Skip to main content

Motion-Induced Eddy Current Testing

  • Reference work entry
  • First Online:
Handbook of Advanced Nondestructive Evaluation

Abstract

Nondestructive material testing and evaluation is a vast interdisciplinary field as well as a challenge due to the variety of applications. Whereas the focus of nondestructive testing is to identify anomalies within a specimen, the reconstruction of defect properties and their influence on the materials usability is the focus of nondestructive evaluation. In this chapter the technology of motion-induced eddy current testing (MIECT) is introduced. In contrast to traditional eddy current testing (ECT) methods, MIECT makes use of relative motion between the object under test and permanent magnets. The induced eddy currents interact with the applied magnetic field and result in a Lorentz force, depending on the impressed magnetic induction, the electrical conductivity, and the measuring velocity. Because permanent magnets produce considerably stronger magnetic fields than current-carrying ECT coils, even deep internal defects can be detected using the Lorentz force eddy current testing (LET). It is shown how the electromagnetic fields can be described theoretically and simulated numerically, as well as how imperfections/defects in non-ferromagnetic, conducting specimens can be detected using an appropriate laboratory environment. Comparative studies have shown that LET applied to metallic composite material or friction stir welds is a promising and competitive alternative to traditional ECT methods enabling the contactless evaluation of moving electrical conductors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 759.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achenbach JD (2000) Quantitative nondestructive evaluation. Int J Solids Struct 37(1–2):13–27

    Article  MATH  Google Scholar 

  • Amati N, Tonoli A, Canova A, Cavalli F, Padovani M (2007) Dynamic behavior of torsional eddy-current dampers: sensitivity of the design parameters. IEEE Trans Magn 43(7):3266–3277

    Article  Google Scholar 

  • American Welding Society (2016) Specification of friction stir welding of aluminum alloys for aerospace. AWS D17.3/D17.3M

    Google Scholar 

  • Antunes OJ, Bastos JPA, Sadowski N, Razek A, Santandrea L, Bouillault F, Rapetti F (2006a) Comparison between non-conforming movement methods. IEEE Trans Magn 42(4):599–602

    Article  Google Scholar 

  • Antunes OJ, Bastos JPA, Sadowski N, Razek A, Santandrea L, Bouillault F, Rapetti F (2006b) Torque calculation with conforming and non- conforming movement interface. IEEE Trans Magn 42(4):983–986

    Article  Google Scholar 

  • Biddlecombe CS, Simkin J, Jay AP, Sykulski JK, Lepaul S (1998) Transient Electromagnetic Analysis Coupled to Electric Circuits and Motion. IEEE Trans Magn 34(5):3182–3185

    Article  Google Scholar 

  • Binns KJ, Lawrenson PJ, Trowbridge CW (1992) The analytical and numerical solution of electric and magnetic fields. Wiley, Chichester

    Google Scholar 

  • Bird J, Lipo TA (2009) Modeling the 3-D rotational and translational motion of a Halbach rotor above a split-sheet guideway. IEEE Trans Magn 45(9):3233–3242

    Article  Google Scholar 

  • Brauer H, Ziolkowski M (2008) Eddy current testing of metallic sheets with defects using force measurements. Serb J Electr Eng 5(1):11–20

    Article  Google Scholar 

  • Brauer H, Porzig K, Mengelkamp J, Carlstedt M, Ziolkowski M, Toepfer H (2014) Lorentz force eddy current testing: a novel NDE – technique. COMPEL 33(6):1965–1977

    Article  MATH  Google Scholar 

  • Brauer H, Gorges S, Ziolkowski M (2017) Bewegungsinduzierte Wirbelstrompruefung von Verbundmaterialien. In: Proceedings of the DGZfP- Jahrestagung, Koblenz, Germany, pp 1–8

    Google Scholar 

  • Buffa A, Maday Y, Rapetti F (2000) Calculation of eddy currents in moving structures by a sliding mesh-finite element method. IEEE Trans Magn 36(4):1356–1359

    Article  Google Scholar 

  • Carlstedt M (2016) A contribution to the experimental validation in Lorentz force eddy current testing. Dissertation, Technische Universität Ilmenau, Ilmenau

    Google Scholar 

  • Carlstedt M, Porzig K, Ziolkowski M, Uhlig RP, Brauer H, Toepfer H (2013) Comparison of Lorentz force eddy current testing and common eddy current testing – measurements and simulations. Stud Appl Electromag XVII 39(1):218–225

    Google Scholar 

  • Carlstedt M, Porzig K, Uhlig RP, Zec M, Ziolkowski M, Brauer H (2014) Application of Lorentz force eddy current testing and eddy current testing on moving nonmagnetic conductors. Int J Appl Electromagn Mech 45(1):519–526

    Article  Google Scholar 

  • Chady T, Spychalski I (2017) Eddy current transducer with rotating permanent magnets. In: 22nd International Workshop on Electromagnetic Nondestructive Evaluation (ENDE 2017), Saclay, France, p 2

    Google Scholar 

  • Chari MVK, Konrad A, Palmo MA, D’Angelo J (1990) Simulation analysis of magnetic sensor for nondestructive testing by boundary element method. IEEE Trans Magn 26(2):877–880

    Article  Google Scholar 

  • COMSOL Inc., Burlington. Comsol Multiphysics, 2018

    Google Scholar 

  • Davat B, Ren Z, Lajoie-Mazenc M (1985) The movement in field modeling. IEEE Trans Magn 21(6):2296–2298

    Article  Google Scholar 

  • Dawes CJ, Thomas WM (1996) Friction stir process welds aluminum alloys. Weld J 75(3):41–45

    Google Scholar 

  • Demenko A (1996) Movement simulation in finite element analysis of electric machine dynamics. IEEE Trans Magn 32(3):1553–1556

    Article  Google Scholar 

  • Donoso G, Ladera CL, Martín P (2011) Damped fall of magnets inside a conducting pipe. Am J Phys 79(2):193–200

    Article  Google Scholar 

  • dos Santos TG, Ramos PM, dos Santos Vilaca P (2008) Nondestructive testing of friction stir welding: comparison of planar eddy current probes. In: Proceedings of the 16th IMEKO TC4 Symposium, Florence, Italy, pp 507–512

    Google Scholar 

  • Geirinhas Ramos HM, Rocha T, Pasadas D, A. Lopes Ribeiro (2013) Velocity induced eddy currents technique to inspect cracks in moving conducting media. In: IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, The Depot, Minneapolis, pp 931–934

    Google Scholar 

  • German Institute for Standardization (2015) Ruehrreibschweißen – Aluminium – Teil 5: Qualitaets- und Pruefungsanforderungen. DIN EN ISO 25239-5

    Google Scholar 

  • Golovanov C, Coulomb JL, Marechal Y, Meunier G (1998) 3D mesh connection techniques applied to movement simulation. IEEE Trans Magn 34(5):3359–3362

    Article  Google Scholar 

  • Gorges S, Brauer H, Ziolkowski M, Carlstedt M, Weise K, Schmidt R, Mengelkamp J (2016) Motion-induced eddy current testing of composite materials. In: Proceedings of the 19th World Conference on Non-destructive Testing (WCNDT), Munich, Germany, Fr.1.F

    Google Scholar 

  • Haus H, Melcher JR (1989) Electromagnetic fields and energy. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Hellier CJ (2013) Handbook of nondestructive evaluation, 2nd edn. McGraw-Hill Education LLC, New York

    Google Scholar 

  • Ida N (1995) Numerical modeling for non-destructive evaluation, 1st edn. Chapman & Hall, London

    Google Scholar 

  • Ida N, Bastos JPA (1997) Electromagnetics and calculation of fields, 2nd edn. New York, NY, Springer

    Book  Google Scholar 

  • Jiles DC (1990) Review of magnetic methods for nondestructive evaluation (Part 2). NDT Int 23(2):83–92

    Google Scholar 

  • Konstantin Weise (2016) Advanced modeling in Lorentz force eddy current testing. Dissertation, Technische Universität Ilmenau, Ilmenau

    Google Scholar 

  • Kim YG, Fujii H, Tsumura T, Komazaki T, Nakata K (2006) Three defect types in friction stir welding of aluminum die casting alloy. Mater Sci Eng A Struct 415(1–2):250–254

    Article  Google Scholar 

  • Kirpo M, Tympel S, Boeck T, Krasnov D, Thess A (2011) Electromagnetic drag on a magnetic dipole near a translating conducting bar. J Appl Phys 109(11):113921

    Article  Google Scholar 

  • Lai HC, Rodger D, Leonard PJ (1991) A finite element method for problems with moving parts. In: Proceedings of 8th International Conference on Computation in Electromagnetics (CEM91), London, UK, pp 211–213

    Google Scholar 

  • Leonard PJ, Lai HC, Hainsworth G, Rodger D, Eastham JF (1993) Analysis of the performance of tubular pulsed coil induction launchers. IEEE Trans Magn 29(1):686–690

    Article  Google Scholar 

  • Marechal Y, Meunier G, Coulomb JL, Magnin H (1992) A general purpose tool for restoring inter-element continuity. IEEE Trans Magn 28(2):1728–1731

    Article  Google Scholar 

  • ME-Meßsysteme (2014) Data sheet – K3D40. ME-Meßsysteme GmbH

    Google Scholar 

  • Mengelkamp J (2016) Forward and inverse calculation methods for Lorentz force evaluation applied to laminated composites. Dissertation, Technische Universität Ilmenau, Ilmenau

    Google Scholar 

  • Mengelkamp J, Ziolkowski M, Weise K, Carlstedt M, Brauer H (2015) Permanent magnet modeling for Lorentz force evaluation. IEEE Trans Magn 51(7):6301211

    Article  Google Scholar 

  • Mengelkamp J, Lattner D, Haueisen J, Carlstedt M, Weise K, Brauer H, Ziolkowski M, Eichardt R (2016) Lorentz force evaluation with differential evolution. IEEE Trans Magn 52(5):6001310

    Article  Google Scholar 

  • Mengelkamp J, Carlstedt M, Weise K, Ziolkowski M, Brauer H, Haueisen J (2017) Current density reconstructions for Lorentz force evaluation. Res Nondestruct Eval 28(2):76–100

    Article  Google Scholar 

  • Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R Rep 50(1–2):1–78

    Article  Google Scholar 

  • Mishra RS, De PS, Kumar N (2014) Friction stir welding and processing: science and engineering. Springer International Publishing, Cham

    Book  Google Scholar 

  • Mook G, Hesse O, Uchanin V (2007) Deep penetrating eddy currents and probes. Materials Testing, 49(5):258–264

    Article  Google Scholar 

  • Mook G, Michel F, Simonin J (2011) Electromagnetic imaging using probe arrays. StrojniÅ¡ki vestnik 57(3):227–236

    Article  Google Scholar 

  • Muramatsu K, Nakata T, Takahashi N, Fujiwara K (1996) Linear AC steady- state eddy current analysis of high speed conductor using moving coordinate system. IEEE Trans Magn 32(3):749–752

    Article  Google Scholar 

  • Muramatsu K, Takahashi N, Hashio T, Yamada C, Ogawa M, Kobayashi S, Kuwahara T (1999) 3-D eddy current analysis in moving conductor of permanent magnet type of retarder using moving coordinate system. IEEE Trans Energy Convers 14(4):1312–1317

    Article  Google Scholar 

  • Ooi B-T (1977) A dynamic circuit theory of the repulsive magnetic levitation system. IEEE Trans Power Appar Syst 96(4):1094–1100

    Article  Google Scholar 

  • Ooi B-T, Jain OP (1979) Force transients at guideway butt joints in repulsive magnetic levitation system. IEEE Trans Power Appar Syst PAS-98(1):323–330

    Article  Google Scholar 

  • Petković B (2013) Assessment of linear inverse problems in magnetocardiography and Lorentz force eddy current testing. Dissertation, Technische Universität Ilmenau, Ilmenau

    Google Scholar 

  • Petković B, Haueisen J, Zec M, Uhlig RP, Brauer H, Ziolkowski M (2013) Lorentz force evaluation: a new approximation method for defect reconstruction. NDT & E Int 59:57–67

    Article  Google Scholar 

  • Pietras A, Weglowski MS (2014) Imperfections in FSW joints and NDT methods of their detection. Biul Inst Spawalnictwa w Gliwicach 58(2):23–32

    Google Scholar 

  • Pitkänen J, Haapalainen J, Lipponen A, Sarkimo M (2014) NDT of friction stir welding PLFW1 to PLFW5 (FSWL98, FSWL100, FSWL101, FSWL102, FSWL103) NDT Data Report

    Google Scholar 

  • Porzig K, Carlstedt M, Ziolkowski M, Brauer H, Toepfer H (2014) Reverse engineering of ECT probes for nondestructive evaluation of moving conductors. AIP Conf Proc 1581:1519–1525

    Article  Google Scholar 

  • Preston TW, Reece ABJ, Sangha PS (1988) Induction motor analysis by time-stepping techniques. IEEE Trans Magn 24(1):471–474

    Article  Google Scholar 

  • Ramos HG, Lopes Ribeiro A (2014) Present and future impact of magnetic sensors in NDE. Procedia Eng 86(1):406–419

    Article  Google Scholar 

  • Ramos HG, Rocha T, Pasadas D, Ribeiro AL (2013) Faraday induction effect applied to the detection of defects in a moving plate. Rev Prog Q 32(1):1490–1497

    Google Scholar 

  • Reddy NR, Reddy GM (2016) Friction stir welding of aluminium alloys – a review. Int J Mech Eng Technol 7(2):73–80

    Google Scholar 

  • Reitz JR (1970) Forces on moving magnets due to eddy currents. J Appl Phys 41(5):2067–2071

    Article  Google Scholar 

  • Reitz JR, Davis LC (1972) Force on a rectangular coil moving above a conducting slab. J Appl Phys 43(4):1547–1553

    Article  Google Scholar 

  • Rocha TJ (2017) Velocity induced eddy current testing. Dissertation, Instituto Superior Te’cnico Lisboa, Lisboa

    Google Scholar 

  • Rocha TJ, Ramos HG, Lopes Ribeiro A, Pasadas DJ, Angani CS (2015a) Studies to optimize the probe response for velocity induced eddy current testing in aluminium. Measurement 67(1):108–115

    Article  Google Scholar 

  • Rocha TJ, Ramos HG, Lopes Ribeiro A, Pasadas DJ (2015b) Magnetic sensors assessment in velocity induced eddy current testing. Sensors Actuators A Phys 228(1):55–61

    Article  Google Scholar 

  • Rodger D, Eastham J (1985) Characteristics of a linear induction tachometer – a 3D moving conductor eddy current problem. IEEE Trans Magn 21(6):2412–2415

    Article  Google Scholar 

  • Rodger D, Lai HC, Leonard PJ (1990) Coupled elements for problems involving movement (switched reluctance motor). IEEE Trans Magn 26(2):548–550

    Article  Google Scholar 

  • Rodger D, Leonard PJ, Eastham JF (1991) Modelling electromagnetic rail launchers at speed using 3D finite elements. IEEE Trans Magn 27(1):314–317

    Article  Google Scholar 

  • Roemer U, Schoeps S, Weiland T (2014) Approximation of moments for the nonlinear magnetoquasistatic problem with material uncertainties. IEEE Trans Magn 50(2):417–420

    Article  Google Scholar 

  • Rosado LS, Santos TG, Piedade M’s, Ramos PM, Vilaça P (2010) Advanced technique for non-destructive testing of friction stir welding of metals. Measurement 43(8):1021–1030

    Article  Google Scholar 

  • Saslow WM (1992) Maxwell’s theory of eddy currents in thin conducting sheets, and applications to electromagnetic shielding and MAGLEV. Am J Phys 60(8):693–711

    Article  Google Scholar 

  • Shi Y, Zhang C, Li R, Cai M, Jia G (2015) Theory and application of magnetic flux leakage pipeline detection. Sensors 15(12):31036–31055

    Article  Google Scholar 

  • Storn R, Price K (1997) Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359

    Article  MathSciNet  MATH  Google Scholar 

  • Tan Y, Wang X, Moreau R (2015) An innovative contactless method for detecting defects in electrical conductors by measuring a change in electromagnetic torque. Meas Sci Technol 26:035 602

    Article  Google Scholar 

  • TETRA Gesellschaft für Sensorik, Robotik und Automation mbH. Betriebsanleitung: BASALT-C MMP-15, 2015

    Google Scholar 

  • Thess A, Votyakov E, Kolesnikov Y (2006) Lorentz force velocimetry. Phys Rev Lett 96(16):164501

    Article  Google Scholar 

  • Thess A, Votyakov E, Knaepen B, Zikanov O (2007) Theory of the Lorentz force flowmeter. New J Phys 9(8):299

