Skip to main content

Diagnostic Applications of Nuclear Medicine: Ovarian Cancer

  • Reference work entry
  • First Online:
  • 2004 Accesses

Abstract

Ovarian malignancies are a leading cause of death in women in the United States and a significant health issue for women worldwide. Anatomic imaging with ultrasound, computed tomography, and magnetic resonance is a main tool for the diagnosis, staging, and follow-up of recurrent disease; however, it lacks biologic information. Nuclear imaging, primarily positron emission tomography (PET) with 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG), has been increasingly used for the detection of cancer. Encouraging data have emerged in recent years that support the use of [18F]FDG PET in a variety of clinical settings in ovarian cancer management.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

[18F]FDG:

2-[18F]fluoro-2-deoxy-D-glucose

AJCC:

American Joint Committee on Cancer

BRCA1:

Breast cancer type 1 susceptibility protein

BRCA2:

Breast cancer type 2 susceptibility protein

CA-125 U/mL:

A tumor-associated marker for ovarian cancer (also known as carbohydrate antigen 125 or mucin 16)

CT:

X-ray computed tomography

CTce:

Contrast-enhanced computed tomography

FIGO:

International Federation of Obstetrics and Gynecology

GLUT:

Glucose transporter family

LBMI:

Large bowel mesentery implants

LI:

Labeling index

M:

Metastasis status according to the AJCC/UICC TNM staging system

MIB-1:

Marker of cell proliferation based on an antibody against an epitope of the nuclear protein different from that recognized by the Ki-67 antibody

MRI:

Magnetic resonance imaging

MTV:

Metabolic tumor volume

N:

Lymph node status according to the AJCC/UICC TNM staging system

NPV:

Negative predictive value

PET:

Positron emission tomography

PET/CT:

Positron emission tomography/computed tomography

PFS:

Progression-free survival

PPV:

Positive predictive value

RO:

Right ovary

SLL:

Second look laparotomy

SUV:

Standardized uptake value

SUVmax :

Standardized uptake value at point of maximum

T:

Tumor status according to the AJCC/UICC TNM staging system

TAHBSO:

Total abdominal hysterectomy with bilateral salpingo oophorectomy

TLG:

Total lesion glycolysis

TNM:

AJCC staging system based on parameters “T” (tumor status), “N” (lymph node status), and “M” (distant metastasis status)

TVUS:

Transvaginal ultrasound

UICC:

Union Internationale Contre le Cancer (International Union Against Cancer)

US:

Ultrasonography

References

  1. American Cancer Society. 2016. http://www.cancer.org

  2. Chi DBR, Rubin SC, et al. Gynecologic malignancies. In: CLR P, Hoskins WJ, Wagman LD, editors. Cancer management: a multidisciplinary approach. Melville: PRR Inc; 1999. p. 361–430.

    Google Scholar 

  3. Young RC, Fuks FZ, Hoskins WJ. Cancer of the ovary. In: Devita VT, editor. Cancer: principles and practice of oncology. Philadelphia: J. B Lippincott Co.; 2011.

    Google Scholar 

  4. http://www.FIGO.org

  5. Prat J. Staging classification for cancer of the ovary, fallopian tube, and peritoneum. Int J Gynaecol Obstet. 2014;124(1):1–5.

    Article  PubMed  Google Scholar 

  6. NCCN. Practice guidelines: ovarian cancer. 2016. https://www.nccn.org/professionals/physician_gls/f_guidelines.asp

  7. Morgan Jr RJ, et al. Ovarian cancer, version 1.2016, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2016;14(9):1134–63.

    Article  PubMed  Google Scholar 

  8. Subhas N, et al. Imaging of pelvic malignancies with in-line FDG PET-CT: case examples and common pitfalls of FDG PET. Radiographics. 2005;25(4):1031–43.

    Article  PubMed  Google Scholar 

  9. Fenchel S, et al. Asymptomatic adnexal masses: correlation of FDG PET and histopathologic findings. Radiology. 2002;223(3):780–8.

    Article  PubMed  Google Scholar 

  10. Grab D, et al. Classification of asymptomatic adnexal masses by ultrasound, magnetic resonance imaging, and positron emission tomography. Gynecol Oncol. 2000;77(3):454–9.

    Article  CAS  PubMed  Google Scholar 

  11. Tanizaki Y, et al. Diagnostic value of preoperative SUVmax on FDG-PET/CT for the detection of ovarian cancer. Int J Gynecol Cancer. 2014;24(3):454–60.

