Skip to main content

Interferometric Methods in NDE

  • Reference work entry
  • First Online:

Abstract

Optical interferometry offers unlimited research and testing possibilities for scientific and technological endeavors. Unprecedented progress in optoelectronics (new light sources and detectors), fiber optics, modern mechanical, and electronic hardware components as well as in computer engineering and informatics aids continuous development of automated, compact, full-field, non-contact, high-speed, and high-accuracy measurement systems. This chapter presents the theoretical description of basic two-beam interference configurations, the fundamentals of decoding the information on the object or phenomenon under test from a fringe pattern (AFPA – automated fringe pattern analysis), and illustrative examples of applications of interferometry in NDE. They include vibration testing of silicon microelements and high-accuracy in-plane displacement measurements for the analyses in experimental mechanics and material engineering.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   759.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bernini MB, Federico A, Kaufmann GH (2008) Noise reduction in digital speckle pattern interferometry using bidimensional empirical mode decomposition. Appl Opt 47(14):2592–2598

    Article  Google Scholar 

  • Bernini MB, Federico A, Kaufmann GH (2009) Normalization of fringe patterns using the bidimensional empirical mode decomposition and the Hilbert transform. Appl Opt 48(36):6862–6869

    Article  Google Scholar 

  • Bhuiyan SMA, Adhami RR, Khan JF (2008) Fast and adaptive bidimensional empirical mode decomposition using order-statistics filter based envelope estimation. EURASIP J Adv Signal Process 2008(164):725356

    Google Scholar 

  • Bhuiyan SMA, Attoh-Okine NO, Barner KE, Ayenu-Prah AY, Adhami RR (2009) Bidimensional empirical mode decomposition using various interpolation techniques. Adv Adapt Data Anal 01(02):309–338

    Article  MathSciNet  Google Scholar 

  • Bosseboeuf A, Petitgrand S (2003) Application of microscopic interferometry techniques in the MEMS field. Proc SPIE 5145:1–16

    Article  Google Scholar 

  • Bruning JH, Herriott DR, Gallagher JE, Rosenfeld DP, White AD, Brangaccio DJ (1974) Digital wavefront measuring interferometer for testing optical surfaces and lenses. Appl Opt 13:2693–2703

    Article  Google Scholar 

  • Cloud G (ed) (1995) Optical methods of engineering analysis. Cambridge University Press, Cambridge

    Google Scholar 

  • Creath K, Schmit J (1996) N-point spatial phase-measurement techniques for non-destructive testing. Opt Lasers Eng 24(5–6):365–379

    Article  Google Scholar 

  • Cywińska M, Trusiak M, Mico V, Patorski K (2018) Single-frame fringe pattern analysis using modified variational image decomposition aided by the Hilbert transform for fast full-field quantitative phase imaging. In: Proceedings of SPIE 10677, Unconventional Optical Imaging, 106772B

    Google Scholar 

  • Czarnek R (1991) Three-mirror, four-beam moiré interferometer and its capabilities. Opt Lasers Eng 13(2):93–101

    Article  Google Scholar 

  • Durelli AJ, Parks VJ (eds) (1970) Moiré Analysis of Strain. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Felsberg M, Sommer G (2001) The monogenic signal. IEEE Trans Signal Process 12(49):3136–3144

    Article  MathSciNet  Google Scholar 

  • Gdeisat MA, Burton DR, Lalor MJ (2006) Spatial carrier fringe pattern demodulation by use of a two-dimensional continuous wavelet transform. Appl Opt 45(34):8722–8732

    Article  Google Scholar 

  • Ghiglia DC, Pritt MD (eds) (1998) Two-dimensional phase unwrapping: theory, algorithms, and software. Wiley, New York

    MATH  Google Scholar 

  • Gorthi SS, Rastogi P (2010) Fringe projection techniques: whither we are? Opt Lasers Eng 48(2):133–140

    Article  Google Scholar 

  • Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen NC, Tung CC, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for non-linear and non-stationary time series analysis. Proc R Soc Lond A454(1971):903–995

    Article  Google Scholar 

  • Kai L, Kemao Q (2013) Improved generalized regularized phase tracker for demodulation of a single fringe pattern. Opt Express 21(20):24385–24397

    Article  Google Scholar 

  • Kemao Q (2004) Windowed Fourier transform for fringe pattern analysis. Appl Opt 43(13):2695–2702

    Article  Google Scholar 

  • Larkin KG, Bone DJ, Oldfield MA (2001) Natural demodulation of two-dimensional fringe patterns. I. General background of the spiral phase quadrature transform. J Opt Soc Am 18(8):1862–1870

    Article  Google Scholar 

  • Legarda-Sáenz R, Osten W, Jüptner W (2002) Improvement of the regularized phase tracking technique for the processing of nonnormalized fringe patterns. Appl Opt 41(26):5519–5526

    Article  Google Scholar 

  • Ma J, Wang Z, Pan T (2014) Two-dimensional continuous wavelet transform algorithm for phase extraction of two-step arbitrarily phase-shifted interferograms. Opt Lasers Eng 55:205–211

    Article  Google Scholar 

  • Malacara D (ed) (2007) Optical shop testing. Wiley, New York

    Google Scholar 

  • Malacara D, Servin M, Malacara Z (eds) (1998) Interferogram analysis for optical testing. Marcel Dekker, New York

    Google Scholar 

  • Martinez-Carranza J, Falaggis K, Kozacki T (2017) Fast and accurate phase-unwrapping algorithm based on the transport of intensity equation. Appl Opt 56(25):7079–7088

    Article  Google Scholar 

  • Millerd JE, Brock NJ, Hayes JB, North-Morris MB, Novak M, Wyant JC (2004) Pixelated phase-mask dynamic interferometer. In: Proceedings of SPIE 5531, Interferometry XII: techniques and analysis

    Google Scholar 

  • Nunes JC, Bouaoune Y, Delechelle E, Niang O, Bunel Ph (2003) Image analysis by bidimensional empirical mode decomposition. Image Vis Comput 21(12):1019–1026

    Article  Google Scholar 

  • Patorski K, Kujawinska M (eds) (1993) Handbook of the moirè fringe technique. Elsevier, Amsterdam

    Google Scholar 

  • Patorski K, Trusiak M (2013) Highly contrasted Bessel fringe minima visualization for time-averaged vibration profilometry using Hilbert transform two-frame processing. Opt Express 21(14):16863–16881

    Article  Google Scholar 

  • Patorski K, Styk A, Sienicki Z (2004) Time-average interference microscopy for vibration testing of silicon microelements. Proc SPIE 6158:615806-1

    Google Scholar 

  • Patorski K, Pokorski K, Trusiak M (2011) Fourier domain interpretation of real and pseudo-moiré phenomena. Opt Express 19(27):26065–26078

    Article  Google Scholar 

  • Patorski K, Trusiak M, Tkaczyk T (2014) Optically-sectioned two-shot structured illumination microscopy with Hilbert-Huang processing. Opt Express 22(8):9517–9527. Virtual J Biomed Opt 9(6)

    Article  Google Scholar 

  • Petitgrand S, Yahiaoui R, Bosseboeuf A, Danaie K (2001) Quantitative time-averaged microscopic interferometry for micromechanical device vibration mode characterization. Proc SPIE 4400:51–60

    Article  Google Scholar 

  • Picazo-Bueno JÁ, Trusiak M, García J, Patorski K, Micó V (2018) Hilbert–Huang single-shot spatially multiplexed interferometric microscopy. Opt Lett 43(5):1007–1010

    Article  Google Scholar 

  • Pokorski K, Patorski K (2012) Separation of complex fringe patterns using two-dimensional continuous wavelet transform. Appl Opt 51(35):8433–8439

    Article  Google Scholar 

  • Pokorski K, Patorski K (2013) Processing and phase analysis of fringe patterns with contrast reversals. Opt Express 21(19):22596–22609

    Article  Google Scholar 

  • Post D, Han B, Ifju PG (eds) (1994) High sensitivity moiré: experimental analysis for mechanics and materials science and technology. Springer, New York

    Google Scholar 

  • Pryputniewicz RJ (1994) A hybrid approach to deformation analysis. Proc SPIE 2342:282–296

    Article  Google Scholar 

  • Pryputniewicz RJ, Stetson KA (1989) Measurement of vibration patterns using electro-optical holography. Proc SPIE 1162:456–467

    Article  Google Scholar 

  • Robinson D, Reid G (eds) (1993) Interferogram analysis: digital fringe pattern measurement. Institute of Physics, Bristol

    Google Scholar 

  • Saide D, Trusiak M, Patorski K (2017) Evaluation of adaptively enhanced two-shot fringe pattern phase and amplitude demodulation methods. Appl Opt 56(19):5489–5500

    Article  Google Scholar 

  • Salbut L, Patorski K, Jozwik M, Kacperski J, Gorecki C, Jacobelli A, Dean T (2003) Active micro-elements testing by interferometry using time-average and quasi-stroboscopic techniques. Proc SPIE 5145:23–32

    Article  Google Scholar 

  • Schmidt J, Patorski K, Creath K (1997) Simultaneous registration of in- and out-of-plane displacements in modified grating interferometry. Opt Eng 36(8):2240–2248

    Article  Google Scholar 

  • Schwider J (1990) Advanced evaluation techniques in interferometry. In: Wolf E (ed) Progress in optics, vol 28. Elsevier, Burlington, pp 271–359

    Google Scholar 

  • Servin M, Marroquin JL, Cuevas FJ (1997) Demodulation of a single interferogram by use of a two-dimensional regularized phase-tracking technique. Appl Opt 36(19):4540–4548

    Article  Google Scholar 

  • Servin M, Marroquin JL, Cuevas FJ (2001) Fringe-follower regularized phase tracker for demodulation of closed-fringe interferograms. J Opt Soc Am A 18(3):689–695

    Article  Google Scholar 

  • Servin M, Quiroga JA, Padilla M (eds) (2014) Fringe pattern analysis for optical metrology: theory, algorithms, and applications. Wiley, New York

    Google Scholar 

  • Stetson KA (1984) Holographic vibration analysis. In: Erf RE (ed) Holographic nondestructive testing. Academic, New York, pp 182–220

    Google Scholar 

  • Takeda M, Ina H, Kobayashi S (1982) Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. J Opt Soc Am 72(1):156–160

    Article  Google Scholar 

  • Theocaris PS (1969) Moire fringes in strain analysis. Pergamon, Oxford

    Chapter  Google Scholar 

  • Trusiak M, Patorski K (2015) Two-shot fringe pattern phase-amplitude demodulation using Gram-Schmidt orthonormalization with Hilbert-Huang pre-filtering. Opt Express 23(4):4672–4690

    Article  Google Scholar 

  • Trusiak M, Patorski K, Wielgus M (2012) Adaptive enhancement of optical fringe patterns by selective reconstruction using FABEMD algorithm and Hilbert spiral transform. Opt Express 20(21):23463–23479

    Article  Google Scholar 

  • Trusiak M, Patorski K, Pokorski K (2013) Hilbert-Huang processing for single-exposure two-dimensional grating interferometry. Opt Express 21(23):28359–28379

    Article  Google Scholar 

  • Trusiak M, Wielgus M, Patorski K (2014) Advanced processing of optical fringe patterns by automated selective reconstruction and enhanced fast empirical mode decomposition. Opt Lasers Eng 52(1):230–240

    Article  Google Scholar 

  • Trusiak M, Mico V, Garcia J, Patorski K (2016a) Quantitative phase imaging by single-shot Hilbert–Huang phase microscopy. Opt Lett 41(18):4344–4347

    Article  Google Scholar 

  • Trusiak M, Służewski L, Patorski K (2016b) Single shot fringe pattern phase demodulation using Hilbert-Huang transform aided by the principal component analysis. Opt Express 24(4):4221–4238

    Article  Google Scholar 

  • Trusiak M, Styk A, Patorski K (2018) Hilbert–Huang transform based advanced Bessel fringe generation and demodulation for full-field vibration studies of specular reflection micro-objects. Opt Lasers Eng 110:100–112

    Article  Google Scholar 

  • Vargas J, Quiroga JA, Sorzano COS, Estrada JC, Carazo JM (2012) Two-step demodulation based on the Gram–Schmidt orthonormalization method. Opt Lett 37(3):443–445

    Article  Google Scholar 

  • Walker CA (1994) A historical review of moiré interferometry. Exp Mech 34(2):281–299

    Article  MathSciNet  Google Scholar 

  • Wang Z, Han B (2004) Advanced iterative algorithm for phase extraction of randomly phase-shifted interferograms. Opt Lett 29(14):1671–1673

    Article  Google Scholar 

  • Wang Z, Ma H (2006) Advanced continuous wavelet transform algorithm for digital interferogram analysis and processing. Opt Eng 45(4):045601

    Article  Google Scholar 

  • Wielgus M, Patorski K (2011) Evaluation of amplitude encoded fringe patterns using the bidimensional empirical mode decomposition and the 2D Hilbert transform generalizations. Appl Opt 50(28):5513–5523

    Article  Google Scholar 

  • Wielgus M, Patorski K, Etchepareborda P, Federico A (2014) Continuous phase estimation from noisy fringe patterns based on the implicit smoothing splines. Opt Express 22:10775–10791

    Article  Google Scholar 

  • Wielgus M, Sunderland Z, Patorski K (2015) Two-frame tilt-shift error estimation and phase demodulation algorithm. Opt Lett 40(15):3460–3463

    Article  Google Scholar 

  • Williams DC (ed) (1993) Optical methods in engineering metrology. Chapman & Hall, London

    Google Scholar 

  • Yi Y, Kim Ch-J (1999) Measurement of mechanical properties for MEMS materials. Meas Sci Technol 10(8):706–716

    Article  Google Scholar 

  • Zhang Z, Guo H (2014) Principal-vector-directed fringe-tracking technique. Appl Opt 53(31):7381–7393

    Article  Google Scholar 

  • Zhang D, Ma M, Arola DD (2002) Fringe skeletonizing using an improved derivative sign binary method. Opt Lasers Eng 37(1):51–62

    Article  Google Scholar 

  • Zhong M, Chen W, Wang T, Su X (2013) Application of two-dimensional S-transform in fringe pattern analysis. Opt Lasers Eng 51(10):1138–1142

    Article  Google Scholar 

  • Zhou Y, Li H (2011) Adaptive noise reduction method for DSPI fringes based on bi-dimensional ensemble empirical mode decomposition. Opt Express 19(19):18207–18215

    Article  Google Scholar 

  • Zhou X, Podoleanu AG, Yang Z, Yang T, Zao H (2012) Morphological operation-based bi-dimensional empirical mode decomposition for automatic background removal of fringe patterns. Opt Express 20(22):24247–24262

    Article  Google Scholar 

  • Zhu X, Chen Z, Tang C (2013) Variational image decomposition for automatic background and noise removal of fringe patterns. Opt Lett 38(3):275–277

    Article  Google Scholar 

  • Zhu X, Tang C, Li B, Sun C, Wang L (2014) Phase retrieval from single frame projection fringe pattern with variational image decomposition. Opt Lasers Eng 59(8):25–33

    Article  Google Scholar 

Download references

Acknowledgments

The support of National Science Center (Poland) grant OPUS 13 2017/25/B/ST7/02049 and Faculty of Mechatronics, Warsaw University of Technology statutory funds is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Patorski .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Patorski, K., Trusiak, M. (2019). Interferometric Methods in NDE. In: Ida, N., Meyendorf, N. (eds) Handbook of Advanced Nondestructive Evaluation. Springer, Cham. https://doi.org/10.1007/978-3-319-26553-7_58

Download citation

Publish with us

Policies and ethics