Skip to main content

Characterization of Artificial Sweeteners Using Raman Spectroscopy

  • Living reference work entry
  • First Online:
Sweeteners

Abstract

A selection of fourteen common and commercially available table-top artificial sweeteners was considered. The samples contained aspartame and saccharin as high-intensity sweeteners and dextrose, sorbitol, sucrose, and maltodextrin as low-intensity sweeteners. These were all examined both in powder form and as aqueous solutions. Raman spectra, excited at 1064 nm, were acquired using a compact dispersive scheme. These spectra provided fluorescence-free Raman signatures from which to identify the most significant peaks of the various sweeteners. These peaks were also compared with ones obtained by means of computational analysis, in order to show the effect of the entire sweetener matrix. The spectroscopic data were then processed by means of chemometric analysis for distinguishing what kind of sweetener was present in a given sample. First, Principal Component Analysis was applied for the purpose of data dimensionality reduction and explorative investigation and provided good clustering depending on the type of sweetener. Next, the K-nearest neighbors method was used in order to assign the samples to predefined classes. An excellent identification in accordance with the type of high- or low-power sweetener was thus obtained. These results confirm the success of Raman spectroscopy in attaining a straightforward analysis of intact food, with high potentials for its use as a non-destructive and “green” analytical method for quality control in the food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Online (2016) The Sugar Association. http://www.sugar.org/

  2. Online (2016) International Sweeteners Association. http://www.sweeteners.org

  3. Zygler A, Wasik A, Namieśnik J (2009) Analytical methodologies for determination of artificial sweeteners in foodstuffs. TRAC Trends Anal Chem 28:1082–1102. doi:10.1016/j.trac.2009.06.008

    Article  CAS  Google Scholar 

  4. de la Guardia M, Garrigues S (eds) (2011) Challenges in green analytical chemistry. RSC Publishing, Cambridge. ISBN 978-1-84973-132-4

    Google Scholar 

  5. Armenta S, Garrigues S, de la Guardia M (2008) Green analytical chemistry. TRAC Trends Anal Chem 27:497–511. doi:10.1016/j.trac.2008.05.003

    Article  CAS  Google Scholar 

  6. Gałuszka A, Migaszewski ZM, Namieśnik J (2013) The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. TRAC Trends Anal Chem 50:78–84. doi:10.1016/j.trac.2013.04.010

    Article  Google Scholar 

  7. Gałuszka A, Konieczka P, Migaszewski ZM, Namieśnik J (2012) Analytical eco-scale for assessing the greenness of analytical procedures. TRAC Trends Anal Chem 37:61–72. doi:10.1016/j.trac.2012.03.013

    Google Scholar 

  8. Moros J, Garrigues S, de la Guardia M (2010) Vibrational spectroscopy provides a green tool for multi-component analysis. TRAC Trends Anal Chem 29:578–591. doi:10.1016/j.trac.2009.12.012

    Article  CAS  Google Scholar 

  9. Chalmers JM, Griffiths PR (eds) (2001) Handbook of vibrational spectroscopy. Selected chapters on food science. Applications in life, pharmaceutical and natural sciences, Vol 5. Wiley, Chichester. ISBN: 978-0-471-98847-2

    Google Scholar 

  10. Li-Chan ECY, Chalmers J, Griffiths P (eds) (2010) Applications of vibrational spectroscopy in food science (2 volume set). Wiley, Chichester. ISBN 978-0-470-74299-0

    Google Scholar 

  11. Cantarelli MA, Pellerano RG, Marchevsky EJ, Camiña JM (2009) Simultaneous determination of aspartame and acesulfame-k by molecular absorption spectrophotometry using multivariate calibration and validation by high performance liquid chromatography. Food Chem 115:1128–1132. doi:10.1016/j.foodchem.2008.12.101

    Article  CAS  Google Scholar 

  12. Llamas NE, Di Nezio MS, Palomeque ME, Fernández Band BS (2008) Direct determination of saccharin and acesulfame-k in sweeteners and fruit juices powders. Food Anal Methods 1:43–48. doi:10.1007/s12161-007-9006-z

    Article  Google Scholar 

  13. Khurana HK, Cho IK, Shim JY, Li QX, Jun S (2008) Application of multibounce attenuated total reflectance Fourier transform infrared spectroscopy and chemometrics for determination of aspartame in soft drinks. J Agric Food Chem 56:778–783. doi:10.1021/jf0724116

    Article  CAS  Google Scholar 

  14. Shim JY, Khurana IK, Li QX, Jun S (2008) Attenuated total reflectance-Fourier transform infrared spectroscopy coupled with multivariate analysis for measurement of acesulfame-k in diet foods. J Food Sci 73:C426–C431. doi:10.1111/j.1750-3841.2008.00751.x

    Article  CAS  Google Scholar 

  15. Armenta S, Garrigues S, de la Guardia M (2004) FTIR determination of aspartame and acesulfame-k in tabletop sweeteners. J Agric Food Chem 52:7798–7803. doi:10.1021/jf049218l

    Article  CAS  Google Scholar 

  16. Mazurek S, Szostak R (2011) Quantification of aspartame in commercial sweeteners by FT-Raman spectroscopy. Food Chem 125:1051–1057. doi:10.1016/j.foodchem.2010.09.075

    Article  CAS  Google Scholar 

  17. Peica N (2009) Identification and characterization of the E951 artificial food sweetener by vibrational spectroscopy and theoretical modelling. J Raman Spectrosc 40:2144–2154. doi:10.1002/jrs.2384

    Article  CAS  Google Scholar 

  18. Armenta S, Garrigues S, de la Guardia M (2004) Sweeteners determination in table top formulations using FT-Raman spectrometry and chemometric analysis. Anal Chim Acta 521:149–155. doi:10.1016/j.aca.2004.05.077

    Article  CAS  Google Scholar 

  19. Vargas Jentzsch P, Torrico-Vallejos S, Mendieta-Brito S, Ramos LA, Ciobotă V (2016) Detection of counterfeit stevia products using a handheld Raman spectrometer. Vib Spectrosc 83:126–131. doi:10.1016/j.vibspec.2016.01.015

    Article  CAS  Google Scholar 

  20. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian09. Gaussian, Inc., Wallingford

    Google Scholar 

  21. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  22. Ferraro JR, Nakamoto K (eds) (2003) Introductory Raman spectroscopy, 2nd edn. Elsevier Science. ISBN: 978-0-12-254105-6. http://www.fulviofrisone.com/attachments/article/406/introductory%20raman%20spectroscopy.pdf

  23. Larkin PJ (2011) IR and Raman spectroscopy: principles and spectral interpretation. Elsevier, Amsterdam. ISBN 978-0-12-386984-5

    Google Scholar 

  24. Mignani AG, Ciaccheri L, Mencaglia AA, Di Sanzo R, Carabetta S, Russo M (2016) Dispersive Raman spectroscopy for the nondestructive and rapid assessment of the quality of Southern Italian honey types. J Lightwave Technol 34:4479–4485. doi:10.1109/JLT.2016.2539550

    Article  Google Scholar 

  25. Online (2016) Model BRAM-1064-HR. Bayspec Inc., San Jose www.bayspec.com

  26. Jackson JE (2003) A user’s guide to principal components. Wiley, Hoboken. ISBN 978-0-471-47134-9

    Google Scholar 

  27. Cover TM, Hart PE (1967) Nearest neighbor pattern classification. IEEE Trans Inf Theory 13:21–27. doi:10.1109/TIT.1967.1053964

    Article  Google Scholar 

  28. Online (2016) http://www.camo.com/rt/Products/Unscrambler/unscrambler.html, Version 10.3

Download references

Acknowledgements

The authors wish to thank the Ente Cassa di Risparmio di Firenze, the MIUR-PON contract #00636 “Fingerimball,” FWO (G008413N), IWT, the MP1205 COST Action, the Methusalem and Hercules foundations, and the OZR of the Vrije Universiteit Brussel for partial funding. Project HP10CHEVJ8 (CINECA) and CREA Center (Centro Ricerche Energia e Ambiente) are also acknowledged for the computational resources.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anna Grazia Mignani or Leonardo Ciaccheri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Mignani, A.G. et al. (2016). Characterization of Artificial Sweeteners Using Raman Spectroscopy. In: Merillon, JM., Ramawat, K. (eds) Sweeteners. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-26478-3_18-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26478-3_18-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26478-3

  • Online ISBN: 978-3-319-26478-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics