Skip to main content

Induction Thermography of Surface Defects

  • Reference work entry
  • First Online:
Handbook of Advanced Nondestructive Evaluation

Abstract

A survey on theory, characteristic quantities, and the experimental technique of induction thermography is given. Induction thermography is used for surface defect detection in forged parts of ferromagnetic steel at typical frequencies of 100–300 kHz. Values for the detection limits for various types of cracks and approaches to determine crack depths are given. The sensitivity for crack detection is comparable to magnetic particle inspection. A hidden defect in ferritic steel with a coverage of 140 μm was detected by lowering the induction frequency down to 1500 Hz. Cracks in silicon solar cells were detected. Defects of fibers were detected in carbon fiber-reinforced polymer (CFRP). Inductive excitation is complementary to flash excitation. Crack detection in railway components like rails and wheels is shown. In rails, a larger defect could be detected from a test car moving at a speed of up to 15 km/h. A fully automated demonstrator for wheel testing was built up, which can detect surface defects in railway wheels with sensitivity comparable to magnetic particle testing. Standardization of thermography has gained progress in the last years and led to first standards on active thermography and induction thermography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 759.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balaji L, Balasubramanian K, Krishnamurty C (2013) Induction thermography for non-destructive evaluation of adhesive bonds. In: Review of progress in quantitative nondestructive evaluation, vol 39, AIP conference proceedings 1511, pp 579–586

    Google Scholar 

  • Bamberg J, Erbeck G, Zenzinger G (1999) Eddy-Therm: Ein Verfahren zur bildgebenden Prüfung metallischer Bauteile. ZfP-Zeitung 68:60–62

    Google Scholar 

  • Bowler N (2006) Frequency-dependence of relative permeability in steel. Rev of Quant NDE 25:1269–1276

    Google Scholar 

  • Breitenstein O, Rakotoniaina J, Al Rifai M (2003) Quantitative evaluation of shunts in solar cells by lock-in thermography. Prog Photovolt Res Appl 11:515–526

    Article  Google Scholar 

  • Carslaw H, Jaeger J (1959) Conduction of heat in solids. Claredon Press, Oxford, p 80

    Google Scholar 

  • Ehlen A, Netzelmann U, Lugin S, Finckbohner M, Valeske B, Bessert S (2016) Automated NDT of railway wheels using induction thermography. In: Proceedings of the 55th annual conference of the British Institute of non-destructive testing, Nottingham

    Google Scholar 

  • Guo J, Gao X, Toma E, Netzelmann U (2017) Anisotropy in carbon fiber reinforced polymer (CFRP) and its effect on induction thermography. Nondestr Test Evaluat Int 91:1–8

    Google Scholar 

  • He Y, Tian G, Pan M, Chen D (2014) Impact evaluation in carbon fiber reinforced plastic (CFRP) laminates using eddy current thermography. Compos Struct 109:1–7

    Article  Google Scholar 

  • Heath D, Winfree W (1990) Quantitative thermal diffusivity imaging of disbonds in thermal protective coatings using inductive heating. In: Thompson DO, Chimenti DE (eds) Review of progress in quantitative nondestructive evaluation, vol 9. Plenum Press, New York, pp 577–584

    Chapter  Google Scholar 

  • Jäckel P, Netzelmann U (2013) The influence of external magnetic fields on crack contrast in magnetic steel detected by induction thermography. QIRT J 10:237–247

    Article  Google Scholar 

  • Koch S (2014) Non-destructive testing of bars by inductive heat-flux thermography. Millenium Steel India, pp 140–142

    Google Scholar 

  • Kremer K J (1984) Das THERM-O-MATIC-Verfahren – Ein neuartiges Verfahren für die Online-Prüfung von Stahlerzeugnissen auf Oberflächenfehler. In: Proceedings of the 3rd European conference in nondestructive testing, Florence, 15–18 October 1984, pp 171–186

    Google Scholar 

  • Lehtiniemi R, Hartikainen J (1994) An application of induction heating for fast thermal nondestructive evaluation. Rev Sci Instrum 65:2099–2101

