Skip to main content

X-Ray Phase Contrast Methods

  • Reference work entry
  • First Online:
Handbook of Advanced Nondestructive Evaluation

Abstract

X-ray phase-contrast methods for imaging and tomography have considerable advantages over conventional absorption contrast. They enable excellent imaging contrast for both high- and low-density materials within the same sample and offer additional imaging modes which can highlight low-contrast boundaries, subtle density gradients, and fine-scale texture. Phase-contrast methods encompass a family of techniques implemented both in the laboratory and at synchrotron sources which utilize a range of tools to make visible the phase shift imposed on an X-ray beam by the sample. This chapter describes the main phase-contrast techniques used, their particular strengths, and a range of applications for each, together with some of the mathematical methods used in the analysis of phase-contrast data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 759.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albertin F, Astolfo A, Stampanoni M, Peccenini E, Hwu Y, Kaplan F, Margaritondo G (2015) Ancient administrative handwritten documents: x-ray analysis and imaging. J Synchrotron Radiat 22:446–451. https://doi.org/10.1107/s1600577515000314

    Article  Google Scholar 

  • Altapova V, Helfen L, Myagotin A, Hanschke D, Moosmann J, Gunneweg J, Baumbach T (2012) Phase contrast laminography based on Talbot interferometry. Opt Express 20:6496–6508. https://doi.org/10.1364/oe.20.006496

    Article  Google Scholar 

  • Ando M, Hosoya S (1972) An attempt at x-ray phase-contrast microscopy. In: Proceedings of the 6th international conference on x-ray optics and microanalysis. University of Tokyo Press, Tokyo, pp 63–68

    Google Scholar 

  • Andrukh T, Monaenkova D, Rubin B, Lee WK, Kornev KG (2014) Meniscus formation in a capillary and the role of contact line friction. Soft Matter 10:609–615. https://doi.org/10.1039/c3sm52164h

    Article  Google Scholar 

  • Appel A, Anastasio MA, Brey EM (2011) Potential for imaging engineered tissues with x-ray phase contrast. Tissue Eng Part B Rev 17:321–330. https://doi.org/10.1089/ten.teb.2011.0230

    Article  Google Scholar 

  • Appel AA, Ibarra V, Somo SI, Larson JC, Garson AB, Guan HF, McQuilling JP, Zhong Z, Anastasio MA, Opara EC, Brey EM (2016) Imaging of hydrogel microsphere structure and foreign body response based on endogenous x-ray phase contrast. Tissue Eng Part C Methods 22:1038–1048. https://doi.org/10.1089/ten.tec.2016.0253

    Article  Google Scholar 

  • Arfelli F, Astolfo A, Rigon L, Menk RH (2018) A Gaussian extension for diffraction enhanced imaging. Sci Rep 8:362. https://doi.org/10.1038/s41598-017-18367-x

    Article  Google Scholar 

  • Arzilli F, Polacci M, Landi P, Giordano D, Baker DR, Mancini L (2016) A novel protocol for resolving feldspar crystals in synchrotron x-ray microtomographic images of crystallized natural magmas and synthetic analogs. Am Mineral 101:2301–2311. https://doi.org/10.2138/am-2016-5788

    Article  Google Scholar 

  • Astolfo A, Endrizzi M, Vittoria FA, Diemoz PC, Price B, Haig I, Olivo A (2017) Large field of view, fast and low dose multimodal phase-contrast imaging at high x-ray energy. Sci Rep 7:2187

    Article  Google Scholar 

  • Barigou M, Douaire M (2013) X-ray micro-computed tomography for resolving food microstructures. In: Morris VJ, Groves K (eds) Food microstructures: microscopy, measurement and modelling. Woodhead Publishing series in food science technology and nutrition, vol 254. Elsevier Science, Burlington, pp 246–272. https://doi.org/10.1533/9780857098894.1.246

    Chapter  Google Scholar 

  • Becker J, Flueckiger R, Reum M, Buechi FN, Marone F, Stampanoni M (2009) Determination of material properties of gas diffusion layers: experiments and simulations using phase contrast tomographic microscopy. J Electrochem Soc 156:B1175–B1181. https://doi.org/10.1149/1.3176876

    Article  Google Scholar 

  • Berujon S, Wang H, Sawhney K (2012) X-ray multimodal imaging using a random-phase object. Phys Rev A 86:063813. https://doi.org/10.1103/PhysRevA.86.063813

    Article  Google Scholar 

  • Berujon S, Wang H, Alcock S, Sawhney K (2014) At-wavelength metrology of hard x-ray mirror using near field speckle. Opt Express 22:6438–6446. https://doi.org/10.1364/OE.22.006438

    Article  Google Scholar 

  • Bie BX, Huang JY, Fan D, Sun T, Fezzaa K, Xiao XH, Qi ML, Luo SN (2017) Orientation-dependent tensile deformation and damage of a T700 carbon fiber/epoxy composite: a synchrotron-based study. Carbon 121:127–133. https://doi.org/10.1016/j.carbon.2017.05.083

    Article  Google Scholar 

  • Blankenburg C, Rack A, Daul C, Ohser J (2017) Torsion estimation of particle paths through porous media observed by in-situ time-resolved microtomography. J Microsc 266:141–152. https://doi.org/10.1111/jmi.12524

    Article  Google Scholar 

  • Bonse U, Hart M (1965) An x-ray interferometer. Appl Phys Lett 6:155–156. https://doi.org/10.1063/1.1754212

    Article  Google Scholar 

  • Born M, Wolf E (1980) Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Bronnikov AV (1999) Reconstruction formulas in phase-contrast tomography. Opt Commun 171:239–244. https://doi.org/10.1016/S0030-4018(99)00575-1

    Article  Google Scholar 

  • Buffiere JY, Savelli S, Maire E (2000) Characterisation of MMCp and cast aluminium alloys. X-ray tomography in material science. Hermes Science Publications, Paris

    Google Scholar 

  • Burvall A, Lundstrom U, Takman PAC, Larsson DH, Hertz HM (2011) Phase retrieval in x-ray phase-contrast imaging suitable for tomography. Opt Express 19:10359–10376. https://doi.org/10.1364/oe.19.010359

    Article  Google Scholar 

  • Carrel M, Beltran MA, Morales VL, Derlon N, Morgenroth E, Kaufmann R, Holzner M (2017) Biofilm imaging in porous media by laboratory x-ray tomography: combining a non-destructive contrast agent with propagation-based phase-contrast imaging tools. PLoS One 12:e0180374. https://doi.org/10.1371/journal.pone.0180374

    Article  Google Scholar 

  • Carroll AJ, van Riessen GA, Balaur E, Dolbnya IP, Tran GN, Peele AG (2017) An iterative method for near-field Fresnel region polychromatic phase contrast imaging. J Opt 19. https://doi.org/10.1088/2040-8986/aa72c4

    Article  Google Scholar 

  • Cedola A, Campi G, Pelliccia D, Bukreeva I, Fratini M, Burghammer M, Rigon L, Arfelli F, Chen RC, Dreossi D, Sodini N, Mohammadi S, Tromba G, Cancedda R, Mastrogiacomo M (2014) Three dimensional visualization of engineered bone and soft tissue by combined x-ray micro-diffraction and phase contrast tomography. Phys Med Biol 59:189–201. https://doi.org/10.1088/0031-9155/59/1/189

    Article  Google Scholar 

  • Chapman D, Thomlinson W, Johnston RE, Washburn D, Pisano E, Gmur N, Zhong Z, Menk R, Arfelli F, Sayers D (1997) Diffraction enhanced x-ray imaging. Phys Med Biol 42:2015–2025. https://doi.org/10.1088/0031-9155/42/11/001

    Article  Google Scholar 

  • Clauser JF, Reinsch MW (1992) New theoretical and experimental results in Fresnel optics with applications to matter-wave and x-ray interferometry. Appl Phys B Lasers Opt 54:380–395

    Article  Google Scholar 

  • Cloetens P, Guigay JP, De Martino C, Baruchel J, Schlenker M (1997) Fractional Talbot imaging of phase gratings with hard x rays. Opt Lett 22:1059–1061

    Article  Google Scholar 

  • Cloetens P, Ludwig W, Baruchel J, Van Dyck D, Van Landuyt J, Guigay JP, Schlenker M (1999) Holotomography: quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays. Appl Phys Lett 75:2912–2914. https://doi.org/10.1063/1.125225

    Article  Google Scholar 

  • Coindreau O, Mulat C, Germain C, Lachaud J, Vignoles GL (2011) Benefits of x-ray CMT for the modeling of C/C composites. Adv Eng Mater 13:178–185. https://doi.org/10.1002/adem.201000233

    Article  Google Scholar 

  • Connor DM, Zhong Z (2014) Diffraction-enhanced imaging. Curr Radiol Rep 2:55. https://doi.org/10.1007/s40134-014-0055-y

    Article  Google Scholar 

  • Coolidge W (1917) X-ray tube. US Patent, US1211092A

    Google Scholar 

  • David C, Nohammer B, Solak H-H, Ziegler E (2002) Differential x-ray phase contrast imaging using a shearing interferometer. Appl Phys Lett 81:3287–3289

    Article  Google Scholar 

  • Diemoz PC, Endrizzi M, Zapata CE, PeÅ¡ić ZD, Rau C, Bravin A, Robinson IK, Olivo A (2013) X-ray phase-contrast imaging with nanoradian angular resolution. Phys Rev Lett 110:138105

    Article  Google Scholar 

  • Diemoz PC, Vittoria FA, Hagen CK, Endrizzi M, Coan P, Brun E, Wagner UH, Rau C, Robinson IK, Bravin A et al (2015) Single-image phase retrieval using an edge illumination x-ray phase-contrast imaging setup. J Synchrotron Radiat 22:1072–1077

    Article  Google Scholar 

  • Diemoz PC, Hagen CK, Endrizzi M, Minuti M, Bellazzini R, Urbani L, De Coppi P, Olivo A (2017) Single-shot x-ray phase-contrast computed tomography with nonmicrofocal laboratory sources. Phys Rev Appl 7:044029

    Article  Google Scholar 

  • Donepudi VR, Cesareo R, Brunetti A, Zhong Z, Yuasa T, Akatsuka T, Takeda T, Gigante GE (2010) Cork embedded internal features and contrast mechanisms with Dei using 18, 20, 30, 36, and 40 keV synchrotron x-rays. Res Nondestruct Eval 21:171–183. https://doi.org/10.1080/09349847.2010.493990

    Article  Google Scholar 

  • Du Y, Liu X, Huang J, Lei Y, Zhao Z, Lin D, Guo J, Li J, Niu H (2015) Sampling grating approach for x-ray differential phase contrast imaging. Opt Express 23:12712–12719. https://doi.org/10.1364/OE.23.012712

    Article  Google Scholar 

  • Duke D, Swantek A, Kastengren A, Fezzaa K, Powell C (2015) Recent developments in x-ray diagnostics for cavitation. SAE Int J Fuels Lubr 8:135–146. https://doi.org/10.4271/2015-01-0918

    Article  Google Scholar 

  • Eastwood DS, Bradley RS, Tariq F, Cooper SJ, Taiwo OO, Gelb J, Merkle A, Brett DJL, Brandon NP, Withers PJ, Lee PD, Shearing PR (2014) The application of phase contrast x-ray techniques for imaging Li-ion battery electrodes. Nucl Instrum Methods Phys Res Sect B 324:118–123. https://doi.org/10.1016/j.nimb.2013.08.066

    Article  Google Scholar 

  • Eberhardt SH, Marone F, Stampanoni M, Buchi FN, Schmidt TJ (2014) Quantifying phosphoric acid in high-temperature polymer electrolyte fuel cell components by x-ray tomographic microscopy. J Synchrotron Radiat 21:1319–1326. https://doi.org/10.1107/s1600577514016348

    Article  Google Scholar 

  • Einarsdottir H, Emerson MJ, Clemmensen LH, Scherer K, Willer K, Bech M, Larsen R, Ersboll BK, Pfeiffer F (2016) Novelty detection of foreign objects in food using multi-modal x-ray imaging. Food Control 67:39–47. https://doi.org/10.1016/j.foodcont.2016.02.023

    Article  Google Scholar 

  • Endrizzi M (2018) X-ray phase-contrast imaging. Nucl Instrum Methods Phys Res Sect A 878:88–98. https://doi.org/10.1016/j.nima.2017.07.036

    Article  Google Scholar 

  • Endrizzi M, Olivo A (2014) Absorption, refraction and scattering retrieval with an edge-illumination-based imaging setup. J Phys D Appl Phys 47:505102

    Article  Google Scholar 

  • Endrizzi M, Diemoz PC, Millard TP, Louise Jones J, Speller RD, Robinson IK, Olivo A (2014) Hard x-ray dark-field imaging with incoherent sample illumination. Appl Phys Lett 104:024106

    Article  Google Scholar 

  • Endrizzi M, Basta D, Olivo A (2015a) Laboratory-based x-ray phase-contrast imaging with misaligned optical elements. Appl Phys Lett 107:124103

    Article  Google Scholar 

  • Endrizzi M, Murat BIS, Fromme P, Olivo A (2015b) Edge-illumination x-ray dark-field imaging for visualising defects in composite structures. Compos Struct 134:895–899

    Article  Google Scholar 

  • Endrizzi M, Vittoria F, Olivo A (2018) Single-shot x-ray phase retrieval through hierarchical data analysis and a multi-aperture analyser. J Imaging 4:76

    Article  Google Scholar 

  • Fatima A, Kulkarni VK, Banda NR, Agrawal AK, Singh B, Sarkar PS, Tripathi S, Shripathi T, Kashyap Y, Sinha A (2016) Non-destructive evaluation of teeth restored with different composite resins using synchrotron based micro-imaging. J Xray Sci Technol 24:119–132. https://doi.org/10.3233/xst-160530

    Article  Google Scholar 

  • Fioravanti M, Di Giulio G, Signorini G, Rognoni GR, Sodini N, Tromba G, Zanini F (2017) Non-invasive wood identification of historical musical bows. IAWA J 38:285–296. https://doi.org/10.1163/22941932-20170172

    Article  Google Scholar 

  • Franco M, Yokaichiya F, Kardjilov N, Ferraz ACD (2015) Microfocus x-ray imaging of Brazil nuts for quality control. Semina Cienc Agrar 36:2565–2575. https://doi.org/10.5433/1679-0359.2015v36n4p2565

    Article  Google Scholar 

  • Fu J, Liu C (2016) In-line phase contrast computed tomography of carbon/carbon composites. In: 2016 IEEE international conference on information and automation

    Google Scholar 

  • Gabor D (1948) A new microscopic principle. Nature 161:777–778. https://doi.org/10.1038/161777a0

    Article  Google Scholar 

  • Garcia-Moreno F, Kamm PH, Neu T, Heim K, Rack A, Banhart J (2017) In situ x-ray tomography of aqueous foams: analysis of columnar foam generation. Colloids Surf A Physicochem Eng Asp 534:78–84. https://doi.org/10.1016/j.colsurfa.2017.03.011

    Article  Google Scholar 

  • Gkoumas S, Wang ZT, Abis M, Arboleda C, Tudosie G, Donath T, Bronnimann C, Schulze-Briese C, Stampanoni M (2016) Grating-based interferometry and hybrid photon counting detectors: towards a new era in x-ray medical imaging. Nucl Instrum Methods Phys Res Sect A 809:23–30. https://doi.org/10.1016/j.nima.2015.08.017

    Article  Google Scholar 

  • Goetz K, Kalashnikov MP, Mikhailov YA, Sklizkov GV, Fedotov SI, Foerster E, Zaumseil P (1979) Measurements of the parameters of shell targets for laser thermonuclear fusion using an x-ray Schlieren method. Sov J Quantum Electron 9:607

    Article  Google Scholar 

  • Greenfeld I, Fezzaa K, Rafailovich MH, Zussman E (2012) Fast x-ray phase-contrast imaging of electrospinning polymer jets: measurements of radius, velocity, and concentration. Macromolecules 45:3616–3626. https://doi.org/10.1021/ma300237j

    Article  Google Scholar 

  • Gresil M, Revol V, Kitsianos K, Kanderakis G, Koulalis I, Sauer MO, Tretout H, Madrigal AM (2017) EVITA project: comparison between traditional non-destructive techniques and phase contrast x-ray imaging applied to aerospace carbon fibre reinforced polymer. Appl Compos Mater 24:513–524. https://doi.org/10.1007/s10443-016-9540-1

    Article  Google Scholar 

  • Gui J-Y, Zhou B, Zhong Y-H, Du A, Shen J (2011) Fabrication of gradient density SiO(2) aerogel. J Sol-Gel Sci Technol 58:470–475. https://doi.org/10.1007/s10971-011-2415-x

    Article  Google Scholar 

  • Guigay JP (1977) Fourier-transform analysis of Fresnel diffraction patterns and in-line holograms. Optik 49:121–125

    Google Scholar 

  • Guo EY, Zeng G, Kazantsev D, Rockett P, Bent J, Kirkland M, Van Dalen G, Eastwood DS, St. John D, Lee PD (2017) Synchrotron x-ray tomographic quantification of microstructural evolution in ice cream – a multiphase soft solid. RSC Adv 7:15561–15573. https://doi.org/10.1039/c7ra00642j

    Article  Google Scholar 

  • Gureyev TE, Evans R, Stevenson AW, Wilkins SW, Appita (1999) X-ray phase-contrast microscopy of wood and paper. In: 53rd Appita annual conference, proceedings, vols 1 and 2

    Google Scholar 

  • Hagen CK, Diemoz PC, Endrizzi M, Rigon L, Dreossi D, Arfelli F, Lopez FCM, Longo R, Olivo A (2014a) Theory and preliminary experimental verification of quantitative edge illumination x-ray phase contrast tomography. Opt Express 22:7989–8000

    Article  Google Scholar 

  • Hagen CK, Munro PRT, Endrizzi M, Diemoz PC, Olivo A (2014b) Low-dose phase contrast tomography with conventional x-ray sources. Med Phys 41:070701

    Article  Google Scholar 

  • Hagen CK, Maghsoudlou P, Totonelli G, Diemoz PC, Endrizzi M, Rigon L, Menk R-H, Arfelli F, Dreossi D, Brun E et al (2015) High contrast microstructural visualization of natural acellular matrices by means of phase-based x-ray tomography. Sci Rep 5:18156

    Article  Google Scholar 

  • Heycock CT, Neville FH (1898) Rontgen ray photography and alloys. J Chem Soc 73:714–723

    Article  Google Scholar 

  • Hofmann R, Moosmann J, Baumbach T (2011) Criticality in single-distance phase retrieval. Opt Express 19:25881–25890. https://doi.org/10.1364/oe.19.025881

    Article  Google Scholar 

  • Holmstad R, Goel A, Ramaswamy S, Gregersen OW (2006) Visualization and characterization of high resolution 3D images of paper samples. Appita J 59:370–377

    Google Scholar 

  • Hu ZW, De Carlo F (2008) Noninvasive three-dimensional visualization of defects and crack propagation in layered foam structures by phase-contrast microimaging. Scr Mater 59:1127–1130. https://doi.org/10.1016/j.scriptamat.2008.07.043

    Article  Google Scholar 

  • Hu ZH, Sun M, Lv M, Wang LH, Shi JY, Xiao TQ, Cao Y, Wang J, Fan CH (2016) Deciphering buried air phases on natural and bioinspired superhydrophobic surfaces using synchrotron radiation-based x-ray phase-contrast imaging. NPG Asia Mater 8. https://doi.org/10.1038/am.2016.122

    Article  Google Scholar 

  • Hudspeth M, Claus B, Dubelman S, Black J, Mondal A, Parab N, Funnell C, Hai F, Qi ML, Fezzaa K, Luo SN, Chen W (2013) High speed synchrotron x-ray phase contrast imaging of dynamic material response to split Hopkinson bar loading. Rev Sci Instrum 84:025102. https://doi.org/10.1063/1.4789780

    Article  Google Scholar 

  • Izadifar Z, Chapman LD, Chen XB (2014) Computed tomography diffraction-enhanced imaging for in situ visualization of tissue scaffolds implanted in cartilage. Tissue Eng Part C Methods 20:140–148. https://doi.org/10.1089/ten.tec.2013.0138

    Article  Google Scholar 

  • Jacobsen C, Howells M, Kirz J, Rothman S (1990) X-ray holographic microscopy using photoresists. J Opt Soc Am A Opt Image Sci Vis 7:1847–1861. https://doi.org/10.1364/JOSAA.7.001847

    Article  Google Scholar 

  • Jerjen I, Revol V, Brunner AJ, Schuetz P, Kottler C, Kaufmann R, Luethi T, Nicoletti G, Urban C, Sennhauser U (2013) Detection of stress whitening in plastics with the help of x-ray dark field imaging. Polym Test 32:1094–1098. https://doi.org/10.1016/j.polymertesting.2013.06.008

    Article  Google Scholar 

  • Johanson Z, Boisvert C, Maksimenko A, Currie P, Trinajstic K (2015) Development of the Synarcual in the Elephant Sharks (Holocephali; Chondrichthyes): implications for vertebral formation and fusion. PLoS One 10. https://doi.org/10.1371/journal.pone.0135138

    Article  Google Scholar 

  • Kagias M, Wang Z, Villanueva-Perez P, Jefimovs K, Stampanoni M (2016) 2D-omnidirectional hard-x-ray scattering sensitivity in a single shot. Phys Rev Lett 116:093902. https://doi.org/10.1103/PhysRevLett.116.093902

    Article  Google Scholar 

  • Kallon GK, Wesolowski M, Vittoria FA, Endrizzi M, Basta D, Millard TP, Diemoz PC, Olivo A (2015) A laboratory based edge-illumination x-ray phase-contrast imaging setup with two-directional sensitivity. Appl Phys Lett 107:204105

    Article  Google Scholar 

  • Kashyap YS, Agrawal A, Sarkar PS, Shukla M, Roy T, Sinha A (2011) Study of pyro-carbon coated alumina kernel using mixed contrast transfer based x-ray phase retrieval technique. NDT&E Int 44:41–46. https://doi.org/10.1016/j.ndteint.2010.09.004

    Article  Google Scholar 

  • Kastner J, Plank B, Requena G (2012) Non-destructive characterisation of polymers and Al-alloys by polychromatic cone-beam phase contrast tomography. Mater Charact 64:79–87. https://doi.org/10.1016/j.matchar.2011.12.004

    Article  Google Scholar 

  • Khlifa I, Vabre A, Hocevar M, Fezzaa K, Fuzier S, Roussette O, Coutier-Delgosha O (2017) Fast x-ray imaging of cavitating flows. Exp Fluids 58. https://doi.org/10.1007/s00348-017-2426-7

  • Kobayashi T, Toda H (2007) Strength and fracture of aluminium alloys. In: Chandra TTKMMRC (ed) THERMEC 2006, Pts 1–5, vols 539–543. Materials Science Forum, pp 127–134

    Google Scholar 

  • Kohn VG, Argunova TS, Je JH (2014) Capsule-like voids in SiC single crystal: phase contrast imaging and computer simulations. AIP Adv 4. https://doi.org/10.1063/1.4896512

    Article  Google Scholar 

  • Kono Y, Kenney-Benson C, Shibazaki Y, Park C, Wang YB, Shen GY (2015) X-ray imaging for studying behavior of liquids at high pressures and high temperatures using Paris-Edinburgh press. Rev Sci Instrum 86. https://doi.org/10.1063/1.4927227

    Article  Google Scholar 

  • Kostenko A, Sharma H, Dere EG, King A, Ludwig W, van Oel W, Stallinga S, van Vliet LJ, Offerman SE (2012) Three-dimensional morphology of cementite in steel studied by x-ray phase-contrast tomography. Scr Mater 67:261–264. https://doi.org/10.1016/j.scriptamat.2012.04.034

    Article  Google Scholar 

  • Kozioziemski BJ, Koch JA, Barty A, Martz HE, Lee WK, Fezzaa K (2005) Quantitative characterization of inertial confinement fusion capsules using phase contrast enhanced x-ray imaging. J Appl Phys 97:063103. https://doi.org/10.1063/1.1862764

    Article  Google Scholar 

  • Lee JS, Park SJ, Lee JH, Weon BM, Fezzaa K, Je JH (2015) Origin and dynamics of vortex rings in drop splashing. Nat Commun 6. https://doi.org/10.1038/ncomms9187

  • Li T, Fan D, Lu L, Huang JY, Zhao F, Qi ML, Sun T, Fezzaa K, Xiao XH, Zhou XM, Suo T, Chen W, Li YL, Zhu MH, Luo SN (2015) Dynamic fracture of C/SiC composites under high strain-rate loading: microstructures and mechanisms. Carbon 91:468–478. https://doi.org/10.1016/j.carbon.2015.05.015

    Article  Google Scholar 

  • Li HY, Kingston AM, Myers GR, Beeching L, Sheppard AP (2018) Linear iterative near-field phase retrieval (LIPR) for dual-energy x-ray imaging and material discrimination. J Opt Soc Am A Opt Image Sci Vis 35:A30–A39. https://doi.org/10.1364/josaa.35.000a30

    Article  Google Scholar 

  • Lohmann M, Dix W, Metge J, Reime B, Schlüter J, Vogel B, Vogel H (2002) HASYLAB annual report 2002. http://hasyweb.desy.de/science/annual_reports/2002_report/

  • Lomas H, Jenkins DR, Mahoney MR, Pearce R, Roest R, Steel K, Mayo S (2017) Examining mechanisms of metallurgical coke fracture using micro-CT imaging and analysis. Fuel Process Technol 155:183–190. https://doi.org/10.1016/j.fuproc.2016.05.039

    Article  Google Scholar 

  • Maksimcuka J, Obata A, Sampson WW, Blanc R, Gao CX, Withers PJ, Tsigkou O, Kasuga T, Lee PD, Poologasundarampillai G (2017) X-ray tomographic imaging of tensile deformation modes of electrospun biodegradable polyester fibers. Front Mater 4. https://doi.org/10.3389/fmats.2017.00043

  • Malecki A, Potdevin G, Biernath T, Eggl E, Garcia EG, Baum T, Noel PB, Bauer JS, Pfeiffer F (2013) Coherent superposition in grating-based directional dark-field imaging. PLoS One 8. https://doi.org/10.1371/journal.pone.0061268

    Article  Google Scholar 

  • Malecki A, Eggl E, Schaff F, Potdevin G, Baum T, Garcia EG, Bauer JS, Pfeiffer F (2014) Correlation of x-ray dark-field radiography to mechanical sample properties. Microsc Microanal 20:1528–1533. https://doi.org/10.1017/s1431927614001718

    Article  Google Scholar 

  • Marenzana M, Hagen CK, Borges PDN, Endrizzi M, Szafraniec MB, Vincent TL, Rigon L, Arfelli F, Menk R-H, Olivo A (2014) Synchrotron-and laboratory-based x-ray phase-contrast imaging for imaging mouse articular cartilage in the absence of radiopaque contrast agents. Philos Trans R Soc Lond A 372:20130127

    Article  Google Scholar 

  • Mason-Smith N, Duke DJ, Kastengren AL, Traini D, Young PM, Chen Y, Lewis DA, Edgington-Mitchell D, Honnery D (2017) Revealing pMDI spray initial conditions: flashing, atomisation and the effect of ethanol. Pharm Res 34:718–729. https://doi.org/10.1007/s11095-017-2098-2

    Article  Google Scholar 

  • Mayo SC, Stevenson AW, Wilkins SW (2012) In-line phase-contrast x-ray imaging and tomography for materials science. Materials 5:937–965. https://doi.org/10.3390/ma5050937

    Article  Google Scholar 

  • Mayo SC, McCann T, Day L, Favaro J, Tuhumury H, Thompson D, Maksimenko A (2016) Rising dough and baking bread at the Australian synchrotron. In: DeJonge MD, Paterson DJ, Ryan CG (eds) Xrm 2014: proceedings of the 12th international conference on x-ray microscopy. AIP conference proceedings, vol 1696. https://doi.org/10.1063/1.4937500

  • Messe O, Lachambre J, King A, Buffiere JY, Rae CMF (2014) Investigation of fatigue crack propagation in nickel superalloy using diffraction contrast tomography and phase contrast tomography. In: Clark G, Wang CH (eds) 11th international fatigue congress, Pts 1 and 2, vols 891–892. Advanced Materials Research, pp 923–928. https://doi.org/10.4028/www.scientific.net/AMR.891-892.923

    Article  Google Scholar 

  • Miklos R, Nielsen MS, Einarsdottir H, Lametsch R (2016) Grating-based x-ray tomography of 3D food structures. In: Chinesta F, Cueto E, Abisset-Chavanne E (eds) Proceedings of the 19th international ESAFORM conference on material forming. AIP conference proceedings, vol 1769. https://doi.org/10.1063/1.4963604

  • Miller EA, White TA, McDonald BS, Seifert A (2013) Phase contrast x-ray imaging signatures for security applications. IEEE Trans Nucl Sci 60:416–422. https://doi.org/10.1109/tns.2012.2227803

    Article  Google Scholar 

  • Miyagi M, Kawahito Y, Kawakami H, Shoubu T (2017) Dynamics of solid-liquid interface and porosity formation determined through x-ray phase-contrast in laser welding of pure Al. J Mater Process Technol 250:9–15. https://doi.org/10.1016/j.jmatprotec.2017.06.033

    Article  Google Scholar 

  • Mocella V, Brun E, Ferrero C, Delattre D (2015) Revealing letters in rolled Herculaneum papyri by x-ray phase-contrast imaging. Nat Commun 6. https://doi.org/10.1038/ncomms6895

  • Modregger P, Cremona TP, Benarafa C, Schittny JC, Olivo A, Endrizzi M (2016) Small angle x-ray scattering with edge-illumination. Sci Rep 6:30940

    Article  Google Scholar 

  • Modregger P, Kagias M, Irvine SC, Brönnimann R, Jefimovs K, Endrizzi M, Olivo A (2017) Interpretation and utility of the moments of small-angle x-ray scattering distributions. Phys Rev Lett 118:265501

    Article  Google Scholar 

  • Momose A (2005) Recent advances in x-ray phase imaging. Jpn J Appl Phys 44:6355

    Article  Google Scholar 

  • Momose A, Kawamoto S, Koyama I, Hamaishi Y, Takai K, Suzuki Y (2003) Demonstration of x-ray Talbot interferometry. Jpn J Appl Phys 42:L866

    Article  Google Scholar 

  • Moon S, Komada K, Sato K, Yokohata H, Wada Y, Yasuda N (2015) Ultrafast x-ray study of multi-hole GDI injector sprays: effects of nozzle hole length and number on initial spray formation. Exp Thermal Fluid Sci 68:68–81. https://doi.org/10.1016/j.expthermflusci.2015.03.027

    Article  Google Scholar 

  • Moreau JD, Cloetens P, Gomez B, Daviero-Gomez V, Nraudeau D, Lafford TA, Tafforeau P (2014) Multiscale 3D virtual dissections of 100-million-year-old flowers using x-ray synchrotron micro-and nanotomography. Microsc Microanal 20:305–312. https://doi.org/10.1017/s1431927613014025

    Article  Google Scholar 

  • Morgan KS, Paganin DM, Siu KKW (2011) Quantitative single-exposure x-ray phase contrast imaging using a single attenuation grid. Opt Express 19:19781–19789. https://doi.org/10.1364/OE.19.019781

    Article  Google Scholar 

  • Morgan KS, Donnelley M, Farrow N, Fouras A, Yagi N, Suzuki Y, Takeuchi A, Uesugi K, Boucher RC, Siu KKW, Parsons DW (2014) In vivo x-ray imaging reveals improved airway surface hydration after a therapy designed for cystic fibrosis. Am J Respir Crit Care Med 190:469–471. https://doi.org/10.1164/rccm.201405-0855LE

    Article  Google Scholar 

  • Morgan KS, Petersen TC, Donnelley M, Farrow N, Parsons DW, Paganin DM (2016) Capturing and visualizing transient x-ray wavefront topological features by single-grid phase imaging. Opt Express 24:24435–24450. https://doi.org/10.1364/oe.24.024435

    Article  Google Scholar 

  • Munro PRT, Ignatyev K, Speller RD, Olivo A (2012) Phase and absorption retrieval using incoherent x-ray sources. Proc Natl Acad Sci 109:13922–13927

    Article  Google Scholar 

  • Myers GR, Paganin DM, Gureyev TE, Mayo SC (2008) Phase-contrast tomography of single-material objects from few projections. Opt Express 16:908–919. https://doi.org/10.1364/OE.16.000908

    Article  Google Scholar 

  • Nesterets YI, Gureyev TE, Dimmock MR (2018) Optimisation of a propagation-based x-ray phase-contrast micro-CT system. J Phys D Appl Phys 51. https://doi.org/10.1088/1361-6463/aaacee

    Article  Google Scholar 

  • Nugent KA, Gureyev TE, Cookson DF, Paganin D, Barnea Z (1996) Quantitative phase imaging using hard x rays. Phys Rev Lett 77:2961–2964. https://doi.org/10.1103/PhysRevLett.77.2961

    Article  Google Scholar 

  • Olivo A, Speller R (2006) Experimental validation of a simple model capable of predicting the phase contrast imaging capabilities of any x-ray imaging system. Phys Med Biol 51:3015–3030. https://doi.org/10.1088/0031-9155/51/12/001

    Article  Google Scholar 

  • Olivo A, Speller R (2007) A coded-aperture technique allowing x-ray phase contrast imaging with conventional sources. Appl Phys Lett 91:074106

    Article  Google Scholar 

  • Olivo A, Arfelli F, Cantatore G, Longo R, Menk RH, Pani S, Prest M, Poropat P, Rigon L, Tromba G et al (2001) An innovative digital imaging set-up allowing a low-dose approach to phase contrast applications in the medical field. Med Phys 28:1610–1619

    Article  Google Scholar 

  • Olivo A, Bohndiek S, Griffiths J, Konstantinidis A, Speller R (2009) A non-free-space propagation x-ray phase contrast imaging method sensitive to phase effects in two directions simultaneously. Appl Phys Lett 94:044108

    Article  Google Scholar 

  • Olivo A, Gkoumas S, Endrizzi M, Hagen CK, Szafraniec MB, Diemoz PC, Munro PRT, Ignatyev K, Johnson B, Horrocks JA et al (2013) Low-dose phase contrast mammography with conventional x-ray sources. Med Phys 40:090701

    Article  Google Scholar 

  • Olubamiji AD, Izadifar Z, Chen DX (2014) Synchrotron imaging techniques for bone and cartilage tissue engineering: potential, current trends, and future directions. Tissue Eng Part B Rev 20:503–522. https://doi.org/10.1089/ten.teb.2013.0493

    Article  Google Scholar 

  • Paganin D, Mayo SC, Gureyev TE, Miller PR, Wilkins SW (2002) Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J Microsc (Oxford) 206:33–40. https://doi.org/10.1046/j.1365-2818.2002.01010.x

    Article  MathSciNet  Google Scholar 

  • Pamukcu AS, Gualda GAR, Rivers ML (2013) Quantitative 3D petrography using x-ray tomography 4: assessing glass inclusion textures with propagation phase-contrast tomography. Geosphere 9:1704–1713. https://doi.org/10.1130/ges00915.1

    Article  Google Scholar 

  • Parab ND, Black JT, Claus B, Hudspeth M, Sun JZ, Fezzaa K, Chen WNW (2014) Observation of crack propagation in glass using x-ray phase contrast imaging. Int J Appl Glass Sci 5:363–373. https://doi.org/10.1111/ijag.12092

    Article  Google Scholar 

  • Paris JL, Kamke FA, Xiao XH (2015) X-ray computed tomography of wood-adhesive bondlines: attenuation and phase-contrast effects. Wood Sci Technol 49:1185–1208. https://doi.org/10.1007/s00226-015-0750-8

    Article  Google Scholar 

  • Parish RW (1986) Microfocus x-ray technology- a review of developments and application. In: Thompson DO, Chimenti DE (eds) Review of progress in quantitative nondestructive evaluation, Vol 5A, Plenum Press, New York, pp 1–20

    Google Scholar 

  • Peris D, Hava J (2016) New species from Late Cretaceous New Jersey amber and stasis in subfamily Attageninae (Insecta: Coleoptera: Dermestidae). J Paleontol 90:491–498. https://doi.org/10.1017/jpa.2016.51

    Article  Google Scholar 

  • Perreau M (2012) Description of a new genus and two new species of Leiodidae (Coleoptera) from Baltic amber using phase contrast synchrotron x-ray microtomography. Zootaxa 3455:81–88

    Article  Google Scholar 

  • Pfeiffer F (2018) X-ray ptychography. Nat Photonics 12:9–17. https://doi.org/10.1038/s41566-017-0072-5

    Article  Google Scholar 

  • Pfeiffer F, Weitkamp T, Bunk O, David C (2006) Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources. Nat Phys 2:258–261

    Article  Google Scholar 

  • Pfeiffer F, Bech M, Bunk O, Kraft P, Eikenberry EF, Brönnimann Ch, Grünzweig C, David C (2008) Hard-x-ray dark-field imaging using a grating interferometer. Nat Mater 7:134–137

    Article  Google Scholar 

  • Pietsch P, Wood V (2017) X-ray tomography for lithium ion battery research: a practical guide. In: Clarke DR (ed) Annual review of materials research, vol 47, pp 451–479. https://doi.org/10.1146/annurev-matsci-070616-123957

    Article  Google Scholar 

  • Pitts KF, McCann TH, Mayo S, Favaro J, Day L (2016) Effect of the sugar replacement by citrus fibre on the physical and structural properties of wheat-corn based extrudates. Food Bioprocess Technol 9:1803–1811. https://doi.org/10.1007/s11947-016-1764-4

    Article  Google Scholar 

  • Prade F, Chabior M, Malm F, Grosse CU, Pfeiffer F (2015) Observing the setting and hardening of cementitious materials by x-ray dark-field radiography. Cem Concr Res 74:19–25. https://doi.org/10.1016/j.cemconres.2015.04.003

    Article  Google Scholar 

  • Rafsanjani A, Stiefel M, Jefimovs K, Mokso R, Derome D, Carmeliet J (2014) Hygroscopic swelling and shrinkage of latewood cell wall micropillars reveal ultrastructural anisotropy. J R Soc Interface 11. https://doi.org/10.1098/rsif.2014.0126

    Article  Google Scholar 

  • Rao DV, Bhaskaraiah M, Cesareo R, Brunetti A, Akatsuka T, Yuasa T, Zhong Z, Takeda T, Gigante GE (2013) Synchrotron-based non-destructive diffraction-enhanced imaging systems to image walnut at 20 keV. J Food Meas Charact 7:13–21. https://doi.org/10.1007/s11694-012-9134-z

    Article  Google Scholar 

  • Reischig P, Helfen L, Wallert A, Baumbach T, Dik J (2013) High-resolution non-invasive 3D imaging of paint microstructure by synchrotron-based x-ray laminography. Appl Phys A Mater Sci Process 111:983–995. https://doi.org/10.1007/s00339-013-7687-2

    Article  Google Scholar 

  • Revol V, Plank B, Kaufmann R, Kastner J, Kottler C, Neels A (2013) Laminate fibre structure characterisation of carbon fibre-reinforced polymers by x-ray scatter dark field imaging with a grating interferometer. NDT&E Int 58:64–71. https://doi.org/10.1016/j.ndteint.2013.04.012

    Article  Google Scholar 

  • Reza S, Pelzer G, Weber T, Frojdh C, Bayer F, Anton G, Rieger J, Thim J, Michel T, Norlin B (2014) Investigation on the directional dark-field signals from paperboards using a grating interferometer. J Instrum 9. https://doi.org/10.1088/1748-0221/9/04/c04032

    Article  Google Scholar 

  • Roentgen W (1896) On a new kinds of rays. Science 3:227–231. https://doi.org/10.1126/science.3.59.227

    Article  Google Scholar 

  • Rusu LC, Seche E, Freimann PC, Hoinoiu B, Negrutiu ML, Ardelean L, Sinescu C (2014) Synchrotron radiation x-ray micro-CT evaluation of bone augmentation. Rev Chim 65:1114–1116

    Google Scholar 

  • Rutishauser S, Rack A, Weitkamp T, Kayser Y, David C, Macrander AT (2013) Heat bump on a monochromator crystal measured with x-ray grating interferometry. J Synchrotron Radiat 20:300–305. https://doi.org/10.1107/s0909049513001817

    Article  Google Scholar 

  • Sarapata A, Ruiz-Yaniz M, Zanette I, Rack A, Pfeiffer F, Herzen J (2015) Multi-contrast 3D x-ray imaging of porous and composite materials. Appl Phys Lett 106. https://doi.org/10.1063/1.4918617

    Article  Google Scholar 

  • Sasov A, Ceulemans T, van Dyck D (2001) Desk-top x-ray microtomography. In: Tobin KW, Lakhani F (eds) Metrology-based control for micro-manufacturing, vol 4275. SPIE – International Society Optical Engineering, Bellingham, pp 147–154

    Chapter  Google Scholar 

  • Schmahl G, Rudolph D, Schneider G, Guttmann P, Niemann B (1994) Phase-contrast x-ray microscopy studies. Optik 97:181–182

    Google Scholar 

  • Schropp A, Hoppe R, Meier V, Patommel J, Seiboth F, Ping Y, Hicks DG, Beckwith MA, Collins GW, Higginbotham A, Wark JS, Lee HJ, Nagler B, Galtier EC, Arnold B, Zastrau U, Hastings JB, Schroer CG (2015) Imaging shock waves in diamond with both high temporal and spatial resolution at an XFEL. Sci Rep 5. https://doi.org/10.1038/srep11089

  • Sinnett-Jones PE, Browne M, Ludwig W, Buffiere JY, Sinclair I (2005) Microtomography assessment of failure in acrylic bone cement. Biomaterials 26:6460–6466. https://doi.org/10.1016/j.biomaterials.2005.04.064

    Article  Google Scholar 

  • Snigirev A, Snigireva I, Kohn V, Kuznetsov S, Schelokov I (1995) On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation. Rev Sci Instrum 66:5486–5492. https://doi.org/10.1063/1.1146073

    Article  Google Scholar 

  • Soriano C, Archer M, Azar D, Creaser P, Delclos X, Godthelp H, Hand S, Jones A, Nel A, Neraudeau D, Ortega-Blanco J, Perez-de la Fuente R, Perrichot V, Saupe E, Kraemer MS, Tafforeau P (2010) Synchrotron x-ray imaging of inclusions in amber. C R Palevol 9:361–368. https://doi.org/10.1016/j.crpv.2010.07.014

    Article  Google Scholar 

  • Stock SR (2008) Recent advances in x-ray microtomography applied to materials. Int Mater Rev 53:129–181. https://doi.org/10.1179/174328008x277803

    Article  Google Scholar 

  • Sun F, Moroni R, Dong K, Markotter H, Zhou D, Hilger A, Zielke L, Zengerle R, Thiele S, Banhart J, Manke I (2017) Study of the mechanisms of internal short circuit in a Li/Li cell by synchrotron x-ray phase contrast tomography. ACS Energy Lett 2:94–104. https://doi.org/10.1021/acsenergylett.6b00589

    Article  Google Scholar 

  • Suortti P, Keyrilainen J, William T (2013) Analyser-based x-ray imaging for biomedical research. J Phys D Appl Phys 46:494002

    Article  Google Scholar 

  • Tafforeau P, Boistel R, Boller E, Bravin A, Brunet M, Chaimanee Y, Cloetens P, Feist M, Hoszowska J, Jaeger JJ, Kay RF, Lazzari V, Marivaux L, Nel A, Nemoz C, Thibault X, Vignaud P, Zabler S (2006) Applications of x-ray synchrotron microtomography for non-destructive 3D studies of paleontological specimens. Appl Phys A Mater Sci Process 83:195–202. https://doi.org/10.1007/s00339-006-3507-2

    Article  Google Scholar 

  • Takashima K, Hoshino M, Uesugi K, Yagi N, Matsuda S, Nakahira A, Osumi N, Kohzuki M, Onodera H (2015) X-ray phase-contrast computed tomography visualizes the microstructure and degradation profile of implanted biodegradable scaffolds after spinal cord injury. J Synchrotron Radiat 22:136–142. https://doi.org/10.1107/s160057751402270x

    Article  Google Scholar 

  • Takeya S, Yoneyama A, Ueda K, Mimachi H, Takahashi M, Sano K, Hyodo K, Takeda T, Gotoh Y (2012) Anomalously preserved clathrate hydrate of natural gas in pellet form at 253 K. J Phys Chem C 116:13842–13848. https://doi.org/10.1021/0302269v

    Article  Google Scholar 

  • Takeya S, Yoneyama A, Ueda K, Hyodo K, Yamawaki H, Fujihisa H, Gotoh Y, Takeda T (2013) Phase-contrast x-ray images of ice and water on carbon paper for fuel cells measured by diffraction-enhanced imaging technique. Jpn J Appl Phys 52. https://doi.org/10.7567/jjap.52.048002

    Article  Google Scholar 

  • Talbot HF (1836) LXXVI. Facts relating to optical science. No. IV. Lond Edinb Philos Mag J Sci 9:401–407

    Google Scholar 

  • Teague MR (1983) Deterministic phase-retrieval – a Green-function solution. J Opt Soc Am 73:1434–1441. https://doi.org/10.1364/josa.73.001434

    Article  Google Scholar 

  • Toda H, Tomizato F, Harasaki R, Seo D, Kobayashi M, Takeuchi A, Uesugi K (2016) 3D fracture behaviours in dual-phase stainless steel. ISIJ Int 56:883–892. https://doi.org/10.2355/isijinternational.ISIJINT-2015-631

    Article  Google Scholar 

  • Trtik P, Dual J, Keunecke D, Mannes D, Niemz P, Stahli P, Kaestner A, Groso A, Stampanoni M (2007) 3D imaging of microstructure of spruce wood. J Struct Biol 159:46–55. https://doi.org/10.1016/j.jsb.2007.02.003

    Article  Google Scholar 

  • Turner LD, Dhal BB, Hayes JP, Mancuso AP, Nugent KA, Paterson D, Scholten RE, Tran CQ, Peele AG (2004) X-ray phase imaging: demonstration of extended conditions with homogeneous objects. Opt Express 12:2960–2965. https://doi.org/10.1364/opex.12.002960

    Article  Google Scholar 

  • Uehara M, Yashiro W, Momose A (2013) Effectiveness of x-ray grating interferometry for non-destructive inspection of packaged devices. J Appl Phys 114. https://doi.org/10.1063/1.4823982

    Article  Google Scholar 

  • Vavrik D, Jakubek J, Jandejsek I, Krejci F, Kumpova I, Zemlicka J (2015) Visualization of delamination in composite materials utilizing advanced x-ray imaging techniques. J Instrum 10. https://doi.org/10.1088/1748-0221/10/04/c04012

    Article  Google Scholar 

  • Vittoria FA, Kallon GKN, Basta D, Diemoz PC, Robinson IK, Olivo A, Endrizzi M (2015) Beam tracking approach for single-shot retrieval of absorption, refraction, and dark-field signals with laboratory x-ray sources. Appl Phys Lett 106. https://doi.org/10.1063/1.4922189

    Article  Google Scholar 

  • Vittoria FA, Endrizzi M, Kallon GK, Hagen CK, Iacoviello F, De Coppi P, Olivo A (2017) Multimodal phase-based x-ray microtomography with nonmicrofocal laboratory sources. Phys Rev Appl 8. https://doi.org/10.1103/PhysRevApplied.8.064009

  • Vladimirov P, Ferrero C, Chakin V, Kurinskiy P, Moeslang A, Pieritz R, Weitkamp T, Brun E (2015) Microstructure of out-of-pile annealed neutron irradiated beryllium studied by x-ray tomography. Acta Mater 88:293–301. https://doi.org/10.1016/j.actamat.2015.01.045

    Article  Google Scholar 

  • Wagner A, Sachse A, Keller M, Aurich M, Wetzel WD, Hortschansky P, Schmuck K, Lohmann M, Reime B, Metge J, Arfelli F, Menk R, Rigon L, Muehleman C, Bravin A, Coan P, Mollenhauer J (2006) Qualitative evaluation of titanium implant integration into bone by diffraction enhanced imaging. Phys Med Biol 51:1313–1324. https://doi.org/10.1088/0031-9155/51/5/019

    Article  Google Scholar 

  • Wang K, Lei HL, Li J, Lin W, Qi XB, Tang YJ, Liu YQ (2014) Characterization of inertial confinement fusion targets using x-ray phase contrast imaging. Opt Commun 332:9–13. https://doi.org/10.1016/j.optcom.2014.06.066

    Article  Google Scholar 

  • Wang SX, Hu RF, Gao K, Wali F, Zan GB, Wang DJ, Pan ZY, Wei SQ (2017) Non-destructive study of fruits using grating-based x-ray imaging. Nucl Sci Tech 28. https://doi.org/10.1007/s41365-016-0169-4

  • Weitkamp T, Diaz A, David C, Pfeiffer F, Stampanoni M, Cloetens P, Ziegler E (2005) X-ray phase imaging with a grating interferometer. Opt Express 13:6296–6304

    Article  Google Scholar 

  • Wen H, Bennett EE, Hegedus MM, Rapacchi S (2009) Fourier x-ray scattering radiography yields bone structural information. Radiology 251:910–918. https://doi.org/10.1148/radiol.2521081903

    Article  Google Scholar 

  • Wen HH, Bennett EE, Kopace R, Stein AF, Pai V (2010) Single-shot x-ray differential phase-contrast and diffraction imaging using two-dimensional transmission gratings. Opt Lett 35:1932–1934. https://doi.org/10.1364/OL.35.001932

    Article  Google Scholar 

  • Wilkins SW, Gureyev TE, Gao D, Pogany A, Stevenson AW (1996) Phase-contrast imaging using polychromatic hard x-rays. Nature 384:335–338. https://doi.org/10.1038/384335a0

    Article  Google Scholar 

  • Wu Y, Takano H, Momose A (2017) In situ observation of polymer blend phase separation by x-ray Talbot-Lau interferometer. In: Proceedings of the SPIE – Developments in X-ray tomography XI, vol 10391

    Google Scholar 

  • Xiao XH, Fusseis F, De Carlo F (2012) X-ray fast tomography and its applications in dynamical phenomena studies in geosciences at advanced photon source. In: Stock SR (ed) Developments in x-ray tomography viii, vol 8506. Proceedings of SPIE. https://doi.org/10.1117/12.936331

  • Xue Y, Xiao T, Du G, Tong Y, Liu H, Deng B, Xie H, Xu H (2013) Observation of cavitation and water-refilling processes in plants with x-ray phase contrast microscopy. Nucl Sci Tech 24:060101

    Google Scholar 

  • Yin ZJ, Zhu MY, Bottjer DJ, Zhao FC, Tafforeau P (2016) Meroblastic cleavage identifies some Ediacaran Doushantuo (China) embryo-like fossils as metazoans. Geology 44:735–738. https://doi.org/10.1130/g38262.1

    Article  Google Scholar 

  • Young ML, Rao R, Almer JD, Haeffner DR, Lewis JA, Dunand DC (2009) Effect of ceramic preform geometry on load partitioning in Al(2)O(3)-Al composites with three-dimensional periodic architecture. Mater Sci Eng A 526:190–196. https://doi.org/10.1016/j.msea.2009.07.033

    Article  Google Scholar 

  • Zabler S, Rack T, Rack A, Nelson K (2012) Fatigue induced deformation of taper connections in dental titanium implants. Int J Mater Res 103:207–216. https://doi.org/10.3139/146.110666

    Article  Google Scholar 

  • Zamir A, Diemoz PC, Vittoria FA, Hagen CK, Endrizzi M, Olivo A (2017) Edge illumination x-ray phase tomography of multi-material samples using a single-image phase retrieval algorithm. Opt Express 25:11984–11996

    Article  Google Scholar 

  • Zanette I, Weitkamp T, Donath T, Rutishauser S, David C (2010) Two-dimensional x-ray grating interferometer. Phys Rev Lett 105:248102

    Article  Google Scholar 

  • Zanette I, Zhou T, Burvall A, Lundstrom U, Larsson DH, Zdora M, Thibault P, Pfeiffer F, Hertz HM (2014) Speckle-based x-ray phase-contrast and dark-field imaging with a laboratory source. Phys Rev Lett 112. https://doi.org/10.1103/PhysRevLett.112.253903

  • Zbib MB, Parab ND, Chen WNW, Bahr DF (2015) New pulverization parameter derived from indentation and dynamic compression of brittle microspheres. Powder Technol 283:57–65. https://doi.org/10.1016/j.powtec.2015.04.066

    Article  Google Scholar 

  • Zdora MC, Thibault P, Deyhle H, Vila-Comamala J, Rau C, Zanette I (2018) Tunable x-ray speckle-based phase-contrast and dark-field imaging using the unified modulated pattern analysis approach. J Instrum 13. https://doi.org/10.1088/1748-0221/13/05/c05005

    Article  Google Scholar 

  • Zoofan B, Kim JY, Rokhlin SI, Frankel GS (2006) Phase-contrast x-ray imaging for nondestructive evaluation of materials. J Appl Phys 100:014502. https://doi.org/10.1063/1.2209889

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheridan Mayo .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mayo, S., Endrizzi, M. (2019). X-Ray Phase Contrast Methods. In: Ida, N., Meyendorf, N. (eds) Handbook of Advanced Nondestructive Evaluation. Springer, Cham. https://doi.org/10.1007/978-3-319-26553-7_54

Download citation

Publish with us

Policies and ethics