    Article  PubMed  Google Scholar 

  12. Castellucci P, et al. Diagnostic accuracy of 18F-FDG PET/CT in characterizing ovarian lesions and staging ovarian cancer: correlation with transvaginal ultrasonography, computed tomography, and histology. Nucl Med Commun. 2007;28(8):589–95.

    Article  CAS  PubMed  Google Scholar 

  13. Kitajima K, et al. FDG-PET/CT for diagnosis of primary ovarian cancer. Nucl Med Commun. 2011;32(7):549–53.

    Article  PubMed  Google Scholar 

  14. Lerman H, et al. Normal and abnormal 18F-FDG endometrial and ovarian uptake in pre- and postmenopausal patients: assessment by PET/CT. J Nucl Med. 2004;45(2):266–71.

    PubMed  Google Scholar 

  15. Yun M, et al. Physiologic 18F-FDG uptake in the fallopian tubes at mid cycle on PET/CT. J Nucl Med. 2010;51(5):682–5.

    Article  PubMed  Google Scholar 

  16. Iyer, V.R., Lee S.I., MRI, CT, and PET/CT for ovarian cancer detection and adnexal lesion characterization. AJR Am J Roentgenol, 2010. 194(2) 311–321.

    Google Scholar 

  17. Hubner KF, et al. Assessment of primary and metastatic ovarian cancer by positron emission tomography (PET) using 2-[18F]deoxyglucose (2-[18F]FDG). Gynecol Oncol. 1993;51(2):197–204.

    Article  CAS  PubMed  Google Scholar 

  18. Schroder W, et al. The role of 18F-fluoro-deoxyglucose positron emission tomography (18F-FDG PET) in diagnosis of ovarian cancer. Int J Gynecol Cancer. 1999;9(2):117–22.

    Article  PubMed  Google Scholar 

  19. Yoshida Y, et al. Incremental benefits of FDG positron emission tomography over CT alone for the preoperative staging of ovarian cancer. AJR Am J Roentgenol. 2004;182(1):227–33.

    Article  PubMed  Google Scholar 

  20. Kurokawa T, et al. Expression of GLUT-1 glucose transfer, cellular proliferation activity and grade of tumor correlate with [F-18]-fluorodeoxyglucose uptake by positron emission tomography in epithelial tumors of the ovary. Int J Cancer. 2004;109(6):926–32.

    Article  CAS  PubMed  Google Scholar 

  21. Hynninen J, et al. A prospective comparison of integrated FDG-PET/contrast-enhanced CT and contrast-enhanced CT for pretreatment imaging of advanced epithelial ovarian cancer. Gynecol Oncol. 2013;131(2):389–94.

    Article  PubMed  Google Scholar 

  22. Dauwen H, et al. PET/CT in the staging of patients with a pelvic mass suspicious for ovarian cancer. Gynecol Oncol. 2013;131(3):694–700.

    Article  CAS  PubMed  Google Scholar 

  23. Yamamoto Y, et al. Preoperative evaluation of pelvic masses with combined 18F-fluorodeoxyglucose positron emission tomography and computed tomography. Int J Gynaecol Obstet. 2008;102(2):124–7.

    Article  PubMed  Google Scholar 

  24. Zytoon AA, et al. High impact of FDG-PET/CT in diagnostic strategies for ovarian cancer. Acta Radiol. 2013;54(3):340–8.

    Article  PubMed  Google Scholar 

  25. Nam EJ, et al. Diagnosis and staging of primary ovarian cancer: correlation between PET/CT, Doppler US, and CT or MRI. Gynecol Oncol. 2010;116(3):389–94.

    Article  PubMed  Google Scholar 

  26. Michielsen K, et al. Whole-body MRI with diffusion-weighted sequence for staging of patients with suspected ovarian cancer: a clinical feasibility study in comparison to CT and FDG-PET/CT. Eur Radiol. 2014;24(4):889–901.

    Article  PubMed  Google Scholar 

  27. Risum S, et al. Does the use of diagnostic PET/CT cause stage migration in patients with primary advanced ovarian cancer? Gynecol Oncol. 2010;116(3):395–8.

    Article  CAS  PubMed  Google Scholar 

  28. Risum S, et al. The diagnostic value of PET/CT for primary ovarian cancer – a prospective study. Gynecol Oncol. 2007;105(1):145–9.

    Article  PubMed  Google Scholar 

  29. Kitajima K, et al. Diagnostic accuracy of integrated FDG-PET/contrast-enhanced CT in staging ovarian cancer: comparison with enhanced CT. Eur J Nucl Med Mol Imaging. 2008;35(10):1912–20.

    Article  PubMed  Google Scholar 

  30. Yuan Y, et al. Computer tomography, magnetic resonance imaging, and positron emission tomography or positron emission tomography/computer tomography for detection of metastatic lymph nodes in patients with ovarian cancer: a meta-analysis. Eur J Radiol. 2012;81(5):1002–6.

    Article  PubMed  Google Scholar 

  31. Signorelli M, et al. Detection of nodal metastases by 18F-FDG PET/CT in apparent early stage ovarian cancer: a prospective study. Gynecol Oncol. 2013;131(2):395–9.

    Article  PubMed  Google Scholar 

  32. De Iaco P, et al. FDG-PET/CT in advanced ovarian cancer staging: value and pitfalls in detecting lesions in different abdominal and pelvic quadrants compared with laparoscopy. Eur J Radiol. 2011;80(2):e98–103.

    Article  PubMed  Google Scholar 

  33. Schmidt S, et al. Peritoneal carcinomatosis in primary ovarian cancer staging: comparison between MDCT, MRI, and 18F-FDG PET/CT. Clin Nucl Med. 2015;40(5):371–7.

    Article  PubMed  Google Scholar 

  34. Hicks RJ, Ware RE, Lau EW. PET/CT: will it change the way that we use CT in cancer imaging? Cancer Imaging. 2006;6:S52–62.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Fruscio R, et al. Preoperative 18F-FDG PET/CT in the management of advanced epithelial ovarian cancer. Gynecol Oncol. 2013;131(3):689–93.

    Article  PubMed  Google Scholar 

  36. Alessi A, et al. FDG-PET/CT to predict optimal primary cytoreductive surgery in patients with advanced ovarian cancer: preliminary results. Tumori. 2016;102(1):103–7.

    Article  PubMed  Google Scholar 

  37. Risum S, et al. Prediction of suboptimal primary cytoreduction in primary ovarian cancer with combined positron emission tomography/computed tomography – a prospective study. Gynecol Oncol. 2008;108(2):265–70.

    Article  CAS  PubMed  Google Scholar 

  38. Risum S, et al. Positron emission tomography/computed tomography predictors of overall survival in stage IIIC/IV ovarian cancer. Int J Gynecol Cancer. 2012;22(7):1163–9.

    Article  PubMed  Google Scholar 

  39. Delbeke D, Martin WH. Positron emission tomography imaging in oncology. Radiol Clin North Am. 2001;39(5):883–917.

    Article  CAS  PubMed  Google Scholar 

  40. Rusu D, et al. Clinical and Survival Impact of FDG PET in Patients with Suspicion of Recurrent Ovarian Cancer: A 6-Year Follow-Up. Front Med (Lausanne). 2015;2:46.

    Google Scholar 

  41. Dragosavac S, et al. Staging recurrent ovarian cancer with 18FDG PET/CT. Oncol Lett. 2013;5(2):593–7.

    PubMed  Google Scholar 

  42. Rose PG, et al. Positive emission tomography for evaluating a complete clinical response in patients with ovarian or peritoneal carcinoma: correlation with second-look laparotomy. Gynecol Oncol. 2001;82(1):17–21.

    Article  CAS  PubMed  Google Scholar 

  43. Kim CK, et al. Detection of recurrent ovarian cancer at MRI: comparison with integrated PET/CT. J Comput Assist Tomogr. 2007;31(6):868–75.

    Article  PubMed  Google Scholar 

  44. Sanli Y, et al. Diagnostic value of PET/CT is similar to that of conventional MRI and even better for detecting small peritoneal implants in patients with recurrent ovarian cancer. Nucl Med Commun. 2012;33(5):509–15.

    Article  PubMed  Google Scholar 

  45. Limei Z, et al. Accuracy of positron emission tomography/computed tomography in the diagnosis and restaging for recurrent ovarian cancer: a meta-analysis. Int J Gynecol Cancer. 2013;23(4):598–607.

    Article  PubMed  Google Scholar 

  46. Garcia-Velloso MJ, et al. Diagnostic accuracy of FDG PET in the follow-up of platinum-sensitive epithelial ovarian carcinoma. Eur J Nucl Med Mol Imaging. 2007;34(9):1396–405.

    Article  PubMed  Google Scholar 

  47. Gu P, et al. CA 125, PET alone, PET-CT, CT and MRI in diagnosing recurrent ovarian carcinoma: a systematic review and meta-analysis. Eur J Radiol. 2009;71(1):164–74.

