Skip to main content

Natural Convection in Rotating Flows

  • Reference work entry
  • First Online:
  • 7646 Accesses

Abstract

The effect of rotation is shown to have a significant impact on the natural convection in pure fluids as well as in porous media. In isothermal systems, this effect is limited to the effect of the Coriolis acceleration on the flow. It is shown that Taylor–Proudman columns and geostrophic flows exist in both pure fluids as well as porous media subject to rotation. Results of linear stability analysis for natural convection in a rotating fluid layer heated from below are presented, identifying the unique features corresponding to this problem as compared to the same problem without rotation. In nonisothermal porous systems, the effect of rotation is expected in natural convection. Then the rotation may affect the flow through two distinct mechanisms, namely thermal buoyancy caused by centrifugal forces and the Coriolis force (or a combination of both). Since natural convection may be driven also by the gravity force, and the orientation of the buoyancy force with respect to the imposed thermal gradient has a distinctive impact on the resulting convection, a significant number of combinations of different cases arise in the investigation of the rotation effects in nonisothermal porous systems. Results pertaining to some of these cases are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

X :

Position vector from the origin located on the axis of rotation to any point in the flow domain in Cartesian coordinates, equals \( {x}_{\ast }{\widehat{\boldsymbol{e}}}_x+{y}_{\ast }{\widehat{\boldsymbol{e}}}_y+{z}_{\ast }{\widehat{\boldsymbol{e}}}_z \)

t :

Time

V :

Velocity vector, equals \( {u}_{\ast }{\widehat{\boldsymbol{e}}}_x+{v}_{\ast }{\widehat{\boldsymbol{e}}}_y+{w}_{\ast }{\widehat{\boldsymbol{e}}}_z \)

ω :

Angular velocity of rotation

T :

Temperature

p :

Pressure

ρ :

Fluid density

ρ o :

A constant reference value of the density

μ o :

Dynamic viscosity (assumed constant)

α o :

Thermal diffusivity, equals ko/ρocp

β T :

Thermal expansion coefficient assumed constant, equals −1/ρo(∂ρ/∂T)

\( {\widehat{\boldsymbol{e}}}_x \),\( {\widehat{\boldsymbol{e}}}_y \),\( {\widehat{\boldsymbol{e}}}_z \):

Unit vectors in the x , y, and z directions, respectively

References

  • Acharya S (2017) Single-phase convective heat transfer: fundamental equations and foundational assumptions. In: Kulacki FA (ed) Handbook of thermal science and engineering. Springer

    Google Scholar 

  • Agarwal S, Bhadauria BS, Siddheshwar PG (2011) Thermal instability of a nanofluid saturating a rotating anisotropic porous medium. Spec Top Rev Porous Media Int J 2(1):53–64

    Article  Google Scholar 

  • Auriault JL, Geindreau C, Royer P (2000) Filtration law in rotating porous media. CR Acad Sci Paris 328(Serie II b):779–784

    MATH  Google Scholar 

  • Auriault JL, Geindreau C, Royer P (2002) Coriolis effects on filtration law in rotating porous media. Transp Porous Media 48:315–330

    Article  MathSciNet  Google Scholar 

  • Bear J (1991) Dynamics of fluids in porous media. Elsevier, New York, pp 131–132. (1972), reprint by Dover, New York

    Google Scholar 

  • Bejan A (2013) Convection heat transfer, 4th edn. Wiley, Hoboken

    Book  Google Scholar 

  • Bhadauria BS (2008) Effect of temperature modulation on the onset of Darcy convection in a rotating porous medium. J Porous Media 11(4):361–375

    Article  Google Scholar 

  • Boussinesq J (1903) Theorie Analitique de la Chaleur, vol 2. Gautheir-Villars, Paris, p 172

    Google Scholar 

  • Chakrabarti A, Gupta AS (1981) Nonlinear thermohaline convection in a rotating porous medium. Mech Res Commun 8(1):9–22

    Article  MathSciNet  Google Scholar 

  • Chandrasekhar S (1953) The instability of a layer of fluid heated from below and subject to Coriolis forces. Proc R Soc Lond A 217:306

    Article  Google Scholar 

  • Chandrasekhar S (1981) Hydrodynamic and hydromagnetic stability. Oxford University Press, Oxford. (1961), reprint by Dover, New York

    MATH  Google Scholar 

  • Christensen UR (2002) Zonal flow driven by strongly supercritical convection in rotating spherical shells. J Fluid Mech 470:115–133

    Article  MathSciNet  Google Scholar 

  • Davidson JF, Harrison D (1963) Fluidised particles. Cambridge University Press, New York, p 7

    Google Scholar 

  • Fowler AC (1990) A compaction model for melt transport in the earth asthenosphere. Part I: the base model. In: Raya MP (ed) Magma transport and storage. Wiley, Chichester, pp 3–14

    Google Scholar 

  • Friedrich R (1983) The effect of Prandtl number on the cellular convection in a rotating fluid saturated porous medium. ZAMM 63:246–249. (in German)

    Google Scholar 

  • Fultz D, Nakagawa Y (1955) Experiments on over-stable thermal convection in mercury. Proc R Soc Lond A 231(1185):211–225

    Article  Google Scholar 

  • Glatzmaier GA, Coe RS, Hongre L, Roberts PH (1994) Convection driven zonal flows and vortices in the major planets. Chaos 4:123–134

    Article  Google Scholar 

  • Glatzmaier GA, Coe RS, Hongre L, Roberts PH (1999) The role of the Earth’s mantle in controlling the frequency of geomagnetic reversals. Nature 401:885–890

    Article  Google Scholar 

  • Govender S (2006) On the effect of anisotropy on the stability of convection in rotating porous media. Transp Porous Media 64(4):413–422

    Article  MathSciNet  Google Scholar 

  • Govender S (2010) Vadasz number influence on vibration in a rotating porous layer placed far away from the axis of rotation. J Heat Transf 132:112601/1–112601/4

    Article  Google Scholar 

  • Govender S, Vadasz P (1995) Centrifugal and gravity driven convection in rotating porous media – an analogy with the inclined porous layer. ASME-HTD 309:93–98

    Google Scholar 

  • Govender S, Vadasz P (2002a) Weak non-linear analysis of moderate Stefan number oscillatory convection in rotating mushy layers. Transp Porous Media 48(3):353–372

    Article  Google Scholar 

  • Govender S, Vadasz P (2002b) Weak non-linear analysis of moderate Stefan number stationary convection in rotating mushy layers. Transp Porous Media 49(3):247–263

    Article  MathSciNet  Google Scholar 

  • Govender S, Vadasz P (2007) The effect of mechanical and thermal anisotropy on the stability of gravity driven convection in rotating porous media in the presence of thermal non-equilibrium. Transp Porous Media 69(1):55–66

    Article  Google Scholar 

  • Greenspan HP (1980) The theory of rotating fluids. Cambridge University Press, Cambridge, pp 5–18

    MATH  Google Scholar 

  • Güçeri SI (1994) Fluid flow problems in processing composites materials. In: Proceedings of the 10th international heat transfer conference, vol 1, Brighton, pp 419–432

    Google Scholar 

  • Hart JE (1971) Instability and secondary motion in a rotating channel flow. J Fluid Mech 45:341–351

    Article  Google Scholar 

  • Howey DA, Childs PRN, Holmes S (2012) Air-gap convection in rotating electrical machines. IEEE Trans Ind Electron 59(3):1367–1375

    Article  Google Scholar 

  • Johnston JP, Haleen RM, Lezius DK (1972) Effects of spanwise rotation on the structure of two-dimensional fully developed turbulent channel flow. J Fluid Mech 56:533–557

    Article  Google Scholar 

  • Jou JJ, Liaw JS (1987a) Transient thermal convection in a rotating porous medium confined between two rigid boundaries. Int Commun Heat Mass Transf 14:147–153

    Article  Google Scholar 

  • Jou JJ, Liaw JS (1987b) Thermal convection in a porous medium subject to transient heating and rotation. Int J Heat Mass Transf 30:208–211

    Article  Google Scholar 

  • Julien K, Legg S, McWilliams J, Werne J (1996) Rapidly rotating turbulent Rayleigh-Benard convection. J Fluid Mech 322:243–273

    Article  Google Scholar 

  • Katgerman L (1994) Heat transfer phenomena during continuous casting of aluminum alloys. In: Proceedings of the 10th international heat transfer conference, SK-12, Brighton, pp 179–187

    Google Scholar 

  • King EM, Stellmach S, Buffett B (2013) Scaling behaviour in Rayleigh-Benard convection with and without rotation. J Fluid Mech 717:449–471

    Article  MathSciNet  Google Scholar 

  • Kvasha VB (1985) Multiple-spouted gas-fluidized beds and cyclic fluidization: operation and stability. In: Davidson JF, Clift R, Harrison D (eds) Fluidization, 2nd edn. Academic, London, pp 675–701

    Google Scholar 

  • Lezius DK, Johnston JP (1976) Roll-cell instabilities in a rotating laminar and turbulent channel flow. J Fluid Mech 77:153–175

    Article  Google Scholar 

  • Lima FHB, Ticianelli EA (2004) Oxygen electrocatalysis on ultra-thin porous coating rotating ring/disk platinum and platinum–cobalt electrodes in alkaline media. Electrochim Acta 49:4091–4099

    Article  Google Scholar 

  • Malashetty MS, Swamy M (2007) The effect of rotation on the onset of convection in a horizontal anisotropic porous layer. Int J Therm Sci 46(10):1023–1032

    Article  Google Scholar 

  • Malashetty MS, Swamy M, Kulkarni S (2007) Thermal convection in a rotating porous layer using a thermal nonequilibrium model. Phys Fluids 19:1–16. Art. 054102

    Article  Google Scholar 

  • Malkus WVR, Veronis G (1958) Finite amplitude cellular convection. J Fluid Mech 4(3):225–260

    Article  MathSciNet  Google Scholar 

  • Marshall J, Schott F (1999) Open-ocean convection: observations, theory, and models. Rev Geophys 691:1–64

    Article  Google Scholar 

  • Miesch MS (2000) The coupling of solar convection and rotation. Sol Phys 192:59–89

    Article  Google Scholar 

  • Mohanty AK (1994) Natural and mixed convection in rod arrays. In: Proceedings of the 10th international heat transfer conference GK-7, vol 1, Brighton, pp 269–280

    Google Scholar 

  • Nakagawa Y, Frenzen P (1955) A theoretical and experimental study of cellular convection in rotating fluids. Tellus 7(1):1–21

    Article  Google Scholar 

  • Nield DA (1983) The boundary correction for the Rayleigh-Darcy problem: limitations of the Brinkman equation. J Fluid Mech 128:37–46

    Article  MathSciNet  Google Scholar 

  • Nield DA (1991a) The stability of convective flows in porous media. In: Kakaç S, Kilkis B, Kulacki FA, Arniç F (eds) Convective heat and mass transfer in porous media. Kluwer, Dordrecht, pp 79–122

    Chapter  Google Scholar 

  • Nield DA (1991b) The limitations of the Brinkman-Forchheimer equation in modeling flow in a saturated porous medium and at an interface. Int J Heat Fluid Flow 12(3):269–272

    Article  Google Scholar 

  • Nield DA (1995) Discussion on “Analysis of heat transfer regulation and modification employing intermittently emplaced porous cavities”. J Heat Transf 117:554–555

    Article  Google Scholar 

  • Nield DA (1999) Modeling the effect of a magnetic field or rotation on flow in a porous medium: momentum equation and anisotropic permeability analogy. Int J Heat Mass Transf 42:3715–3718

    Article  Google Scholar 

  • Nield DA, Bejan A (2013) Convection in porous media, 4th edn. Springer, New York/Heidelberg/Dordrecht/London

    Book  Google Scholar 

  • Palm E, Tyvand A (1984) Thermal convection in a rotating porous layer. J Appl Math Phys (ZAMP) 35:122–123

    Article  Google Scholar 

  • Patil PR, Vaidyanathan G (1983) On setting up of convection currents in a rotating porous medium under the influence of variable viscosity. Int J Eng Sci 21:123–130

    Article  Google Scholar 

  • Plumb OA (1991) Heat transfer during unsaturated flow in porous media. In: Kakaç S, Kilkis B, Kulacki FA, Arniç F (eds) Convective heat and mass transfer in porous media. Kluwer, Dordrecht, pp 435–464

    Chapter  Google Scholar 

  • Rana P, Agarwal S (2015) Convection in a binary nanofluid saturated rotating porous layer. J Nanofluids 4:1–7

    Article  Google Scholar 

  • Robertson ME, Jacobs HR (1994) An experimental study of mass transfer in packed beds as an analogy to convective heat transfer. In: Proceedings of the 9th international heat transfer conference, vol 1, Brighton, pp 419–432

    Google Scholar 

  • Rossby HT (1969) A study of Benard convection with and without rotation. J Fluid Mech 36(2):309–335

    Article  Google Scholar 

  • Rudraiah N, Shivakumara IS, Friedrich R (1986) The effect of rotation on linear and non-linear double-diffusive convection in a sparsely packed porous medium. Int J Heat Mass Transf 29:1301–1317

    Article  Google Scholar 

  • Sheu L-J (2006) An autonomous system for chaotic convection in a porous medium using a thermal non-equilibrium model. Chaos, Solitons Fractals 30:672–689

    Article  Google Scholar 

  • Stevens RJAM, Clercx HJH, Lohse D (2013) Heat transport and flow structure in rotating Rayleigh–Bénard convection. Eur J Mech B Fluids 40:41–49

    Article  MathSciNet  Google Scholar 

  • Straughan B (2001) A sharp nonlinear stability threshold in rotating porous convection. Proc R Soc Lond A 457:87–93

    Article  MathSciNet  Google Scholar 

  • Straughan B (2008) Stability and wave motion in porous media. Applied mathematical sciences series, vol 165. Springer, New York

    MATH  Google Scholar 

  • Vadasz P (1991) On the evaluation of heat transfer and fluid flow by using the porous media approach with application to cooling of electronic equipment. In: Proceedings of the 5th Israeli conference on packaging of electronic equipment, Herzlia, pp D.4.1–D.4.6

    Google Scholar 

  • Vadasz P (1992) Natural convection in rotating porous media induced by the centrifugal body force: the solution for small aspect ratio. ASME J Energy Resour Technol 114:250–254

    Article  Google Scholar 

  • Vadasz P (1993) Three-dimensional free convection in a long rotating porous box. J Heat Transf 115:639–644

    Article  Google Scholar 

  • Vadasz P (1994a) Fundamentals of flow and heat transfer in rotating porous media. In: Heat transfer, vol 5. Taylor and Francis, Bristol, pp 405–410

    Google Scholar 

  • Vadasz P (1994b) On Taylor-Proudman columns and geostrophic flow in rotating porous media. SAIMechE R&D J 10(3):53–57

    Google Scholar 

  • Vadasz P (1994c) Centrifugally generated free convection in a rotating porous box. Int J Heat Mass Transf 37(16):2399–2404

    Article  Google Scholar 

  • Vadasz P (1994d) Stability of free convection in a narrow porous layer subject to rotation. Int Commun Heat Mass Transf 21(6):881–890

    Article  Google Scholar 

  • Vadasz P (1995) Coriolis effect on free convection in a rotating porous box subject to uniform heat generation. Int J Heat Mass Transf 38(11):2011–2018

    Article  Google Scholar 

  • Vadasz P (1996a) Stability of free convection in a rotating porous layer distant from the axis of rotation. Transp Porous Media 23:153–173

    Article  Google Scholar 

  • Vadasz P (1996b) Convection and stability in a rotating porous layer with alternating direction of the centrifugal body force. Int J Heat Mass Transf 39(8):1639–1647

    Article  Google Scholar 

  • Vadasz P (1997) Flow in rotating porous media. In: du Plessis P (ed), Rahman M (series ed) Fluid transport in porous media. Advances in fluid mechanics, vol 13. Computational Mechanics Publications, Southampton, pp 161–214

    Google Scholar 

  • Vadasz P (1998a) Free convection in rotating porous media. In: Ingham DB, Pop I (eds) Transport phenomena in porous media. Elsevier, Oxford, pp 285–312

    Chapter  Google Scholar 

  • Vadasz P (1998b) Coriolis effect on gravity-driven convection in a rotating porous layer heated from below. J Fluid Mech 376:351–375

    Article  MathSciNet  Google Scholar 

  • Vadasz P (2000) Fluid flow and thermal convection in rotating porous media. In: Vadfai K (ed) Handbook of porous media. Marcel Dekker, New York/Basel, pp 395–439

    MATH  Google Scholar 

  • Vadasz P (2002a) Heat transfer and fluid flow in rotating porous media. In: Hassanizadeh SM, Schotting RJ, Gray WG, Pinder GF (eds) Computational methods in water resources, vol 1. Development in water science, vol 47. Elsevier, Amsterdam, pp 469–476

    Chapter  Google Scholar 

  • Vadasz P (2002b) Thermal convection in rotating porous media. In: Trends in heat, mass & momentum transfer, vol 8. Research Trends, Trivandrum, pp 25–58

    Google Scholar 

  • Vadasz P (2016) Fluid flow and heat transfer in rotating porous media. Springer briefs in applied science and engineering, Kulacki FA (series ed). Springer, Cham/Heidelberg/New York/Dordrecht/London

    Google Scholar 

  • Vadasz P, Govender S (1998) Two-dimensional convection induced by gravity and centrifugal forces in a rotating porous layer far away from the axis of rotation. Int J Rotating Mach 4(2):73–90

    Article  Google Scholar 

  • Vadasz P, Govender S (2001) Stability and stationary convection induced by gravity and centrifugal forces in a rotating porous layer distant from the axis of rotation. Int J Eng Sci 39(6):715–732

    Article  Google Scholar 

  • Vadasz P, Heerah A (1998) Experimental confirmation and analytical results of centrifugally-driven free convection in rotating porous media. J Porous Media 1(3):261–272

    Google Scholar 

  • Vadasz P, Olek S (1998) Transitions and chaos for free convection in a rotating porous layer. Int J Heat Mass Transf 41(11):1417–1435

    Article  Google Scholar 

  • Vafai K, Kim SJ (1990) Analysis of surface enhancement by a porous substrate. J Heat Transf 112:700–706

    Article  Google Scholar 

  • Veronis G (1959) Cellular convection with finite amplitude in a rotating fluid. J Fluid Mech 5(3):401–4735

    Article  MathSciNet  Google Scholar 

  • Veronis G (1966) Motions at subcritical values of the Rayleigh number in a rotating fluid. J Fluid Mech 24(3):545–554

    Article  MathSciNet  Google Scholar 

  • Whitehead AB (1985) Distributor characteristics and bed properties. In: Davidson JF, Clift R, Harrison D (eds) Fluidization, 2nd edn. Academic, London, pp 173–199

    Google Scholar 

  • Wiesche S (2017) Heat transfer in rotating flows. In: Kulacki FA (ed) Handbook of thermal science and engineering. Springer

    Google Scholar 

  • Zhong F, Ecke RE, Steinberg V (1993) Rotating Rayleigh-Benard convection: asymmetric modes and vortex states. J Fluid Mech 249:135–159

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Vadasz .

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Vadasz, P. (2018). Natural Convection in Rotating Flows. In: Handbook of Thermal Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-26695-4_11

Download citation

Publish with us

Policies and ethics