Skip to main content

Neutron Radiography and Tomography

  • Reference work entry
  • First Online:
Handbook of Advanced Nondestructive Evaluation

Abstract

In this chapter, the basics and applications of neutron radiography and neutron tomography are presented, outlining the principles of neutron physics. Then in the subsequent sections, different methods of neutron imaging are described and examples are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 759.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen AH, Kak AC (1984) Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm. Ultrason Imaging 6:81–94

    Article  Google Scholar 

  • Anderson IS, et al (eds) (2009) Neutron imaging and applications, neutron scattering applications and techniques. Springer Science and Business Media, LLC. https://doi.org/10.1007/978-0-387-78693-3-6

  • Annet JF (2013) Supercunductivity, superfluids and condensates. Oxford University Press, Chapter 3.7

    Google Scholar 

  • ASTM Standards designation: E 803-91 (Reapproved 1996) Standard test method for determining the L/D ratio of neutron radiography beams. https://www.astm.org/Standards/E803.htm

  • Aull S, Ebrahimi O, Karakas N, Knobloch J, Kugeler O, Treimer W (2012) Suppressed Meissner-effect in niobium: visualized with polarized neutron radiography. J Phys Conf Ser 340(012001):1–7. https://doi.org/10.1088/1742-6596/340/1/012001

    Article  Google Scholar 

  • Aydiner CC, Uetuendag E, Clausen B, Hanan JC, Winholtz RA, Bourke MAM, Peker A (2005) Residual stresses in a bulk metallic glass – stainless steel composite. Mater Sci Eng A 399:107–113

    Article  Google Scholar 

  • Bacon GE (1975) Neutron diffraction., Chapter 3, 3rd edn. Clarendon Press, Oxford

    MATH  Google Scholar 

  • Badurek G (2011) NESY Winter School, http://planner2011.unileoben.ac.at/fileadmin/shares/planner2011/docs/private/29-Badurek.pdf

  • Badurek G, Hochhold M, Leeb H (1997a) Neutron magnetic tomography – a novel technique. Physica B 234–236:1171–1173

    Article  Google Scholar 

  • Badurek G, Hochhold M, Leeb H, Buchelt R, Korinek F (1997b) A proposal to visualize magnetic domains within bulk materials. Physica B 241–243:1207–1209

    Article  Google Scholar 

  • Badurek G, Hochhold M, Leeb H, Buchelt R, Korinek F (1998) A proposal to visualize magnetic domains within bulk materials. Physica B 241–243:1207–1209

    Google Scholar 

  • Badurek G, Buchelt RJ, Kroupa G, Baron M, Villa M (2000) Permanent magnetic field-prism polarizer for perfect crystal neutron interferometers. Physica B 283:389–392

    Article  Google Scholar 

  • Boeni P, Miinzer W, Ostermann A (2009) Phys B Condens Matter 404(17):2620–2623

    Article  Google Scholar 

  • Bracewell RN (1956) Aust J Phys 9:198

    Article  MathSciNet  Google Scholar 

  • Brenizer JS (2013) A review of significant advances in neutron imaging from conception to the present. Phys Procedia 43:10–20

    Article  Google Scholar 

  • Chadwick J (1932) Possible existence of a neutron. Nature 129:312

    Article  Google Scholar 

  • Deans SR (1983) The radon transform and some of its applications. Wiley, New York. ISBN 13: 978-486-46421-7 and 10: 0-486-46241-2

    Google Scholar 

  • Dhiman I, Ziesche R, Anand VK, Riik L, Song G, Islam ATMN, Tanaka I, Treimer W (2017) Thermodynamics of Meissner effect and flux pinning behavior in the bulk of single-crystal La2−xSrxCuO4 (x=0.09). Phys Rev B 96:104517-1–104517-10

    Article  Google Scholar 

  • Ernst C (1997) Untersuchung von π – Flippern mit kalten Neutronen. Diploma thesis, supervisor W. Treimer, FB II, Technische Fachhochschule Berlin

    Google Scholar 

  • Glatter O, Kratky O (1982) Small angle X-ray scattering. Academic Press, London

    Google Scholar 

  • Gruenzweig C (2009) Neutron grating interferometry for imaging magnetic structures in bulk ferromagnetic materials. Doctorate thesis ETH Zuerich, Swiss, Dissertation ETH Nr. 18612

    Google Scholar 

  • Gruenzweig C, David C, Bunk O, Dierolf M, Frei G, KÃijhne G, SchÃd’fer R, Pofahl S, RÃÿnnow HMR, Pfeiffer F (2008a) Bulk magnetic domain structures visualized by neutron dark-field imaging. Appl Phys Lett 93:112504

    Article  Google Scholar 

  • Gruenzweig C, David C, Bunk O, Dierolf M, Frei G, Kuehne G, Kohlbrecher J, Schaefer R, Lejcek P, RAynnow HMR, Pfeiffer F (2008b) Phys Rev Lett 101:025504

    Article  Google Scholar 

  • Halpern O, Johnson MH (1939) On the magnetic scattering of neutrons. Phys Rev 55:898

    Article  MATH  Google Scholar 

  • Hansen P C and Saxild-Hansen M (2010). AIR Tools - A MATLAB Package of Algebraic Iterative Reconstruction Techniques: Version 1.0 for Matlab 7.8. Kgs. Lyngby, Denmark: Technical University of Denmark, DTU Informatics, Building 321. IMM-Technical Report-2010–15

    Google Scholar 

  • Hansen PC, Saxild-Hansen M (2012) AIR tools – a MATLAB package of algebraic iterative reconstruction methods. J Comput Appl Math 236:2167–2178

    Article  MathSciNet  MATH  Google Scholar 

  • Hayter JB, Mook HA (1989) Discrete thin-film multilayer design for X-ray and neutron supermirrors. J Appl Crystallogr 22:35

    Article  Google Scholar 

  • Herman GT (1980) Image reconstruction from projections in computer science and applied mathematics. Academic Press, New York

    Google Scholar 

  • Herzig C (1997) Experimentelle Realisierung von 3D-tomographien aus Neutronenradiogra-phien. Diploma thesis, supervisor W. Treimer, FB II, Technische Fachhochschule Berlin

    Google Scholar 

  • Hilger A (2010) Charakterisierung magnetischer Strukturen durch bildgebende Verfahren mit kalten Neutronen. Doctoral thesis, D 83, Technical University Berlin

    Google Scholar 

  • Hochhold M, Leeb H, Badurek G (1996) Tensorial neutron tomography: a first approach. J Magn Magn Mater 157–158:575

    Article  Google Scholar 

  • Iavarone M, Moore S, Fedor J, Ciocys S, Karapetrov G, Pearson J, Novosad V, Bader S (2014) Visualizing domain wall and reverse domain superconductivity. Nat Commun 5:4766

    Article  Google Scholar 

  • Jericha E, Szeywerth R, Leeb H, Badurek G (2007) Reconstruction techniques for tensorial neutron tomography. Physica B 397:159–161

    Article  Google Scholar 

  • Josic L, Lehmann E, Kaestner A (2011) Energy selective neutron imaging in solid state materials science. Nucl Instrum Methods Phys Res Sect A 651:166–170

    Article  Google Scholar 

  • Kaczmarz S (1937) Angenaeherte Aufloesung von Systemen linearer Gleichungen. Bulletin de l’Académie Polonaise des Sciences et Lettres A35:355–357

    Google Scholar 

  • Kak AC, Slaney M (1999) Principles of computerized tomographic imaging. IEEE Press, Inc, New York

    MATH  Google Scholar 

  • Kardjilov N, Manke I, Strobl M, Hilger A, Treimer W, Meissner M, Krist T, Banhart J (2008) Nat Phys 4:399–403

    Article  Google Scholar 

  • Keimer B, Belk N, Birgeneau RJ, Cassanho A, Chen CY, Greven M, Kastner MA, Aharony A, Endoh Y, Erwin RW, Shirane G (1992) Magnetic excitations in pure, lightly doped, and weakly metallic La2CuO4. Phys Rev B 46:14034

    Article  Google Scholar 

  • Kirkwood HJ, Zhang SY, Tremsin AS, Korsunsky AM, Baimpas N, Abbey B (2015) Neutron strain tomography using the radon transform. Mater Today Proc 2S:S414–S423

    Article  Google Scholar 

  • Kraft J (1996) Konstruktion, Aufbau und Test einer Neutronenpolarisations- und analyseeinrich-tung. Diploma thesis, supervisor W. Treimer, FB II, Technische Fachhochschule Berlin

    Google Scholar 

  • Krist T, Kennedy SJ, Hick TJ, Mezei F (1998) Physica B 241–243:82–85

    Google Scholar 

  • Leeb H, Hochhold AM, Badurek G, Buchelt RJ, Schricker A (1998) Neutron magnetic tomography: a feasibility study. Aust J Phys 51:401–413

    Article  Google Scholar 

  • Leeb H, Szeywerth R, Jericha E, Badurek G (2005) Towards manageable magnetic field retrieval in bulk materials. Physica B 356:187–191

    Article  Google Scholar 

  • Maass P, Treimer W, Feye-Treimer U (1992) Tomographic Methods for 2D Reconstructions with the Double Crystal Diffractometer. IMPACT, 4(3):250–268

    Article  MATH  Google Scholar 

  • Magnetic form factors: see, https://www.ill.eu/sites/ccsl/ffacts/ffachtml.html

  • Manke I, Kardjilov N, Hilger A, Strobl M, Dawson M, Banhart J (2009) Polarized neutron imaging at the CONRAD instrument at Helmholtz Centre Berlin. Nucl Instrum Methods Phys Res Sect A 605(1–2):26–29

    Article  Google Scholar 

  • Manke I, Kardjilov N, Schaefer R, Hilger A, Strobl M, Dawson M, GrAijnzweig C, Behr G, Hentschel M, David C et al (2010) Three-dimensional imaging of magnetic domains. Nat Commun 1:125

    Article  Google Scholar 

  • Messiah A (1999) Quantum mechanics. Dover Publishings, Inc, Mineola., Chapter II

    MATH  Google Scholar 

  • Mezei F (1972) Neutron spin echo: a new concept in polarized thermal neutron techniques. Z Physik 255(2):146–160

    Article  Google Scholar 

  • Mezei F (1976) Novel polarized neutron devices: supermirror and spin component amplifier. Commun Phys 1:81

    Google Scholar 

  • Múller KA, Bednorz JG (1987) The discovery of a class of high-temperature superconductors. Science 237:1133

    Article  Google Scholar 

  • NIST Neutron scattering length and cross sections. https://www.ncnr.nist.gov/resources/n-lengths/, https://physics.nist.gov/cuu/Constants/index.html

  • NIST Center for Neutron Research. https://ncnr.nist.gov/resources/n-lengths/elements/fe.html

  • Pfeiffer F, Weitkamp T, Bunk O, David C (2006) Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources. Nat Phys 2:258

    Article  Google Scholar 

  • Poole CP, Farach HA, Prozorov R (2007) Superconductivity, 2nd edn. Elsevier Ltd, p 53. Copyright 1995–2007

    Google Scholar 

  • Radon J (1917) Ueber die Bestimmung von Funktionen durch ihre Integralwerte lAd’ngs gewisser Mannig-faltigkeiten. Berichte Saechsischer Akademie Der Wissenschaften 29:262

    Google Scholar 

  • Rauch H, Werner SA (2000) Neutron interferometry in lessons in experimental quantum mechanics. Clarendon Press, Oxford, p 3

    Google Scholar 

  • Reimann T (2017) Vortex matter beyond SANS, Neutron studies of vortex structures covering a length scale of 0.01 to 10 μm. Doctorate thesis, Technische Universitaet Muenchen Physik-Department, Institut E21, Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II)

    Google Scholar 

  • Reimann T, Muehlbauer S, Schulz M, Betz B, Kaestner A, Pipich V, Boeni P, Gruenzweig C (2015) Visualizing the morphology of vortex lattice domains in a bulk type-II superconductor. Nat Commun 6:8813

    Article  Google Scholar 

  • Reimann T, Muehlbauer S, Horisberger M, Boeni P, Schulz M (2016) The new neutron grating interferometer at the ANTARES beamline: design, principles, and applications. J Appl Crystallogr 49:1488–1500

    Article  Google Scholar 

  • Rekveldt MT (1973) Study of ferromagnetic bulk domains by neutron depolarisation in three dimensions. Z Physik 259:391–410

    Article  Google Scholar 

  • Rekveldt MT (1976) Correlation in ferromagnetic domain structures studied by means of the neutron depolarization technique. J Magn Magn Mater 1:342

    Article  Google Scholar 

  • Rosenfeld A, Kak AC (1982) Digital picture processing, computer science and applied mathematics. Academic Press Inc., New York

    MATH  Google Scholar 

  • Sabine TM, Bertram WK (1999) The use of multiple-scattering data to enhance small-angle neutron scattering experiments. Acta Crystallogr A 55:500

    Article  Google Scholar 

  • Sales M, Strobl M, Shinohara T, Tremsin A, Theil Kuhn L, Lionheart WRB, Desai NM, Dahl AB, Schmidt S (2018) Three dimensional polarimetric neutron tomography of magnetic fields. Sci Rep 8:2214. https://doi.org/10.1038/s41598-018-20461-7

    Article  Google Scholar 

  • Santisteban JR, Edwards L, Steuwer A, Withers PJ (2001) Time-of-flight neutron transmission diffraction. J Appl Crystallogr 34:289–297

    Article  Google Scholar 

  • Santisteban JR, Edwards L, Fizpatrick ME, Steuwer A, Withers PJ (2002) Engineering applications of Bragg-edge neutron transmission. Appl Phys A Mater Sci Process 74(Suppl):S1433–S1436. https://doi.org/10.1007/s003390101241

    Article  Google Scholar 

  • Schaerpf O (1989) Comparison of theoretical and experimental behaviour of supermirrors and discussion of limitations. Physica B: Condensed Matter, Volumes 156–157, January–February, 631:638

    Google Scholar 

  • Schaerpf O. The spin of the neutron as a measuring probe.

    Google Scholar 

  • Schaper J (1996) Untersuchungen zum Refraktionskontrast bei Tomographien mit themischen Neutronen. Diploma thesis, supervisor W. Treimer, FB II, Technische Fachhochschule Berlin

    Google Scholar 

  • Schillingen B (1996) 3D computer tomography with thermal neutrons at FRM garching. J Neutron Res 4:57–63

    Article  Google Scholar 

  • Schillinger B, Gebhard R, Haas B, Ludwig W, Rausch C, Wagner U (1996) 3D neutron tomography in material testing and archaeology. In: Proceedings of the 5th world conference on neutron radiography, Berlin, printed 1997, pp 688–693

    Google Scholar 

  • Schulz M (2010) Radiography with polarised neutrons. Doctorate thesis TU Muenchen, Physik Department E21 (Lehrstuhl fuer Experimentalphysik III)

    Google Scholar 

  • Schulz M, Neubauer A, Masalovich S, Muehlbauer M, Calzada E, Schillinger B, Pfeiderer C, Boeni P (2010a) Towards a tomographic reconstruction of neutron depolarization data. J Phys Conf Ser 211:012025

    Article  Google Scholar 

  • Schulz M, Neubauer A, Muehlbauer M, Calzada E, Schillinger B, Pfeiderer C, Boeni P (2010b) Polarized neutron radiography with a periscope. J Phys Conf Ser 200:112009

    Article  Google Scholar 

  • Sears VF (1992) Neutron scattering lengths and cross sections. Neutron News 3(3):26–37. https://doi.org/10.1080/10448639208218770

    Article  MathSciNet  Google Scholar 

  • Shi X, Lin PV, Sasagawa T, Dobrosavljević V, Popović D (2014) Two-stage magnetic-field-tuned superconductor insulator transition in underdoped La2−xSrxCuO4. Nat Phys 10:437

    Article  Google Scholar 

  • Shinohara T, Sakai K, Ohi M, Kai T, Harada M, Oikawa K, Maekawa F, Suzuki J, Oku T, Takata S, Aizawa K, Arai M, Kiyanagi Y (2011) Quantitative magnetic field imaging by polarized pulsed neutrons at J-PARC. Nucl Instrum Methods Phys Res A 651:121–l25

    Article  Google Scholar 

  • Shull CG, Wollan EO, Koehler WC (1951) Neutron scattering and polarization by ferromagnetic materials. Phys Rev 84(5):912–921

    Article  Google Scholar 

  • Strobl M (2014) General solution for quantitative dark-field contrast imaging with grating interferometers. Sci Rep 4:7243

    Article  Google Scholar 

  • Strobl M, Treimer W, Hilger A (2004a) Small angle scattering signals for (neutron) computerized tomography. Appl Phys Lett 85:448

    Google Scholar 

  • Strobl M, Treimer W, Hilger A (2004b) First realisation of a three-dimensional refraction contrast computerised neutron tomography. Nucl Instrum Methods Phys Res B 222:653

    Article  Google Scholar 

  • Strobl M, Treimer W, Walter P, Keil S, Manke I (2007) Magnetic field induced differential neutron phase contrast imaging. Appl Phys Lett 91:254104

    Article  Google Scholar 

  • Strobl M, Grünzweig C, Hilger A, Manke I, Kardjilov N, David C, Pfeiffer F (2008a) Neutron dark-field tomography. Phys Rev Lett 101:123902

    Article  Google Scholar 

  • Surkau R, Becker J, Ebert M, Grossmann T, Heil W, Hofmann D, Humblot H, Leduc M, Otten EW, Rohe D, Siemensmeyer K, Steiner M, Tasset F, Trautmann N (1997) Realization of a broad band neutron spin filter with compressed, polarized 3He gas. Nucl Instrum Methods Phys Res A 384(2–3):444–450

    Article  Google Scholar 

  • Takagi H, Ido T, Ishibashi S, Uota M, Uchida S, Tokura Y (1989) Superconductor-to-nonsuperconductor transition in (La1−xSrx)2CuO4 as investigated by transport and magnetic measurements. Phys Rev B 40:2254

    Article  Google Scholar 

  • Tarascon J-M, Greene L, McKinnon W, Hull G, Geballe T (1987) Superconductivity at 40 K in the oxygen-defect perovskites La2−xSrxCuO4−y. Science 235:1373

    Article  Google Scholar 

  • Treimer W (1998) On double crystal diffractometry. Cryst Res Technol 33:643

    Article  Google Scholar 

  • Treimer W (2014) Radiography and tomography with polarized neutrons. J Magn Magn Mater 350:188–198

    Article  Google Scholar 

  • Treimer W, Feye-Treimer U (1998) Two-dimensional reconstruction of small angle scattering pattern from rocking curves. Physica B 241–243:128–1230

    Google Scholar 

  • Treimer W, Feye-Treimer U (2011) On coherence in neutron imaging. Nucl Instrum Methods Phys Res A 651:117–120

    Article  Google Scholar 

  • Treimer W, Maass P, Strothmann H, Feye-Treimer U (1991) High-resolution neutron small-angle scattering with a double-crystal diffractometer and 2D reconstruction. Physica B 174:532–536

    Article  MATH  Google Scholar 

  • Treimer W, Höfer A, Strothmann H (1997) The use of a multi-double-crystal diffractometer to investigate nickel domains. J Appl Crystallogr 30:849–853

    Article  Google Scholar 

  • Treimer W, Feye-Treimer U, Herzig C (1998) On neutron tomography. Physica B 241–243:1297–1203

    Google Scholar 

  • Treimer W, Strobl M, Hilger A, Seifert C, Feye-Treimer U (2003) Refraction as imaging signal for computerized (neutron) tomography. Appl Phys Lett 83:389

    Article  Google Scholar 

  • Treimer W, Hilger A, Kardjilov N, Strobl M (2005a) Review about old and new imaging signals for neutron computerized tomography. Nucl Instrum Methods Phys Res Sect A 542(2005):367–375

    Article  Google Scholar 

  • Treimer W, Kardjilov N, Feye-Treimer U, Hilger A, Manke I, Strobl M (2005b) Absorption- and phase-based imaging signals for neutron tomography. In: Kramer B (ed) Advances in solid state physics, vol 45. Springer Verlag, Berlin/Heidelberg/New York, pp 407–420. ISSN 1438-4329

    Google Scholar 

  • Treimer W, Kardjilov N, Feye-Treimer U, Hilger A, Manke I, Strobl M (2005c) Adv Solid State Phys 45. Ed. Bernhard Kramer, Springer Verlag, pp 407–420

    Google Scholar 

  • Treimer W, Strobl M, Hilger A, Peschke HJ (2005d) Neutron tomography using small angle scattering data. IEEE 52(1):386–388

    Google Scholar 

  • Treimer W, Seidel SO, Ebrahimi O (2010) Neutron tomography using a crystal monochromator. Nucl Instrum Methods Phys Res A 621:502–505

    Article  Google Scholar 

  • Treimer W, Ebrahimi O, Karakas N, Seidel SO (2011) PONTO- an instrument for imaging with polarized neutrons. Nucl Instrum Methods Phys Res A 651:53–56. https://doi.org/10.1016/j.nima.2011.01.009

    Article  Google Scholar 

  • Treimer W, Ebrahimi O, Karakas N (2012a) Observation of partial Meissner effect and flux pinning in superconducting lead containing non-superconducting parts. Appl Phys Lett 101:162603-1–162603-4

    Article  Google Scholar 

  • Treimer W, Ebrahimi O, Karakas N, Prozorov R (2012b) Polarized neutron imaging and three-dimensional calculation of magnetic flux trapping in bulk of superconductors. Phys Rev B 85(18):184522-1–184522-9

    Article  Google Scholar 

  • Treimer W, Ebrahimi O, Karakas N (2014) PONTO: an instrument for high resolution radiography and tomography with polarized neutrons. Neutron News 25(2):15–18. https://doi.org/10.1080/10448632.2014.902698

    Article  Google Scholar 

  • Tremsin AS, McPhate JB, Vallerga JV, Siegmund OHW, Feller WB, Lehmann E, Butler LG, Dawson M (2011) High-resolution neutron microtomography with noiseless neutron counting detector. Nucl Instrum Methods Phys Res A 652:400–403

    Article  Google Scholar 

  • Van Hemelryck Tessa, Wuyts Sarah, Goossens Maggie, Batenburg Kees, Joost, Sijbers Jan (2007) The implementation of iterative reconstruction algorithms in Matlab. Masters thesis, University College of Antwerp

    Google Scholar 

  • Withers PJ, Turski M, Edwards L, Bouchard PJ, Buttle DJ (2008) Recent advances in residual stress measurement. Int J Press Vessel Pip 85:118–127

    Article  Google Scholar 

  • Woracek R (2015) Energy selective neutron imaging for the characterization of polycrystalline materials. PhD dissertation, University of Tennessee. http://trace.tennessee.edu/utkgraddiss/3375

  • Woracek R, Penumadu D, Kardjilov N, Hilger A, Strobl M, Wimpory RC, Manke I, Banhart J (2011) Neutron Bragg-edge-imaging for strain mapping under in situ tensile loading. J Appl Phys 109:093506

    Article  Google Scholar 

  • Woracek R, Penumadu D, Kardjilov N, Hilger A, Boin M, Banhart J, Manke I (2015) Neutron Bragg edge tomography for phase mapping. Phys Procedia 69:227–236

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Treimer .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Treimer, W. (2019). Neutron Radiography and Tomography. In: Ida, N., Meyendorf, N. (eds) Handbook of Advanced Nondestructive Evaluation. Springer, Cham. https://doi.org/10.1007/978-3-319-26553-7_37

Download citation

Publish with us

Policies and ethics