Skip to main content

Heat Transfer in Rotating Flows

  • Reference work entry
  • First Online:
  • 7984 Accesses

Abstract

Convective heat transfer in rotating flows is of great technical and scientific importance. Two kinds of configurations, namely, bodies of revolution spinning in a fluid and rotor-stator disk systems, are considered in this chapter. In many cases, not only centrifugal but also Coriolis force contributions play a significant role, and the boundary layer flow is essentially three dimensional. In this case, the rotating flow and heat transfer cannot be described by a simple change of the reference frame and very complex and unexpected phenomena can be found. A substantial difficulty is given by the fact that the number of input parameters is typically rather large in case of rotating systems subjected to an outer forced flow. Then, not only the rotational Reynolds number and the Prandtl number are important for the resulting heat transfer but also the translational Reynolds number and further input variables like angle of incidence or partial admission factors. In this chapter, experimental, theoretical, and recent numerical methods are reviewed. The following discussion is limited to an incompressible Newtonian fluid. Selected results of current research projects are discussed, too. The phenomena arising from natural convection or heat transfer in a rotating fluid heated from below might be found in Chap. 16, “Natural Convection in Rotating Flows.”

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

a:

Annular domain parameter

a :

Potential flow parameter

a T :

Thermal diffusivity

A ijk :

Tensor (Taylor series for velocity)

B :

Angular velocity ratio

C :

(Correlation) constant

C cr :

Correlation constant (Landau model)

Cf:

Friction coefficient

C M :

Moment coefficient

d :

Diameter

D :

Sphere or nozzle diameter

f :

Function

F:

Self-similar function

g :

Acceleration due to gravity

G :

Dimensionless cavity height

G:

Self-similar function (azimuthal component)

Gr:

Grashof number

h :

Heat transfer coefficient

h:

Cavity height

h m :

Mean heat transfer coefficient

H:

Self-similar function

K :

Heat transfer correlation constant

L :

Characteristic length

m :

Correlation exponent

m cr :

Correlation exponent (Landau model)

n*:

Exponent for temperature distribution function

N :

Velocity ratio (potential flow)

Nu:

Nusselt number

Num:

Mean Nusselt number

p :

Pressure

P:

Self-similar function (pressure)

Pr:

Prandtl number

q i :

Heat flux component in i-direction

\( {\dot{q}}_w \) :

Heat flux

r :

Radial coordinate

R :

Radius

R cr :

Critical ratio between Reynolds numbers (Landau model)

Rm:

Curvature parameter

Re:

Reynolds number

Reh:

Reynolds number based on cavity height h

ReL:

Reynolds number based on length scale L

Reu:

Inflow or translational Reynolds number

Reδ:

Reynolds number based on boundary layer thickness

Reω:

Rotational Reynolds number

Reω,r:

Local rotational Reynolds number

Ro:

Rosby number

Sc:

Schmidt number

Sh:

Sherwood number

t :

Time

T :

Temperature

Ta:

Taylor number

u :

Velocity (component)

u i :

Velocity component in i-direction

U :

Characteristic velocity

x :

Coordinate

x i :

Coordinate in i-direction

y :

Coordinate

z :

Axial coordinate

α :

Angle

β :

Angle of attack, incidence

β T :

Thermal expansion coefficient

δ :

Boundary layer thickness

ε :

Gap width

ζ :

Self-similar variable

ζ:

Normal coordinate

λ :

Thermal conductivity

Ʌ:

Order parameter (Landau model)

μ :

Dynamic viscosity

ν :

Kinematic viscosity

ρ :

Density

φ :

Azimuthal angle

Ψ:

Control parameter (Landau model)

τ :

Shear stress

ω :

Angular velocity (disk)

Ω:

Angular velocity (flow)

cr:

Critical

f :

Film

i :

i-direction (i = 1, 2, 3)

j :

j-direction (j = 1, 2, 3)

lam:

Laminar

m nc :

Mean

nc:

Natural convection

r :

Radial

tur:

Turbulent

tr:

Transition

w :

Wall

z :

Axial

0:

Reference, nominal

∞:

Infinity, ambient, bulk

ΔT:

Temperature difference

Δui:

Laplace operator for velocity component ui

F′:

Derivative of self-similar function F

\( \overline{f} \) :

Normal component of f

References

  • Akselvoll K, Moin P (1996) Large-eddy simulation of turbulent confined coannular jets. J Fluid Mech 315:387–411

    Article  Google Scholar 

  • Andersson HI, Lygren M (2006) LES of open rotor-stator flow. Int J Heat Fluid Flow 27:551–557

    Article  Google Scholar 

  • Andronov AA, Leontovich EA, Gordon II, Maier AG (1973) Qualitative theory of second-order dynamic systems. Wiley, New York

    MATH  Google Scholar 

  • Awad MM (2008) Heat transfer from a rotating disk to fluids for a wide range of Prandtl numbers using the asymptotic model. ASME J Heat Transf 130:14505

    Article  Google Scholar 

  • Barlow JB, Rae WH, Pope A (1999) Low speed wind tunnel testing. Wiley, New York

    Google Scholar 

  • Batchelor GK (1951) Note on a class of solutions of the Navier-Stokes equations representing steady rotationally-symmetric flow. Q J Mech Appl Math 4:29–41

    Article  MathSciNet  Google Scholar 

  • Bödewadt UT (1940) Die Drehströmung über festem Grunde. ZAMM 20:241–253

    Article  Google Scholar 

  • Brady JF, Durlofsky L (1987) On rotating disk flow. J Fluid Mech 175:363–394

    Article  Google Scholar 

  • Cardone G, Astarita T, Carlomagno GM (1997) Heat transfer measurements on a rotating disk. Int J Rotating Mach 3:1–9

    Article  Google Scholar 

  • Cho HH, Rhee DH (2001) Local heat/mass transfer measurements on the effusion plate in impingement/effusion cooling systems. ASME J Turbomach 123:601–608

    Article  Google Scholar 

  • Cho HH, Won CH, Ryu GY, Rhee DH (2002) Local heat transfer characteristics in a single rotating disk and co-rotating disks. Microsyst Technol 9:399–408

    Article  Google Scholar 

  • Cobb EC, Saunders OA (1956) Heat transfer from a rotating disc. Proc Roy Soc A 236:343–351

    Article  Google Scholar 

  • Czarny O, Iacovides H, Launder BE (2002) Precessing vortex structures in turbulent flow within rotor-stator disc cavities. Flow Turbul Combust 69:51–61

    Article  Google Scholar 

  • Daily JW, Nece RE (1960) Chamber dimension effects on induced flow and frictional resistance of enclosed rotating disks. ASME J Basic Eng 82:217–232

    Article  Google Scholar 

  • Dennis RW, Newstead C, Ede AJ (1970) The heat transfer from a rotating disc in an air crossflow. In: Proceedings 4th international heat transfer conference, Paris-Versailles, FC 7.1

    Google Scholar 

  • Dorfman LA (1963) Hydrodynamic resistance and the heat loss of rotating solids. Oliver & Boyd, Edinburgh

    MATH  Google Scholar 

  • Ekman VW (1902) Om Jordrotationens inverkan på vindstrømmar I hafvet. Nytt Mag Nat 40:37–62

    Google Scholar 

  • Elkins CJ (1997) Heat transfer in the rotating disk boundary layer. Dissertation, Stanford University

    Google Scholar 

  • Elkins CJ, Eaton JK (2000) Turbulent heat and momentum transport on a rotating disk. J Fluid Mech 402:225–253

    Article  Google Scholar 

  • Geis T (1956) Ähnliche dreidimensionale Grenzschichten. J Ratl Mech Anal 5:678

    MathSciNet  MATH  Google Scholar 

  • Germano M, Piomelli U, Moin P, Cabot WH (1991) A dynamic subgrid-scale eddy viscosity model. Phys Fluids A 3:1760–1765

    Article  Google Scholar 

  • Gregory N, Stuart JT, Walker WS (1956) On the stability of the three-dimensional boundary layers with application to the flow due to a rotating disk. Phil Trans Roy Soc A 248:155–199

    Article  MathSciNet  Google Scholar 

  • Hannah DM (1947) Forced flow against a rotating disk. Brit ARC Rept Mem No 2772

    Google Scholar 

  • Harmand S, Pelle J, Poncet S, Shevchuk IV (2013) Review of fluid flow and convective heat transfer within rotating disk cavities with impinging jet. Int J Thermal Sci 67:1–30

    Article  Google Scholar 

  • Helcig C, Wiesche, Aus Der S (2016) Effect of Prandtl number on the heat transfer from a laminar rotating disk: an experimental study. In: Proceedings ASME summer heat transfer conference, 1:paper-ID: HT2016–7062,Washington, DC

    Google Scholar 

  • Kakade VU, Lock GD, Wilson M, Owens JM, Mayhew JE (2009) Accurate heat transfer measurements using thermochromic liquid crystals. Part 2: application to a rotating disc. Int J Heat Fluid Flow 30:950–959

    Article  Google Scholar 

  • Kelvin WT (1880) Proc Roy Soc 10:92

    Google Scholar 

  • Khalili A, Adabala RR, Rath HJ (1994) Nonlinear effects on rotating disk flow in a cylindrical casing. Acta Mech 107:1–11

    Article  Google Scholar 

  • Kim J, Moin P, Moser R (1987) Turbulence statistics in fully developed channel flow at low Reynolds number. J Fluid Mech 177:133–166

    Article  Google Scholar 

  • Kreiss HO, Parter SV (1983) On the swirling flow between rotating coaxial disks: existence and uniqueness. Commun Pure Appl Math 36:55–84

    Article  Google Scholar 

  • Kreith F (1968) Convection heat transfer in rotating systems. Adv Heat Tran 5:129–251

    Article  Google Scholar 

  • Lamb H (1916) Hydrodynamics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Latour B, Bouvier P, Harmand S (2011) Convective heat transfer on a rotating disk with transverse air crossflow. ASME J Heat Transf 133:021702. (10 pages)

    Article  Google Scholar 

  • Launder BE, Spalding DB (1972) Mathematical models of turbulence. Academic, London

    MATH  Google Scholar 

  • Launder B, Poncet S, Serre E (2010) Laminar, transitional, and turbulent flows in rotor-stator cavities. Annu Rev Fluid Mech 42:229–248

    Article  Google Scholar 

  • Legendre R (1956) Separation de l’ecoulement laminaire tridimensionnel. Rech Aero 54:3–8

    Google Scholar 

  • Lesieur M, Metais O, Comte P (2005) Large-Eddy simulations of turbulence. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Lighthill MJ (1963) Attachment and separation in three-dimensional flow. In: Rosenhead L (ed) Laminar boundary layers. Oxford University Press, section II 2.6

    Google Scholar 

  • Lilly DK (1992) A proposed modification of the Germano subgrid-scale closure method. Phys Fluids A 4:633–635

    Article  Google Scholar 

  • Lin H-T, Lin L-K (1987) Heat transfer from a rotating cone or disk to fluids of any Prandtl number. Int Com Heat Mass Transf 14:323–332

    Article  Google Scholar 

  • Lingwood RL (1996) An experimental study of absolute instability of the rotating disk boundary layer flow. J Fluid Mech 314:373–405

    Article  Google Scholar 

  • Littell HS, Eaton JK (1994) Turbulence characteristics of the boundary layer on a rotating disk. J Fluid Mech 266:175–207

    Article  Google Scholar 

  • Lygren M, Andersson HI (2004) Large eddy simulations of the turbulent flow between a rotating and a stationary disk. ZAMP 55:268–281

    Article  MathSciNet  Google Scholar 

  • Mabuchi I, Tanaka T, Sakakibara Y (1971) Studies on the convective heat transfer from a rotating disk (5th report, experiment on the laminar heat transfer from a rotating isothermal disk in a uniform forced stream). Bull JSME 14:581–589

    Article  Google Scholar 

  • Mellor GL, Chapple PJ, Stokes VK (1968) On the flow between a rotating and a stationary disk. J Fluid Mech 31:95–112

    Article  Google Scholar 

  • Meneveau C, Lund TS, Cabot WH (1996) A Lagrangian dynamic subgrid-scale model of turbulence. J Fluid Mech 319:353–385

    Article  Google Scholar 

  • Moalem Maron D, Cohen S (1991) Hydrodynamics and heat/mass transfer near rotating surfaces. Adv Heat Tran 21:141–183

    Article  Google Scholar 

  • Moore FK (1958) On the separation of the unsteady laminar boundary layer. In: Görtler H (ed) Grenzschichtforschung. Springer, Berlin, pp 296–311

    Chapter  Google Scholar 

  • Nguyen TD, Harmand S (2013) Heat and mass transfer from a rotating cylinder with a spanwise disk at low-velocity crossflows. In: Proceedings of ASME fluids engineering summer meeting, Incline Village, Nevada, FEDSM2013-16541

    Google Scholar 

  • Owen JM (2000) Flow and heat transfer in rotating disc systems. In: Nagano Y, Hanjalic K, Tsuji T (eds) CHT01 turbulence heat and mass transfer 3. Aichi Shuppan, Tokyo, pp 33–58

    Google Scholar 

  • Owen JM, Rogers RH (1989) Flow and heat transfer in rotating disc systems, vols 1 and 2. Research Studies Press Ltd, Taunton

    Google Scholar 

  • Pelle J, Harmand S (2007) Heat transfer measurements in an opened rotor-stator system air-gap. Exp Thermal Fluid Sci 31:165–180

    Article  Google Scholar 

  • Perry AE, Chong MS (1987) A description of eddying motions and flow patterns using critical-point concepts. Annu Rev Fluid Mech 19:125–155

    Article  Google Scholar 

  • Rott N (1956) Unsteady viscous flow in the vicinity of a stagnation point. Q J Appl Math 13:444–451

    Article  MathSciNet  Google Scholar 

  • Schlichting H (1968) Boundary-layer theory. McGraw-Hill, New York

    MATH  Google Scholar 

  • Schouveiler L, Le Gal P, Chauve MP (2001) Instabilities of the flow between a rotating and a stationary disk. J Fluid Mech 443:329–350

    Article  Google Scholar 

  • Sears WR (1956) Some recent developments in airfoil theory. J Royal Aero Soc 23:490–499

    MathSciNet  MATH  Google Scholar 

  • Severac E, Serre E (2007) A spectral vanishing viscosity for the LES of turbulent flows within rotating cavities. J Comput Phys 226:1234–1255

    Article  MathSciNet  Google Scholar 

  • Shevchuk IV (2008) A new evaluation method for Nusselt numbers in naphthalene sublimation experiments in rotating disk systems. Heat Mass Transf 44:1409–1415

    Article  Google Scholar 

  • Shevchuk IV (2009) Convective heat and mass transfer in rotating disk systems. Springer, Berlin

    Book  Google Scholar 

  • Shevchuk IV, Saniei N, Yan XT (2003) Impingement heat transfer over a rotating disk: integral method. AIAA J Thermophys Heat Transf 17:291–293

    Article  Google Scholar 

  • Shimada R, Naito S, Kumagai S, Takeyama T (1987) Enhancement of heat transfer from a rotating disk using turbulence promoter. JSME Int J Ser B 30:1423–1429

    Article  Google Scholar 

  • Smagorinsky J (1963) General circulation experiments with the primitive equations. Mon Weather Rev 91:99–164

    Article  Google Scholar 

  • Soo SL (1958) Laminar flow over an enclosed rotating disk. Trans ASME 80:287–296

    Google Scholar 

  • Spalart PR (1988) Direct simulation of a turbulent boundary layer up to Reθ = 1410. J Fluid Mech 187:61–98

    Article  Google Scholar 

  • Sparrow EM, Gregg JL (1959) Heat transfer from a rotating disk to fluids of any Prandtl number. ASME J Heat Trans 81:249–251

    Google Scholar 

  • Stewartson K (1953) On the flow between two rotating coaxial disks. Proc Camb Philos Soc 49:333–341

    Article  MathSciNet  Google Scholar 

  • Stokes GG (1845) On the Theories of the Internal Friction of Fluids in Motion, and of the Equilibrium and Motion of Elastic Solids. Cambridge Trans 8:287

    Google Scholar 

  • Taylor GI (1923) Stability of a viscous liquid contained between two rotating cylinders. Phil Trans Roy Soc Lond A 223:239–343

    Article  Google Scholar 

  • Taylor ES (1974) Dimensional analysis for engineers. Clarendon, Oxford

    Google Scholar 

  • Tennekes H, Lumley JL (1972) A first course in turbulence. MIT Press, Cambridge, MA

    MATH  Google Scholar 

  • Tobak M, Peake DJ (1982) Topology of three-dimensional separated flows. Annu Rev Fluid Mech 14:61–85

    Article  MathSciNet  Google Scholar 

  • Tuliszka-Sznitko E, Majchrowski W (2010) LES and DNS of the flow with heat transfer in rotating cavity. Comp Meth Sci Tech 16:105–114

    Article  Google Scholar 

  • Tuliszka-Sznitko E, Zielinski A, Majchrowski W (2009) LES of the transitional flow in rotor/stator cavity. Arch Mech 61:93–118

    MATH  Google Scholar 

  • Veronis G (1970) The analogy between rotating and stratified fluids. Annu Rev Fluid Mech 2:37–66

    Article  Google Scholar 

  • Viskanta R (1993) Heat transfer to impinging isothermal gas and flame jets. Exp Thermal Fluid Sci 6:111–134

    Article  Google Scholar 

  • von Karman T (1921) Über laminare und turbulente Reibung. ZAMM 1:233–252

    Article  Google Scholar 

  • Vreman B, Geurts B, Kuerten H (1994) On the formulation of the dynamic mixed subgrid-scale model. Phys Fluids 6:4057–4059

    Article  Google Scholar 

  • Wiesche SAD (2004) LES study of heat transfer augmentation and wake instabilities of a rotating disk in a planar stream of air. Heat Mass Transf 40:271–284

    Article  Google Scholar 

  • Wiesche SAD (2007) Heat transfer from a rotating disk in a parallel air crossflow. Int J Thermal Sci 46:745–754

    Article  Google Scholar 

  • Wiesche ADS, Helcig C (2016) Convective heat transfer from rotating disks subjected to streams of air. Springer, New York

    Book  Google Scholar 

  • Wu X, Squires KD (2000) Prediction and investigation of the turbulent flow over a rotating disk. J Fluid Mech 418:231–264

    Article  Google Scholar 

  • Zandbergen PJ, Dijkstra D (1987) Von Karman swirling flows. Annu Rev Fluid Mech 19:465–491

    Article  Google Scholar 

  • Zang Y, Street R, Koseff JR (1993) A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows. Phys Fluids 5:3186–3196

    Article  Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges the Deutsche Forschungsgemeinschaft DFG for its strong financial support of his research projects devoted to heat transfer in rotating disk systems.

The efforts and contributions of the many students involved in the author’s research projects are appreciated. In particular, the work of Christian Helcig is acknowledged.

Among the many scientists and workers on the field, the author would like to deeply acknowledge the fruitful discussions with Igor V. Shevchuk.

The editorial assistance of the staff at Springer and the interests of the editor of the book, Professor Kulacki, are also gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan aus der Wiesche .

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

aus der Wiesche, S. (2018). Heat Transfer in Rotating Flows. In: Handbook of Thermal Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-26695-4_12

Download citation

Publish with us

Policies and ethics