    Article  Google Scholar 

  • Liang T, Ren W, Tian GY, Elradi M, Gao Y (2016) Low energy impact damage detection in CFRP using eddy current pulsed thermography. Compos Struct 143:352–361

    Article  Google Scholar 

  • Netzelmann U (2006) German Patent DE102006050025B3

    Google Scholar 

  • Netzelmann U, Walle G (2008) Induction thermography as a tool for reliable detection of surface defects in forged components. In: Proceedings of the 17th World conference on nondestructive testing, 25–28 Oct 2008, Shanghai, China

    Google Scholar 

  • Netzelmann U, Walle G, Ehlen A, Lugin S, Finckbohner M, Bessert S (2016a) NDT of railway components using induction thermography. In: AIP conference proceedings 1706, 150001

    Google Scholar 

  • Netzelmann U, Walle G, Lugin S, Ehlen A, Bessert S, Valeske B (2016b) Induction thermography: principle, applications and first steps towards standardization. QIRT J 13:170–181

    Article  Google Scholar 

  • Oswald-Tranta B (2004) Thermoinductive investigations of magnetic materials for surface cracks. QIRT J 1:33–46

    Article  Google Scholar 

  • Oswald-Tranta B (2018) Induction thermography for surface crack detection and depth determination. Appl Sci 8:257

    Article  Google Scholar 

  • Riegert G, Zweschper T, Busse G (2004) Lockin thermography with eddy current excitation. QIRT J 1:21–32

    Article  Google Scholar 

  • Tang B, Hou D, Hong T, Ye S (2018) Influence of the external magnetic field on crack detection in pulsed eddy current thermography. Insight 60:240–246

    Article  Google Scholar 

  • Tsopelas N, Siakavellas N (2011) Experimental evaluation of electromagnetic-thermal non-destructive inspection by eddy current thermography in square aluminum plates. NDT & E Int 44:609–620

    Article  Google Scholar 

  • Vrana J, Goldammer M, Baumann J, Rothenfusser M, Arnold W (2008) Mechanisms and models for crack detection with induction thermography. In: Review of progress in quantitative nondestructive evaluation, vol 27, AIP conference proceedings 975, pp 475–482

    Google Scholar 

  • Walle G, Netzelmann U (2006) Thermographic crack detection in ferritic steel components using inductive heating. In: Proceedings of the 9th ECNDT Berlin, 25–29 Sept 2006, DGZfP Berichtsband BB 103

    Google Scholar 

  • Walle G, Valeske B, Netzelmann U (2009) Eine thermische Prüftechnik zur Oberflächenrissprüfung leitfähiger Materialien. Materialprüfung (9):593–602

    Article  Google Scholar 

  • Walle G, Netzelmann U, Stumm C, Valeske B (2012) Low frequency induction thermography for the characterization of hidden cracks in ferromagnetic steel components. In: Proceedings of the 11th international conference on quantitative infrared thermography (QIRT), 11–14 June 2012, Naples, Italy, paper 218

    Google Scholar 

  • Wang Y, Gao X, Netzelmann U (2018) Detection of surface cracks in metals under coatings by induction thermography. In: Proceedings of the 14th quantitative infrared thermography conference, Berlin 25–29 June 2018, DGZfP BB 167

    Google Scholar 

  • Wilson J, Tian G, Abidin I, Yang S, Almond D (2010) Pulsed eddy current thermography: system development and evaluation. Insight Non-Destr Test Cond Monit 52:87–90

    Article  Google Scholar 

  • Zenzinger G, Bamberg J, Satzger W, Carl V (2007) Thermographic crack detection by eddy current excitation. Nondestruct Test Evaluat Int 22:101–111

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udo Netzelmann .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Netzelmann, U. (2019). Induction Thermography of Surface Defects. In: Ida, N., Meyendorf, N. (eds) Handbook of Advanced Nondestructive Evaluation. Springer, Cham. https://doi.org/10.1007/978-3-319-26553-7_31

Download citation

Publish with us

Policies and ethics