    Article  PubMed  Google Scholar 

  48. Iagaru AH, et al. 18F-FDG PET/CT evaluation of patients with ovarian carcinoma. Nucl Med Commun. 2008;29(12):1046–51.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Murakami M, et al. Whole-body positron emission tomography and tumor marker CA125 for detection of recurrence in epithelial ovarian cancer. Int J Gynecol Cancer. 2006;16(Suppl 1):99–107.

    Article  PubMed  Google Scholar 

  50. Pan HS, et al. Combined positron emission tomography-computed tomography and tumor markers for detecting recurrent ovarian cancer. Arch Gynecol Obstet. 2011;283(2):335–41.

    Article  CAS  PubMed  Google Scholar 

  51. Antunovic L, et al. Revisiting the clinical value of 18F-FDG PET/CT in detection of recurrent epithelial ovarian carcinomas: correlation with histology, serum CA-125 U/mL assay, and conventional radiological modalities. Clin Nucl Med. 2012;37(8):e184–8.

    Article  PubMed  Google Scholar 

  52. Palomar A, et al. Value of FDG PET/CT in patients with treated ovarian cancer and raised CA125 serum levels. Mol Imaging Biol. 2012;14(1):123–9.

    Article  PubMed  Google Scholar 

  53. Chen YM, et al. Is there an impact of 18F-FDG PET/CT on the surveillance and clinical management of recurrent ovarian cancer? Research based on a large sample in a single PET/CT center. Nucl Med Commun. 2014;35(4):347–52.

    Article  PubMed  Google Scholar 

  54. Fagotti A, et al. A treatment selection protocol for recurrent ovarian cancer patients: the role of FDG-PET/CT and staging laparoscopy. Oncology. 2008;75(3–4):152–8.

    Article  CAS  PubMed  Google Scholar 

  55. Thrall MM, et al. Clinical use of combined positron emission tomography and computed tomography (FDG-PET/CT) in recurrent ovarian cancer. Gynecol Oncol. 2007;105(1):17–22.

    Article  PubMed  Google Scholar 

  56. Mangili G, et al. Integrated PET/CT as a first-line re-staging modality in patients with suspected recurrence of ovarian cancer. Eur J Nucl Med Mol Imaging. 2007;34(5):658–66.

    Article  CAS  PubMed  Google Scholar 

  57. Kitajima K, et al. Performance of integrated FDG-PET/contrast-enhanced CT in the diagnosis of recurrent ovarian cancer: comparison with integrated FDG-PET/non-contrast-enhanced CT and enhanced CT. Eur J Nucl Med Mol Imaging. 2008;35(8):1439–48.

    Article  PubMed  Google Scholar 

  58. Chung HH, et al. Role of [18F]FDG PET/CT in the assessment of suspected recurrent ovarian cancer: correlation with clinical or histological findings. Eur J Nucl Med Mol Imaging. 2007;34(4):480–6.

    Article  PubMed  Google Scholar 

  59. Simcock B, et al. The impact of PET/CT in the management of recurrent ovarian cancer. Gynecol Oncol. 2006;103(1):271–6.

    Article  PubMed  Google Scholar 

  60. Bilici A, et al. Clinical value of FDG PET/CT in the diagnosis of suspected recurrent ovarian cancer: is there an impact of FDG PET/CT on patient management? Eur J Nucl Med Mol Imaging. 2010;37(7):1259–69.

    Article  PubMed  Google Scholar 

  61. Soussan M, et al. Impact of FDG PET-CT imaging on the decision making in the biologic suspicion of ovarian carcinoma recurrence. Gynecol Oncol. 2008;108(1):160–5.

    Article  PubMed  Google Scholar 

  62. Fulham MJ, et al. The impact of PET-CT in suspected recurrent ovarian cancer: a prospective multi-centre study as part of the Australian PET Data Collection Project. Gynecol Oncol. 2009;112(3):462–8.

    Article  CAS  PubMed  Google Scholar 

  63. Lurain JR. Second-look laparotomy and other reoperations for ovarian cancer. In: Sciarra JJ, editor. Gynecology and obstetrics. Philadelphia: Lippincott Williams & Wilkins; 2004.

    Google Scholar 

  64. Rubin SC, et al. Ten-year follow-up of ovarian cancer patients after second-look laparotomy with negative findings. Obstet Gynecol. 1999;93(1):21–4.

    CAS  PubMed  Google Scholar 

  65. Rubinstein E, Knudsen JB. Clinical aspects of second-look laparotomy in ovarian cancer. Ann Chir Gynaecol. 1986;75(3):177–9.

    CAS  PubMed  Google Scholar 

  66. Obermair A, Sevelda P. Impact of second look laparotomy and secondary cytoreductive surgery at second-look laparotomy in ovarian cancer patients. Acta Obstet Gynecol Scand. 2001;80(5):432–6.

    Article  CAS  PubMed  Google Scholar 

  67. Sijmons EA, Heintz AP. Second-look and second surgery: second chance or second best? Semin Surg Oncol. 2000;19(1):54–61.

    Article  CAS  PubMed  Google Scholar 

  68. Cohn DE, et al. Novel perioperative imaging with 18F-FDG PET/CT and intraoperative 18F-FDG detection using a handheld gamma probe in recurrent ovarian cancer. Gynecol Oncol. 2008;110(2):152–7.

    Article  CAS  PubMed  Google Scholar 

  69. Ebina Y, et al. Impact of FDG PET in optimizing patient selection for cytoreductive surgery in recurrent ovarian cancer. Eur J Nucl Med Mol Imaging. 2014;41(3):446–51.

    Article  CAS  PubMed  Google Scholar 

  70. Mansueto M, et al. Positron emission tomography/computed tomography introduction in the clinical management of patients with suspected recurrence of ovarian cancer: a cost-effectiveness analysis. Eur J Cancer Care (Engl). 2009;18(6):612–9.

    Article  CAS  Google Scholar 

  71. Smith GT, et al. Cost analysis of FDG PET for managing patients with ovarian cancer. Clin Positron Imaging. 1999;2(2):63–70.

    Article  PubMed  Google Scholar 

  72. Risum S, et al. Influence of 2-(18F) fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography on recurrent ovarian cancer diagnosis and on selection of patients for secondary cytoreductive surgery. Int J Gynecol Cancer. 2009;19(4):600–4.

    Article  PubMed  Google Scholar 

  73. Pfannenberg C, et al. 18F-FDG-PET/CT to select patients with peritoneal carcinomatosis for cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. Ann Surg Oncol. 2009;16(5):1295–303.

    Article  PubMed  Google Scholar 

  74. Peng P, et al. Benefits of fluorine-18 fludeoxyglucose positron emission tomography in secondary cytoreductive surgery for patients with recurrent epithelial ovarian cancer. Br J Radiol. 2015;88(1052):20150109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lenhard SM, et al. Predictive value of PET-CT imaging versus AGO-scoring in patients planned for cytoreductive surgery in recurrent ovarian cancer. Eur J Obstet Gynecol Reprod Biol. 2008;140(2):263–8.

    Article  CAS  PubMed  Google Scholar 

  76. Nishiyama Y, et al. Monitoring the neoadjuvant therapy response in gynecological cancer patients using FDG PET. Eur J Nucl Med Mol Imaging. 2008;35(2):287–95.

    Article  PubMed  Google Scholar 

  77. Lee JW, et al. The role of metabolic tumor volume and total lesion glycolysis on 18F-FDG PET/CT in the prognosis of epithelial ovarian cancer. Eur J Nucl Med Mol Imaging. 2014;41(10):1898–906.

    Article  PubMed  Google Scholar 

  78. Chung HH, et al. Prognostic value of preoperative metabolic tumor volume and total lesion glycolysis in patients with epithelial ovarian cancer. Ann Surg Oncol. 2012;19(6):1966–72.

    Article  PubMed  Google Scholar 

  79. Kim CY, et al. Quantitative metabolic parameters measured on F-18 FDG PET/CT predict survival after relapse in patients with relapsed epithelial ovarian cancer. Gynecol Oncol. 2015;136(3):498–504.

    Article  PubMed  Google Scholar 

  80. Mayoral M, et al. Prognostic value of 18F-FDG PET/CT volumetric parameters in recurrent epithelial ovarian cancer. Rev Esp Med Nucl Imagen Mol. 2016;35(2):88–95.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeta Pandit-Taskar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pandit-Taskar, N., Mahajan, S., Ma, W. (2017). Diagnostic Applications of Nuclear Medicine: Ovarian Cancer. In: Strauss, H., Mariani, G., Volterrani, D., Larson, S. (eds) Nuclear Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-26236-9_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26236-9_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26234-5

  • Online ISBN: 978-3-319-26236-9

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics