.com. Accessed 3 May 2016

  • Ill T, Knorr A, Fritzsche L (2016) Microreactors – a powerful tool to synthesize peroxycarboxylic esters. Molecules 21(1):5–21

    Article  Google Scholar 

  • Ismail F, Rashid A, Mahbub M (2011) CFD analysis for optimum thermal design of a carbon nanotube based micro-channel heatsink. Eng J 15(4):11–22

    Article  Google Scholar 

  • Ismail M, Fotowat S, Fartaj A (2016) Numerical simulation of Al2O3/automatic transmission fluid and Al2O3/water nanofluids in a compact heat exchanger. J Fluid Flow Heat Mass Transf 3:34–43

    Google Scholar 

  • Iwakabe K, Nakaiwa M, Huang K, Matsuda K, Nakashini T, Ohmori T, Endo A, Yamamoto T (2006) An internally heat-integrated distillation column (HIDiC) in Japan. In: Distillation and absorption, Symposium series, vol 152. IChemE, Rugby

    Google Scholar 

  • Jahnisch K, Baerns M, Hessel V, Ehrfeld W, Haverkamp V, Lowe H, Wille C, Guber A (2000) Direct fluorination of toluene using elemental fluorine in gas/liquid microreactors. J Fluor Chem 105:117–128

    Article  Google Scholar 

  • Johnston A, Levy W (2006) Chemical reactor. US Patent 7,033,553 B2 filed Jan 25, 2001, issued Apr 25, 2006. Meggitt (UK) Limited (assignee)

    Google Scholar 

  • Kakaç S, Bergles A, Mayinger F, Yuncu H (1999) Heat transfer enhancements of heat exchangers. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Kakaç S, Liu H, Pramuanjaroenkij A (2012) Heat exchangers: selection, rating, and thermal design. CRC Press, Boca Raton

    MATH  Google Scholar 

  • Kandlikar S, Garimella S, Li D, Colin S, King M (2014) Heat transfer and fluid flow in minichannels and microchannels. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Kansha Y, Kishimoto A, Aziz M, Tsutsumi A (2012) Self-heat recuperation: theory and applications. In: Dr. Jovan Mitrovic (ed) Heat exchangers – basics design applications. InTech. ISBN:978–953–51-0278-6. Available from: http://www.intechopen.com/books/heat-exchangers-basics-design-applications/self-heat-recuperation-theory-and-applications

    Google Scholar 

  • Kazazi V, Ressegotti D (2015) Optimization of multiregion simulations of catalytic reactors: an application to the CH4 partial oxidation on Rh. MS thesis, Politenco di Milano

    Google Scholar 

  • Kim T (2009) Micro power generation from micro fuel cell combined with micro methanol reformer. In: Takahata K (ed) Micro electronic and mechanical systems. Intech, Rijeka

    Google Scholar 

  • Kirubadurai B, Rahman FS, Velmurugan P, Kumar S (2017) Effectiveness analysis of double pipe heat exchanger with curls band in various angles. J Appl Mech Eng 6(2):1–6

    Google Scholar 

  • Kiss A (2016) Process intensification: industrial applications. In: Segovia-Hernandez J, Bonilla-Petriciolet A (eds) Process intensification in chemical engineering: design optimization and control. Springer, Cham

    Google Scholar 

  • Kiss A, Olujic Z (2014) A review on process intensification in internally heat-integrated distillation columns. Chem Eng Proc: Process Intensification 86:125–144

    Article  Google Scholar 

  • Kiwi-Minsker L, Renken A (2005) Microstructured reactors for catalytic reactions. Catal Today 110:2–14

    Article  Google Scholar 

  • Kockmann N (2008) Transport phenomena in micro process engineering. Springer, Berlin

    Google Scholar 

  • Kumar S, Suresh S, Rajiv K (2012) Heat transfer enhancement by nano structured carbon nanotube coating. Intl J Sci Eng Res 3:1–5

    Google Scholar 

  • LaMont M, Tonkovich AY, Fitzgerald S, Neagle P (2006) Microchannel fouling mitigation: flow distribution and wall shear effects. In: Presentation at the 2006 Spring Meeting & 2nd Global Congress on Process Safety, Orlando

    Google Scholar 

  • Lavric E (2008) Thermal performance of corning glass microstructures. In: ECI international conference and fluid flow in microscale, Whistler

    Google Scholar 

  • Lee J, Gharagozloo P, Kolade B, Eaton J, Goodson K (2010) Nanofluid convection in microtubes. J Heat Transf 132:092401-1–092401-5

    Google Scholar 

  • Legay M, Gondrexon N, Le Person S, Boldo P, Bontemps A (2011) Enhancement of heat transfer by ultrasound: review and recent advances. Intl J Chem Eng., Article ID:670108

    Google Scholar 

  • Lam K, Sorensen E, Gavriilidis A (2013) Review on gas-liquid separations in microchannel devices. Chem Eng Res Des 91(10):1941–1953

    Article  Google Scholar 

  • Lerou JJ, Tonkovich AL, Silva L, Perry S, McDaniel J (2010) Microchannel reactor architecture enables greener processes. Chem Eng Sci 65:380–385

    Article  Google Scholar 

  • Luo L (2013) Intensification of adsorption process in porous media. In: Luo L (ed) Heat and mass transfer intensification and shape optimization. Springer, London, pp 19–44

    Chapter  Google Scholar 

  • Maranzana G, Perry I, Maillet D (2004) Mini- and micro-channels: influence of axial conduction in the walls. Int J Heat Mass Transf 47:3993–4004

    Article  Google Scholar 

  • Marschewski J, Brechbühler R, Jung S, Ruch P, Michel B (2016) Significant heat transfer with herringbone-inspired microstructures. Int J Heat Mass Transf 95:755–764

    Article  Google Scholar 

  • Marshall J, Renjitham S (2014) Simulation of particulate fouling at a microchannel entrance region. Microfluid Nanofluid 18:253–265

    Article  Google Scholar 

  • Mathew J, Lai F (1995) Enhanced heat transfer in a horizontal channel with double electrodes. In: Industry applications conference. IEEE, Piscataway

    Google Scholar 

  • Maxwell J (1873) A treatise on electricity and magnetism. Clarendon Press, Oxford

    MATH  Google Scholar 

  • Meszaros I, Meili A (2002) Optimize distillation operations with ejectors. Hydrocarb Process 03:51–56

    Google Scholar 

  • Meili A, Meszaros I (1998) Successful application of heat pump assisted distillation. In: New thinking in distillation column hardware, 25 Mar 1998. IChemE Fluid Separation-Process Group, Aston University

    Google Scholar 

  • Minkowycz W, Sparrow E, Abraham J (2013) Nanoparticle heat transfer and fluid flow, Advances in heat transfer, vol IV. CRC Press, Boca Raton

    Google Scholar 

  • Moreau M, Di Miceli RN, Le Sauze N, Cabassud M, Gourdon C (2015) Pressure drop and axial dispersion in industrial millistructured heat exchange reactors. Chem Eng Process 95:54–62

    Article  Google Scholar 

  • Muthuraman S (2013) Investigation of brazed plate heat exchangers with variable chevron angles. Amer J Eng Res 2(8):90–107

    Google Scholar 

  • Muscatello A, Santiago-Maldonado E, Gibson T, Devor R, Captain R (2011) Evaluation of Mars CO2 capture and gas separation technologies. http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20110015862.pdf. Accessed 19 May 2016

  • Olujic Z, Fakhri F, de Rijke A, de Graauw J, Jansens P (2003) Internal heat integration – the key to an energy conserving distillation column. J Chem Technol Biotechnol 78:241–248

    Article  Google Scholar 

  • Ottewell S (2014) Reactive distillation: will a sea change occur? Chemical Processing Com, 28 Oct 2014

    Google Scholar 

  • Perry J, Kandlikar S (2008) Fouling and its mitigation in silicon microchannels used for IC chip cooling. Microfluid Nanofluid 5:357–371

    Article  Google Scholar 

  • Pfeifer P (2012) Application of catalysts to metal microreactor systems. In: Patel V (ed) Chemical kinetics. InTech. http://www.intechopen.com/books/chemical-kinetics/application-of-catalysts-to-metal-microreactor-systems. Accessed 24 May 2016

  • Ratner D, Murphy E, Jhunjhunwala M, Snyder D, Jensen K, Seeberger P (2005) Microreactor-based reaction optimization in organic chemistry – glycosylation as a challenge. Chem Commun:578–580

    Google Scholar 

  • Reay D, Ramshaw C, Harvey A (2013) Process intensification, second edition: engineering for efficiency, sustainability, and flexibility. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Roberge D, Gottsponer M, Eyholzer M, Kockmann N (2009) Industrial design, scale-up, and use of microreactors. Chem Today 27(4):8–11

    Google Scholar 

  • Rock KL, Judzis A, Almering MJ (2008) Cost effective solutions for reduction of benzene in gasoline. AM-08-04. National Petroleum & Refiners Association, Washington

    Google Scholar 

  • Sadeghi E, Bahrami M, Djilali N (2010) Estimation of Nusselt number in microchannels of arbitrary cross section with constant axial heat flux. Heat Transf Eng 31:666–674

    Article  Google Scholar 

  • Sandia National Laboratory (2016) The Sandia Cooler: a fundamental breakthrough in heat transfer technology for microelectronics. http://ip.sandia.gov. Accessed 3 May 2016

  • Schnider C, Roberge D (2012) Industrial design, scale-up and use of microreactors. Specialty Chemicals Magazine, Nov 2012, 16–18

    Google Scholar 

  • Schwiedernoch R, Tischer S, Correa C, Deutschmann O (2003) Experimental and numerical study on the transient behavior of partial oxidation of methane in a catalytic monolith. Chem Eng Sci 58:633–642

    Article  Google Scholar 

  • Shen C, Johnstone H (1955) Gas-solid contact in fluidized beds. AICHE J 1:349–354

    Article  Google Scholar 

  • Silvestri C, Riccio M, Poelma R, Morana B, Vollebregt S, Santagata F, Irace A, Zhang GQ, Sarro P (2016) Thermal characterization of carbon nanotube foam using MEMS microhotplates and thermographic analysis. Nanoscale 8:8266–8275

    Article  Google Scholar 

  • Stankiewicz AI, Moulijn J (2000) Process intensification: transforming chemical engineering. Chem Eng Prog Jan 2000:22–34

    Google Scholar 

  • Stankiewicz AI, Moulijn J (2004) Re-engineering the chemical processing plant. Marcel Dekker, New York

    Google Scholar 

  • Stief T, Langer OU, Schuber K (1999) Numerische untersuchungen zur optimalen wärmeleitfähigkeit in mikrowärmeübertragerstrukturen. Chem Ing Tech 70:1539–1544

    Article  Google Scholar 

  • Su Y, Chen G, Yuan Q (2011) Influence of hydrodynamics on liquid mixing during Taylor flow in a microchannel. AICHE J 58:1660–1670

    Article  Google Scholar 

  • Tanthapanichakoon W, Matsuyama K, Aoki N, Mae K (2006) Design of microfluidic slug mixing based on the correlation between a dimensionless mixing rate and a modified Peclet number. Chem Eng Sci 61:7386–7392

    Article  Google Scholar 

  • Tegrotenhuis W, Humble P, Seeney J (2012) Simulation of a high efficiency multi-bed adsorption heat pump. App Ther Eng 37:176–182

    Article  Google Scholar 

  • Tian M, Cheng L, Lin Y, Zhang G (2004) Heat transfer enhancement by crossflow-induced vibration. Heat Transf Asian Res 33(4):211–218

    Article  Google Scholar 

  • Tonkovich AY, Daymo EA (2009) Microreaction systems for large-scale production. In: Dietrich T (ed) Microchemical engineering in practice. Wiley, Hoboken

    Google Scholar 

  • Tonkovich AL, Lerou JJ (2010) Microstructures on macroscale: microchannel reactors for medium and large-size processes. In: Cybulski A, Moulijn J, Stankiewicz A (eds) Novel concepts in catalysis and chemical reactors: improving the efficiency of the future. Wiley, Weinheim

    Google Scholar 

  • Tonkovich AY, Perry S, Wang Y, Qiu D, LaPlante T, Rogers W (2004) Microchannel process technology for compact methane steam reforming. Chem Eng Sci 59:4819–4824

    Article  Google Scholar 

  • Tonkovich A, Kuhlmann D, Rogers WA, McDaniel J, Fitzgerald S, Arora R, Yuschak T (2005) Microchannel technology scale-up to commercial capacity. Trans IChemE Part A Chem Eng Res Des 83(A6):634–639

    Article  Google Scholar 

  • Tonkovich AL, Jarosch K, Arora R, Silva L, Perry S, McDaniel J, Daly F, Litt B (2008) Methanol production FPSO plant concept using multiple microchannel unit operations. Chem Eng J 135S:S2–S8

    Article  Google Scholar 

  • United States Department of Energy (2009) Heat integrated distillation through use of microchannel technology. Industrial Technologies Program brochure. http://energy.doe.gov. Accessed 4 May 2016

  • Ventola L, Robotti F, Dailameh M, Calignano F, Manfredi D, Chiavazzo E, Asinari P (2014) Rough surfaces with enhanced heat transfer for electronics cooling by direct metal laser sintering. Int J Heat Mass Transf 75:58–74

    Article  Google Scholar 

  • Wang M, Lawal A, Stephenson P, Sidders J, Ramshaw C, Yeung H (2011) Post-combustion CO2 capture with chemical absorption: a state-of-the-art review. Chem Eng Res Des 89(9):1609–1624

    Article  Google Scholar 

  • Werner TM, Schmitt SC, Daymo EA, Wegeng RS (1999) Microchannel gasoline vaporizer unit manufacturing cost study, PNNL-12226. Pacific Northwest National Laboratory, Richland

    Google Scholar 

  • Westphalen D, Roth K, Brodrick J (2006) Heat transfer enhancement. ASHRAE J 48:68–71

    Google Scholar 

  • Wibulswas P (1966). Laminar flow heat transfer in non-circular ducts. Thesis, Department of Mechanical Engineering, University College London

    Google Scholar 

  • Yao Y, Zhang X, Guo Y (2010) Experimental study on enhancement of water-water shell-and-tube heat exchanger assisted by power ultrasonic. In: International refrigeration and air conditioning conference, Purdue, Paper 1110. http://docs.lib.purdue.edu/iracc/1110

  • Yeong KK, Gavriilidis A, Zapf R, Hessel V (2004) Experimental studies of nitrobenzene hydrogenation in a microstructured falling film reactor. Chem Eng Sci 59:3491–3494

    Article  Google Scholar 

  • Yu W, France D, Singh D, Routbort J, Timofeeva E, Smith R (2008) Nanofluids for thermal control. United States Department of Energy. http://www1.eere.energy.gov. Accessed 3 May 2016

  • Zhang H, Chen G, Yue J, Yuan Q (2009) Hydrodynamics and mass transfer of gas-liquid flow in a falling film microreactor. AICHE J 55(5):1110–1120

    Article  Google Scholar 

  • Zheng F, Stenkamp VS, Tegrotenhuis W, Huang X, King D (2006) Microchannel distillation of JP-8 jet fuel for sulfur content reduction. 2006 AIChE annual meeting, San Francisco

    Google Scholar 

  • Zoeller J (2004) Eastman chemical Company’s chemicals from coal program: the first quarter century. Catal Today 140:118–126

    Article  Google Scholar 

  • Zuber L, Sander S (2015) Developing intensified separation processes for the industry. AIChE, spring meeting – reactive and intensified distillation, Austin, Apr 2015

    Google Scholar 

Download references

Acknowledgments

The following are graciously acknowledged for their input for the case studies presented in this chapter:

Louise Gould (Velocys)

Dominque Roberge (Lonza)

Laurent Zuber (Sulzer)

Romain Lemoine (CB&I)

Arvids Judzis, Jr. (CB&I)

Maarten J. Almering (CB&I)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Lee Tonkovich .

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Tonkovich, A.L., Daymo, E. (2018). Process Intensification. In: Handbook of Thermal Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-26695-4_34

Download citation

Publish with us

Policies and ethics