    Article  Google Scholar 

  • Thomas WM, Nicholas ED, Needham JC, Murch MG, Temple-Smith P, Dawes CJ (1991) Friction stir butt welding. International Patent Application: PCT/GB92/02203

    Google Scholar 

  • Trowbridge CW, Sykulski JK (2006) Some key developments in computational electromagnetics and their attribution. IEEE Trans Magn 42(4):503–508

    Article  Google Scholar 

  • Uhlig RP (2014) An experimental validation of Lorentz force eddy current testing. Universitätsverlag Ilmenau, Ilmenau

    Google Scholar 

  • Uhlig RP, Zec M, Ziolkowski M, Brauer H (2011) Lorentz force eddy current testing: validation of numerical results. Proc Electrotech Inst 251:135–145

    Google Scholar 

  • Uhlig RP, Zec M, Brauer H, Thess A (2012a) Lorentz force eddy current testing: a prototype model. J Nondestruct Eval 31(4):357–372

    Article  Google Scholar 

  • Uhlig RP, Zec M, Ziolkowski M, Brauer H, Thess A (2012b) Lorentz force sigmometry: a contactless method for electrical conductivity measurements. J Appl Phys 111(9):094914

    Article  Google Scholar 

  • Voellner G (2010) Rührreibschweißen mit Schwerlast-Industrierobotern. Forschungsberichte IWB. Herbert Utz Verlag, München

    Google Scholar 

  • Weise K, Schmidt R, Carlstedt M, Ziolkowski M, Brauer H, Toepfer H (2015a) Optimal magnet design for Lorentz force eddy current testing. IEEE Trans Magn 51(9):6201415

    Article  Google Scholar 

  • Weise K, Ziolkowski M, Carlstedt M, Brauer H, Toepfer H (2015b) Oscillatory Motion of Permanent Magnets Above a Conducting Slab. IEEE Trans Magn 51(10):7209113

    Article  Google Scholar 

  • Yamazaki K (1997) Generalization of 3D eddy current analysis for moving conductors due to coordinate systems and gauge conditions. IEEE Trans Magn 33(2):1259–1262

    Article  MathSciNet  Google Scholar 

  • Yamazaki K (1999) 3D eddy current formulation for moving conductors with variable velocity of coordinate system using edge finite elements. IEEE Trans Magn 35(3):1594–1597

    Article  Google Scholar 

  • Ying P, Jiangjun R, Zhang Y, Yan G (2007) A composite grid method for moving conductor eddy-current problem. IEEE Trans Magn 43(7):3259–3265

    Article  Google Scholar 

  • Zec M (2013) Theory and numerical modelling of Lorentz force eddy current testing. Dissertation, Technische Universität Ilmenau

    Google Scholar 

  • Zec M, Uhlig RP, Ziolkowski M, Brauer H (2013) Finite element analysis of nondestructive testing eddy current problems with moving parts. IEEE Trans Magn 49(8):4785–4794

    Article  Google Scholar 

  • Zec M, Uhlig RP, Ziolkowski M, Brauer H (2014) Three-dimensional numerical investigations of Lorentz force eddy current testing. Stud Appl Electromagn XVI 38(1):83–93

    Google Scholar 

  • Zec M, Uhlig RP, Ziolkowski M, Brauer H (2015) Differentieller sensor, Prüfsystem und Verfahren zur Detektion von Anomalien in elektrisch leitfähigen Materialien. Patent EP2893336 A1, Institut Dr. Foerster GmbH & Co. KG

    Google Scholar 

  • Ziółkowski M (2015) Modern methods for selected electromagnetic field problems. Wydawnictwo Uczelniane Zachodniopomorskiego Uniwersytetu Technologicznego, Szczecin

    Google Scholar 

  • Ziolkowski M, Brauer H (2010) Fast computation technique of forces acting on moving permanent magnet. IEEE Trans Magn 46(8):2927–2930

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartmut Brauer .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Brauer, H., Ziolkowski, M. (2019). Motion-Induced Eddy Current Testing. In: Ida, N., Meyendorf, N. (eds) Handbook of Advanced Nondestructive Evaluation. Springer, Cham. https://doi.org/10.1007/978-3-319-26553-7_25

Download citation

Publish with us

Policies and ethics