Skip to main content

Principles of Molecular Targeting for Radionuclide Therapy

  • Reference work entry
  • First Online:
Nuclear Oncology

Abstract

Molecular targeting requires assessing several factors that come into play such as the location of the target, the choice of radionuclide, the inertness of the bifunctional chelate and stability of the covalently bound halogens, matching the residence time in the tumor with the physical half-life of the radionuclide, the scale and scope of the disease, and the absorbed dose sensitivity of the targeted tumor compared to normal tissue. The principles of molecular targeting are well established, but a paradigm shift from designing a medium-affinity radiotracer used to determine target density to designing a high-affinity, high-target density radioligand to maximize the target-to-nontarget ratio should increase the probability of detecting lesions smaller than the instrument resolution.

Developing and validating a therapeutic radiopharmaceutical for a single target is necessary, but often not sufficient to produce a toxic event because of other mechanisms that are only partially understood. These include nontargeted effects due to radiation emitted from neighboring, targeted cells as well as bystander effects produced by the cellular processing of radiation not necessarily impinging on DNA. Both of these indirect consequences of cellular radiation could make a substantial contribution to the efficacy of targeted radionuclide therapy. These mechanisms should be exploited to optimize the efficacy of targeted radiotherapy and overcome the inefficiency of tumor control due to nonuniform distribution of radiation dose. The design approach to take advantage of the indirect consequences of cellular radiation depends heavily on further elucidation of the indirect effect. The successful combination of these two should lead to more effective nuclear radiotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

18F-DOPA:

2-18F-Fluoro-l-3,4-dihydroxyphenylalanine

18F-FP-TZTP:

3-[4-[(3-[18F]fluoropropyl)thio]-1,2,5-thiadiazol-3-yl]-1,2,5,6 tetrahydro-1-methylpyridine

125IUdR:

5-[125I]Iodo-2’-deoxyuridine

ADAM:

2-[2-(Dimethylaminomethylphenylthio)]-5-[125I]iodophenylamine

ATM:

Ataxia telangiectasia mutated

ATR:

ATM and RAD3 related

ATSM:

Diacetyl-bis(N4-methylthiosemicarbazone

AUC:

Area under the time-activity curve

Br-BHPE:

Bromo-l,l-bis(4-hydroxyphenyl)phenylethylene

CBF:

Cerebral blood flow

CB-TE2A:

Cross-bridged macrocyclic chelators

CEA:

Carcinoembryonic antigen

CT:

X-ray computed tomography

DAT:

Dopamine transporter

DFO:

Desferrioxamine B

DNA:

Deoxyribonucleic acid

DOPA:

l-3,4-dihydroxyphenylalanine

DOTA:

1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid

EMA:

European Medicines Agency

EPR:

Enhanced permeability and retention

FACS:

Fluorescence-activated cell sorting

FDA:

United States Food and Drug Administration

FWHM:

Full-width half-maximum

GFP:

Green fluorescent protein

GLUT:

Glucose transporter

Gy:

Gray unit (ionizing radiation dose in the International System of Units, corresponding to the absorption of one joule of radiation energy per kilogram of matter)

HCT116:

Cell line of human colon carcinoma

HER:

Human epidermal growth factor receptor

IdU:

Iododeoxyuridine

INXT:

(R)-N-methyl-(2-[125I]iodo-phenoxy)-3-phenylpropylamine

IQNB:

3-R-Quinuclidinyl 4-S-[123I]iodobenzilate

IUdR:

Iododeoxyuridine

IV:

Intravenous

IVME2:

Iodovinyl-11-beta-methoxyestradiol

LET:

Linear energy transfer

LNCaP:

Lymph node metastasis from carcinoma of the prostate

LS174T:

Colon adenocarcinoma cells line name

MABG:

Meta-[211At]astatobenzylguanidine

mAbs:

Monoclonal antibodies

mAChR:

Muscarinic acetylcholine receptor

MBF:

Myocardial blood flow

MCF-7:

Michigan Cancer Foundation-7, a breast cancer cell line

MIBG:

Meta-iodobenzylguanidine

MIP:

Molecular Insight Pharmaceuticals

mRNA:

Messenger ribonucleic acid

NET:

Norepinephrine transporter

NHL:

Non-Hodgkin’s lymphoma

NET:

Norepinephrine transporter

p-SCN-BN-CB-TE2A:

11-bis(carboxymethyl)-1,4,8,11 tetraazabicyclo[6.6.2]hexadecane

p-SCN-BN-DOTA:

S-2-(4-Isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane tetraacetic acid

PCa:

Prostate cancer

PCB-TE2A:

Cross-bridged (propyl) TE2A

PET:

Positron emission tomography

PMPA:

2-Phosphonomethylpentanedioic acid

PSMA:

Prostate-specific membrane antigen

RAD3:

A 5′ to 3′ DNA helicase involved in nucleotide excision repair and transcription (from “RADiation sensitive”)

RIBBE:

Radiation-induced biological bystander effects

RNA:

Ribonucleic acid

ROS:

Reactive oxygen species

SERT:

Serotonin transporter

SOD:

Superoxide dismutase

SPECT:

Single-photon emission computed tomography

SPECT/CT:

Single-photon emission computed tomography/computed tomography

SUV:

Standardized uptake value

T/B:

Target-to-background

T/NT:

Target-to-nontarget

TE2A:

1,8-N,N′-bis-(carboxymethyl)-1,4,8,11-tetraazacyclotetradecane

TETA:

1,4,8,11-Tetraazacyclododecane-1,4,8,11-tetraacetic acid

TMS:

Transfectant mosaic spheroids

TMX:

Transfectant mosaic xenograft

TOC:

Therapy operating characteristic

TRODAT:

Technetium, 2-[[2-[[[3-(4-chlorophenyl)-8-methyl-8-azabicyclo[3.2.1]oct-2-yl]methyl](2-mercaptoethyl) amino]ethyl]amino]ethanethiolato(3-)-oxo-[1R-(exo-exo)]

Zr-DFO:

Zirconium desferrioxamine B

References

  1. Hopf C, Bantscheff M, Drewes G. Pathway proteomics and chemical proteomics team up in drug discovery. Neurodegener Dis. 2007;4(2–3):270–80.

    Article  CAS  PubMed  Google Scholar 

  2. Eckelman WC, Lau CY, Neumann RD. Perspective, the one most responsive to change. Nucl Med Biol. 2014;41(4):297–8.

    Article  CAS  PubMed  Google Scholar 

  3. Divgi C. Whither goest thou, radiopharmaceutical therapy? J Nucl Med. 2014;55(1):5–6.

    Article  PubMed  Google Scholar 

  4. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000;65(1–2):271–84.

    Article  CAS  PubMed  Google Scholar 

  5. Adams GP. Antibody fragments produced by recombinant and proteolytic methods. In: Stigbrand T, Carlsson J, Adams GP, editors. Targeted radionuclide tumor therapy: biological aspects. Dordrecht: Springer; 2008.

    Google Scholar 

  6. Boswell CA, Marik J, Elowson MJ, Reyes NA, Ulufatu S, Bumbaca D, et al. Enhanced tumor retention of a radiohalogen label for site-specific modification of antibodies. J Med Chem. 2013;56(23):9418–26.

    Article  CAS  PubMed  Google Scholar 

  7. Eckelman WC. Choosing a target for targeted radionuclide therapy using biomarkers to personalize treatment. J Diagn Imaging Ther. 2014;1(1):103–9.

    Article  Google Scholar 

  8. Eckelman WC, Mankoff DA. Choosing a single target as a biomarker or therapeutic using radioactive probes. Nucl Med Biol. 2015;42(5):421–5.

    Article  CAS  PubMed  Google Scholar 

  9. Zheng W, Thorne N, McKew JC. Phenotypic screens as a renewed approach for drug discovery. Drug Discov Today. 2013;18:1067–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chopra A, Shan L, Eckelman WC, Leung K, Menkens AE. Important parameters to consider for the characterization of PET and SPECT imaging probes. Nucl Med Biol. 2011;38(8):1079–84.

    Article  CAS  PubMed  Google Scholar 

  11. Eckelman WC. The use of gene-manipulated mice in the validation of receptor binding radiotracer. Nucl Med Biol. 2003;30(8):851–60.

    Article  CAS  PubMed  Google Scholar 

  12. Wagner Jr HN, Burns HD, Dannals RF, Wong DF, Langstrom B, Duelfer T, et al. Imaging dopamine receptors in the human brain by positron tomography. Science. 1983;221(4617):1264–6.

    Article  CAS  PubMed  Google Scholar 

  13. Eckelman WC, Reba RC, Rzeszotarski WJ, Gibson RE, Hill T, Holman BL, et al. External imaging of cerebral muscarinic acetylcholine receptors. Science. 1984;223(4633):291–3.

    Article  CAS  PubMed  Google Scholar 

  14. Sawada Y, Hiraga S, Francis B, Patlak C, Pettigrew K, Ito K, et al. Kinetic analysis of 3-quinuclidinyl 4-[125I] iodobenzilate transport and specific binding to muscarinic acetylcholine receptor in rat brain in vivo. J Cereb Blood Flow Metab. 1990;10:781–807.

    Article  CAS  PubMed  Google Scholar 

  15. Eckelman WC. Imaging of muscarinic receptors in the central nervous system. Curr Pharm Des. 2006;12(30):3901–13.

    Article  CAS  PubMed  Google Scholar 

  16. Saxena A, Bester L, Shan L, Perera M, Gibbs P, Meteling B, et al. A systematic review on the safety and efficacy of yttrium-90 radioembolization for unresectable, chemorefractory colorectal cancer liver metastases. J Cancer Res Clin Oncol. 2014;140(4):537–47.

    Article  CAS  PubMed  Google Scholar 

  17. Eckelman WC, Dilsizian V. Chemistry and biology of radiotracers that target changes in sympathetic and parasympathetic nervous systems in heart disease. J Nucl Med. 2015;56(Suppl 4):7S–10S.

    Article  CAS  PubMed  Google Scholar 

  18. Carson RE, Kiesewetter DO, Jagoda E, Der MG, Herscovitch P, Eckelman WC. Muscarinic cholinergic receptor measurements with [18F]FP-TZTP: control and competition studies. J Cereb Blood Flow Metab. 1998;18(10):1130–42.

    Article  CAS  PubMed  Google Scholar 

  19. Podruchny TA, Connolly C, Bokde A, Herscovitch P, Eckelman WC, Kiesewetter DO, et al. In vivo muscarinic 2 receptor imaging in cognitively normal young and older volunteers. Synapse. 2003;48(1):39–44.

    Article  CAS  PubMed  Google Scholar 

  20. Cohen RM, Podruchny TA, Bokde AL, Carson RE, Herscovitch P, Kiesewetter DO, et al. Higher in vivo muscarinic-2 receptor distribution volumes in aging subjects with an apolipoprotein E-epsilon4 allele. Synapse. 2003;49(3):150–6.

    Article  CAS  PubMed  Google Scholar 

  21. Eckelman WC, Kilbourn MR, Mathis CA. Specific to nonspecific binding in radiopharmaceutical studies: it’s not so simple as it seems! Nucl Med Biol. 2009;36(3):235–7.

    Article  CAS  PubMed  Google Scholar 

  22. Eckelman WC, Kilbourn MR, Mathis CA. Discussion of targeting proteins in vivo: in vitro guidelines. Nucl Med Biol. 2006;33:449–51.

    Article  CAS  PubMed  Google Scholar 

  23. Barrett JA, Coleman RE, Goldsmith SJ, Vallabhajosula S, Petry NA, Cho S, et al. First-in-man evaluation of 2 high-affinity PSMA-avid small molecules for imaging prostate cancer. J Nucl Med. 2013;54(3):380–7.

    Article  CAS  PubMed  Google Scholar 

  24. Hillier SM, Maresca KP, Femia FJ, Marquis JC, Foss CA, Nguyen N, et al. Preclinical evaluation of novel glutamate-urea-lysine analogues that target prostate-specific membrane antigen as molecular imaging pharmaceuticals for prostate cancer. Cancer Res. 2009;69(17):6932–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zechmann CM, Afshar-Oromieh A, Armor T, Stubbs JB, Mier W, Hadaschik B, et al. Radiation dosimetry and first therapy results with a 124I/131I-labeled small molecule (MIP-1095) targeting PSMA for prostate cancer therapy. Eur J Nucl Med Mol Imaging. 2014;41(7):1280–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mathias CJ, Wang S, Waters DJ, Turek JJ, Low PS, Green MA. Indium-111-DTPA-folate as a potential folate-receptor-targeted radiopharmaceutical. J Nucl Med. 1998;39:1579–85.

    CAS  PubMed  Google Scholar 

  27. Carrasquillo JA, Lang L, Whatley M, Herscovitch P, Wang QC, Pastan I, Eckelman WC. Aminosyn II effectively blocks renal uptake of 18F-labeled anti-tac disulfide-stabilized Fv. J Nucl Med. 2001;42(10):1538–44.

    PubMed  Google Scholar 

  28. Muller C, Struthers H, Winiger C, Zhernosekov K, Schibli R. DOTA conjugate with an albumin-binding entity enables the first folic acid-targeted 177Lu-radionuclide tumor therapy in mice. J Nucl Med. 2013;54:124–31.

    Article  CAS  PubMed  Google Scholar 

  29. Haller S, Reber J, Brandt S, Bernhardt P, Groehn V, Schibli R, et al. Folate receptor-targeted radionuclide therapy: preclinical investigation of anti-tumor effects and potential radionephropathy. Nucl Med Biol. 2015;42:770–9.

    Article  CAS  PubMed  Google Scholar 

  30. Barrett HH, Alberts DS, Woolfenden JM, Liu Z, Caucci L, Hoppin JW. Quantifying and reducing uncertainties in cancer therapy. Proc SPIE Int Soc Opt Eng. 2015;21:9412.

    Google Scholar 

  31. Jackson MR, Falzone N, Vallis KA. Advances in anticancer radiopharmaceuticals. Clin Oncol (R Coll Radiol). 2013;25(10):604–9.

    Article  CAS  Google Scholar 

  32. Vallabhajosula S. The chemistry of therapeutic radiopharmaceuticals. In: Aktolun C, Goldsmith SJ, editors. Nuclear medicine therapy. New York: Springer; 2013. p. 339–68.

    Chapter  Google Scholar 

  33. Boswell CA, Brechbiel MW. Development of radioimmunotherapeutic and diagnostic antibodies: an inside-out view. Nucl Med Biol. 2007;34(7):757–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Huclier S. Preface of the workshop on innovative personalized radioimmunotherapy (WIPR 2013). Nucl Med Biol. 2014;41(Suppl):e1–6.

    Article  CAS  PubMed  Google Scholar 

  35. Hamacher KA, Den RB, Den EI, Sgouros G. Cellular dose conversion factors for alpha-particle – emitting radionuclides of interest in radionuclide therapy. J Nucl Med. 2001;42(8):1216–21.

    CAS  PubMed  Google Scholar 

  36. Azure MT, Archer RD, Sastry KS, Rao DV, Howell RW. Biological effect of lead-212 localized in the nucleus of mammalian cells: role of recoil energy in the radiotoxicity of internal alpha-particle emitters. Radiat Res. 1994;140(2):276–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lövqvist A, Humm JL, Sheikh A, Finn RD, Koziorowski J, Ruan S, et al. Pharmacokinetics and biodistribution of 86Y-Trastuzumab for 90Y dosimetry in an ovarian carcinoma model: correlative MicroPET and MRI. J Nucl Med. 2001;42(8):1281–7.

    PubMed  Google Scholar 

  38. Walrand S, Flux GD, Konijnenberg MW, Valkema R, Krenning EP, Lhommel R, et al. Dosimetry of yttrium-labelled radiopharmaceuticals for internal therapy: 86Y or 90Y imaging? Eur J Nucl Med Mol Imaging. 2011;38(Suppl 1):S57–68.

    Article  PubMed  CAS  Google Scholar 

  39. Wright CL, Zhang J, Tweedle MF, Knopp MV, Hall NC. Theranostic imaging of yttrium-90. Biomed Res Int. 2015;2015:481279.

    PubMed  PubMed Central  Google Scholar 

  40. Raylman RR, Kison PV, Wahl RL. Capabilities of two- and three-dimensional FDG-PET for detecting small lesions and lymph nodes in the upper torso: a dynamic phantom study. Eur J Nucl Med. 1999;26:39–45.

    Article  CAS  PubMed  Google Scholar 

  41. Togawa T, Yui N, Kinoshita F, Yanagisawa M. Quantitative evaluation in tumor SPECT and the effect of tumor size: fundamental study with phantom. Ann Nucl Med. 1997;11:51–4.

    Article  CAS  PubMed  Google Scholar 

  42. Zeintl J, Vija AH, Yahil A, Hornegger J, Kuwert T. Quantitative accuracy of clinical 99mTc SPECT/CT using ordered-subset expectation maximization with 3-dimensional resolution recovery, attenuation, and scatter correction. J Nucl Med. 2010;51(6):921–8.

    Article  PubMed  Google Scholar 

  43. Ritt P, Vija H, Hornegger J, Kuwert T. Absolute quantification in SPECT. Eur J Nucl Med Mol Imaging. 2011;38(Suppl 1):S69–77.

    Article  PubMed  Google Scholar 

  44. Afshar-Oromieh A, Zechmann CM, Malcher A, Eder M, Eisenhut M, Linhart HG, et al. Comparison of PET imaging with a 68Ga-labelled PSMA ligand and 18F-choline-based PET/CT for the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2014;41(1):11–20.

    Article  CAS  PubMed  Google Scholar 

  45. Humm JL. Dosimetric aspects of radiolabelled antibodies for tumour therapy. J Nucl Med. 1986;27:1490–7.

    CAS  PubMed  Google Scholar 

  46. Wheldon TE, O’Donoghue JA, Barrett A, Michalowski AS. The curability of tumours of differing sizes by targeted radiotherapy using I-131 and Y-90. Radiother Oncol. 1991;21(2):91–9.

    Article  CAS  PubMed  Google Scholar 

  47. O’Donoghue JA, Bardies M, Wheldon TE. Relationships between tumour size and curability for targeted radionuclide therapy. J Nucl Med. 1995;36:1902–9.

    PubMed  Google Scholar 

  48. Cunningham SH, Mairs RJ, Wheldon TE, Welsh PC, Vaidyanathan G, Zalutsky MR. Radiotoxicity to neuroblastoma cells and spheroids of beta-, alpha- and Auger electron-emitting conjugates of benzylguanidine. Br J Cancer. 1998;77:2061–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wieland DM, Wu J, Brown LE, Mangner TJ, Swanson DP, Bierwaltes WH. Radiolabelled adrenergic neuron-blocking agents: adrenomedullary imaging with [131I]iodobenzylguanidine. J Nucl Med. 1980;21:349–53.

    CAS  PubMed  Google Scholar 

  50. Jacques Jr S, Tobes MC, Sisson JC, Baker JA, Wieland DM. Comparison of the sodium dependence of uptake of meta-iodo-benzylguanidine and norephrine into cultured bovine adrenomedullary cells. Mol Pharmacol. 1984;26:539–46.

    Google Scholar 

  51. Adam MJ, Wilbur DS. Radiohalogens for imaging and therapy. Chem Soc Rev. 2005;34:153–63.

    Article  CAS  PubMed  Google Scholar 

  52. Cooper MS, Ma MT, Sunassee K, Shaw KP, Williams JD, Paul RL, Donnelly PS, Blower PJ. Comparison of 64Cu-complexing bifunctional chelators for radioimmunoconjugation: labeling efficiency, specific activity, and in vitro/in vivo stability. Bioconjug Chem. 2012;23:1029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Szajek LP, Kao C-H K, Kiesewetter DO, Sassaman MB, Lang L, Plascjak P et al. Semi-remote production of Br-76 and preparation of high specific activity radiobrominated pharmaceuticals for PET studies. Radiochimica Acta: 2004;92, Issue 4–6, pp. 291–295. Stöcklin Memorial Issue.

    Google Scholar 

  54. Brechbiel MW. Bifunctional chelates for metal nuclides. Q J Nucl Med Mol Imaging. 2008;52(2):166–73.

    CAS  PubMed  Google Scholar 

  55. Larson SM. Mechanisms of localization of gallium-67 in tumors. Semin Nucl Med. 1978;8:193–203.

    Article  CAS  PubMed  Google Scholar 

  56. Deri MA, Zeglis BM, Francesconi LC, Lewis JS. PET imaging with 89Zr: from radiochemistry to the clinic. Nucl Med Biol. 2013;40(1):3–14.

    Article  CAS  PubMed  Google Scholar 

  57. Maeda H, Tsukigawa K, Fang J. A retrospective 30 years after discovery of the EPR effect of solid tumors: next-generation chemotherapeutics and photodynamic-therapy-problems, solutions. Prospects Microcirc. 2016;23:173–82.

    Article  CAS  Google Scholar 

  58. Severin GW, Jørgensen JT, Wiehr S, Rolle AM, Hansen AE, Maurer A, et al. The impact of weakly bound 89Zr on preclinical studies: non-specific accumulation in solid tumors and aspergillus infection. Nucl Med Biol. 2015;42(4):360–8.

    Article  CAS  PubMed  Google Scholar 

  59. Aloj L, Jogoda E, Lang L, Caracò C, Neumann RD, Sung C, et al. Targeting of transferrin receptors in nude mice bearing A431 and LS174T xenografts with [18F]holo-transferrin: permeability and receptor dependence. J Nucl Med. 1999;40(9):1547–55.

    CAS  PubMed  Google Scholar 

  60. Bass LA, Wang M, Welch MJ, Anderson CJ. In vivo transchelation of copper-64 from TETA-octreotide to superoxide dismutase in rat liver. Bioconjug Chem. 2000;11(4):527–32.

    Article  CAS  PubMed  Google Scholar 

  61. Cai Z, Anderson CJ. Chelators for copper radionuclides in positron emission tomography radiopharmaceuticals. J Label Compd Radiopharm. 2014;57(4):224–30.

    Article  CAS  Google Scholar 

  62. Apelgot S, Coppey J, Grisvard J, Guillé E, Sissoeff I. Distribution of copper-64 in control mice and in mice bearing ascitic Krebs tumor cells. Cancer Res. 1981;41:1502–7.

    CAS  PubMed  Google Scholar 

  63. Jørgensen JT, Persson M, Madsen J, Kjær A. High tumor uptake of 64Cu: implications for molecular imaging of tumor characteristics with copper-based PET tracers. Nucl Med Biol. 2013;40(3):345–50.

    Article  PubMed  CAS  Google Scholar 

  64. Kim KI, Jang SJ, Park JH, Lee YJ, Lee TS, Woo KS, et al. Detection of increased 64Cu uptake by human copper transporter 1 gene overexpression using PET with 64CuCl2 in human breast cancer xenograft model. J Nucl Med. 2014;55(10):1692–8.

    Article  CAS  PubMed  Google Scholar 

  65. Cai H, Wu JS, Muzik O, Hsieh JT, Lee RJ, Peng F. Reduced 64Cu uptake and tumor growth inhibition by knockdown of human copper transporter 1 in xenograft mouse model of prostate cancer. J Nucl Med. 2014;55(4):622–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Qin C, Liu H, Chen K, Hu X, Ma X, Lan X, et al. Theranostics of malignant melanoma with 64CuCl2. J Nucl Med. 2014;55(5):812–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cole WC, Wolf W. Preparation and metabolism of a cisplatin/serum protein complex. Chem Biol Interact. 1980;30(2):223–35.

    Article  CAS  PubMed  Google Scholar 

  68. Parti R, Wolf W. Quantitative subcellular distribution of platinum in rat tissues following i.v. bolus and i.v. infusion of cisplatin. Cancer Chemother Pharmacol. 1990;26(3):188–92.

    Article  CAS  PubMed  Google Scholar 

  69. Huclier-Markai S, Kerdjoudj R, Alliot C, Bonraisin AC, Michel N, Haddad F, et al. Optimization of reaction conditions for the radiolabeling of DOTA and DOTA-peptide with 44m/44Sc and experimental evidence of the feasibility of an in vivo PET generator. Nucl Med Biol. 2014;41:e36–43.

    Article  CAS  PubMed  Google Scholar 

  70. Krohn KA, Mankoff DA, Muzi M, Link JM, Spence AM. True tracers: comparing FDG with glucose and FLT with thymidine. Nucl Med Biol. 2005;32(7):663–71.

    Article  CAS  PubMed  Google Scholar 

  71. Duatti A. Nonisotopic substitution: is fluorine a replacement for hydrogen? Nucl Med Biol. 2013;40(7):871–2.

    Article  CAS  PubMed  Google Scholar 

  72. Jia F, Balaji BS, Gallazzi F, Lewis MR. Copper-64-labeled anti-bcl-2 PNA-peptide conjugates selectively localize to bcl-2-positive tumors in mouse models of B-cell lymphoma. Nucl Med Biol. 2015;42:809.

    Article  CAS  PubMed  Google Scholar 

  73. Cornelissen B. Imaging the inside of a tumour: a review of radionuclide imaging and theranostics targeting intracellular epitopes. J Label Compd Radiopharm. 2014;57(4):310–6.

    Article  CAS  Google Scholar 

  74. DeSombre ER, Mease RC, Hughes A, Harper PV, DeJesus OT, Friedman AM. Bromine-80m-labeled estrogens: Auger electron-emitting, estrogen receptor-directed ligands with potential for therapy of estrogen receptor-positive cancers. Cancer Res. 1988;48(4):899–906.

    CAS  PubMed  Google Scholar 

  75. DeSombre ER, Shafii B, Hanson RN, Kuivanen PC, Hughes A. Estrogen receptor-directed radiotoxicity with Auger electrons: specificity and mean lethal dose. Cancer Res. 1992;52(20):5752–8.

    CAS  PubMed  Google Scholar 

  76. DeSombre ER, Hughes A, Hanson RN, Kearney T. Therapy of estrogen receptor-positive micrometastases in the peritoneal cavity with Auger electron-emitting estrogens--theoretical and practical considerations. Acta Oncol. 2000;39(6):659–66.

    Article  CAS  PubMed  Google Scholar 

  77. Larson SM, Carrasquillo JA, Cheung NK, Press OW. Radioimmunotherapy of human tumours. Nat Rev Cancer. 2015;15(6):347–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bloomer WD, Adelstein SJ. 5-125I-Iododeoxyuridine as prototype for radionuclide therapy with Auger emitters. Nature. 1977;265:620–1.

    Article  CAS  PubMed  Google Scholar 

  79. Bloomer WD, Adelstein SJ. Therapeutic application of iodine-125 labeled iododeoxyuridine in an early ascites tumor model. Curr Top Radiat Res Q. 1977;12:513–25.

    Google Scholar 

  80. Baranowska-Kortylewicz J, Makrigiorgos GM, Van den Abbeele AD, Berman RM, Adelstein SJ, Kassis AI. 5-[123I]iodo-2′-deoxyuridine in the radiotherapy of an early ascites tumor model. Int J Radiat Oncol Biol Phys. 1991;21:1541–51.

    Article  CAS  PubMed  Google Scholar 

  81. Charlton DE. The range of high LET effects from 125I decays. Radiat Res. 1986;107:163–71.

    Article  CAS  PubMed  Google Scholar 

  82. Kassis A, Fayad F, Kinsey BM, Sastry KSR, Taube RA, Adelstein SJ. Radiotoxicity of 125I in mammalian cells. Radiat Res. 1987;111:305–18.

    Article  CAS  PubMed  Google Scholar 

  83. Link EM, Brown I, Carpenter RN, Mitchell JS. Uptake and therapeutic effectiveness of 125I- and 211At-methylene blue for pigmented melanoma in an animal model system. Cancer Res. 1989;49:4332–7.

    CAS  PubMed  Google Scholar 

  84. Gaze MN, Huxham IM, Mairs RJ, Barrett A. Intracellular localization of metaiodobenzylguanidine in human neuroblastoma cells by electron spectroscopic imaging. Int J Cancer. 1991;47:875–80.

    Article  CAS  PubMed  Google Scholar 

  85. Clerc J, Halpern S, Fourre C, Omri F, Briancon J, Eusset J, et al. SIMS microscopy imaging of the intratumour biodistribution of metaiodobenzylguanidine in the human SK-N-SH neuroblastoma cell line xenografted into nude mice. J Nucl Med. 1993;34:1565–70.

    CAS  PubMed  Google Scholar 

  86. Tritschler H-J, Medori R. Mitochondrial DNA alterations as a source of human disorders. Neurology. 1993;43:280–8.

    Article  CAS  PubMed  Google Scholar 

  87. Howell RW. Radiation spectra for Auger electron emitting radionuclides. Report No 2 of AAPM-Nuclear-Medicine-Task-Group No 6. Med Phys. 1992;19:1371–83.

    Article  CAS  PubMed  Google Scholar 

  88. Sastry KSR. Biological effects of the Auger emitter 125I a review. Report No 1 of AAPM-Nuclear-Medicine-Task-Group No 6. Med Phys. 1992;19:1361–70.

    Article  CAS  PubMed  Google Scholar 

  89. Jarvis WD, Kolesnick RN, Fornari FA, Traylor RS, Gewirtz DA, Grant S. Induction of apoptotic DNA damage and cell death by activation of the sphingomyelin pathway. Proc Natl Acad Sci U S A. 1994;91:73–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Obeid LM, Linardic CM, Karolak LA, Hannun YA. Programmed cell death induced by ceramide. Science. 1994;259:1769–71.

    Article  Google Scholar 

  91. Haimovitz-Friedman A, Kan C-C, Ehleiter D, Persaud RS, McLoughlin M, Fuks Z, et al. Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J Exp Med. 1994;180:525–35.

    Article  CAS  PubMed  Google Scholar 

  92. Pouget JP, Santoro L, Raymond L, Chouin N, Bardiès M, Bascoul-Mollevi C, et al. Cell membrane s a more sensitive target than cytoplasm to dense ionization produced by auger electrons. (Translated from eng). Radiat Res. 2008;170(2):192–200.

    Article  CAS  PubMed  Google Scholar 

  93. Santoro L, Boutaleb S, Garambois V, Bascoul-Mollevi C, Boudousq V. Pierre- Kotzki P-O, et al. Noninternalizing monoclonal antibodies are suitable candidates for 125I radioimmunotherapy of small-volume peritoneal carcinomatosis. J Nucl Med. 2009;50(12):2033–41.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Xue LY, Butler NJ, Makrigiorgos GM, Adelstein SJ, Kassis AI. Bystander effect produced by radiolabeled tumor cells in vivo. Proc Natl Acad Sci U S A. 2002;99(21):13765–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Nagasawa H, Little JB. Induction of sister chromatid exchanges by extremely low doses of alpha-particles. Cancer Res. 1992;52:6394–6.

    CAS  PubMed  Google Scholar 

  96. Mothersill C, Seymour CB. Radiation induced bystander effects: past history and future directions. Radiat Res. 2001;155:759–67.

    Article  CAS  PubMed  Google Scholar 

  97. Mothersill C, Seymour CB. Radiation-induced bystander effects–implications for cancer. Nat Rev Cancer. 2004;4:158–64.

    Article  CAS  PubMed  Google Scholar 

  98. Lyng FM, Seymour CB, Mothersill C. Early events in the apoptotic cascade initiated in cells treated with medium from the progeny of irradiated cells. Radiat Prot Dosim. 2002;99:169–72.

    Article  CAS  Google Scholar 

  99. Lorimore SA, Wright EG. Radiation-induced genomic instability and bystander effects: related inflammatory-type responses to radiation-induced stress and injury? A review. Int J Radiat Biol. 2003;79:15–25.

    Article  CAS  PubMed  Google Scholar 

  100. Morgan WF. Is there a common mechanism underlying genomic instability, bystander effects and other nontargeted effects of exposure to ionising radiation? Oncogene. 2003;22:7094–9.

    Article  CAS  PubMed  Google Scholar 

  101. Little JB. Genomic instability and bystander effects: a historical perspective. Oncogene. 2003;22:6978–87.

    Article  CAS  PubMed  Google Scholar 

  102. Carlsson J, Aronsson EF, Hietala S-O, Stigbrand T, Tennvall J. Tumour therapy with radionuclides: assessment of progress and problems. Radiother Oncol. 2003;66:107–17.

    Article  CAS  PubMed  Google Scholar 

  103. Boyd M, Ross SC, Dorrens J, Fullerton NE, Tan KW, Zalutsky MR, et al. Radiation-induced biologic bystander effect elicited in vitro by targeted radiopharmaceuticals labeled with alpha-, beta-, and auger electron-emitting radionuclides. J Nucl Med. 2006;47(6):1007–15.

    CAS  PubMed  Google Scholar 

  104. Prise KM, O’Sullivan JM. Radiation-induced bystander signalling in cancer therapy. Nat Rev Cancer. 2009;9(5):351–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Brady D, O’Sullivan JM, Prise KM. What is the role of the bystander response in radionuclide therapies? Front Oncol. 2013;3:215.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Paillas S, Boudousq V, Piron B, Kersual N, Bardiès M, Chouin N, et al. Apoptosis and p53 are not involved in the anti-tumor efficacy of (125)I-labeled monoclonal antibodies targeting the cell membrane. Nucl Med Biol. 2013;40(4):471–80.

    Article  CAS  PubMed  Google Scholar 

  107. Prise KM, Schettino G, Folkard M, Held KD. New insights on cell death from radiation exposure. Lancet Oncol. 2005;6(7):520–8.

    Article  CAS  PubMed  Google Scholar 

  108. Havaki S, Kotsinas A, Chronopoulos E, Kletsas D, Georgakilas A, Gorgoulis VG. The role of oxidative DNA damage in radiation induced bystander effect. Cancer Lett. 2015;356(1):43–51.

    Article  CAS  PubMed  Google Scholar 

  109. Lehnert BE, Goodwin EH. Extracellular factor(s) following exposure to alpha particles can cause sister chromatid exchanges in normal human cells. Cancer Res. 1997;57:2164–71.

    CAS  PubMed  Google Scholar 

  110. Narayanan PK, Goodwin EH, Lehnert BE. Alpha particles initiate biological production of superoxide anions and hydrogen peroxide in human cells. Cancer Res. 1997;57:3963–71.

    CAS  PubMed  Google Scholar 

  111. Matsumoto H, Hayashi S, Hatashita M, Ohnishi K, Shioura H, Ohtsubo T, et al. Induction of radioresistance by a nitric oxide-mediated bystander effect. Radiat Res. 2001;155:387–96.

    Article  CAS  PubMed  Google Scholar 

  112. Shao C, Furusawa Y, Aoki M, Matsumoto H, Ando K. Nitric oxide-mediated bystander effect induced by heavy-ions in human salivary gland tumour cells. Int J Radiat Biol. 2002;78:837–44.

    Article  CAS  PubMed  Google Scholar 

  113. Iyer R, Lehnert BE. Factors underlying the cell growth-related bystander responses to alpha particles. Cancer Res. 2000;60:1290–8.

    CAS  PubMed  Google Scholar 

  114. Zhou H, Ivanov VN, Lien YC, Davidson M, Hei TK. Mitochondrial function and nuclear factor-kappa B-mediated signaling in radiation-induced bystander effects. Cancer Res. 2008;68(7):2233–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Demaria S, Ng B, Devitt ML, Babb JS, Kawashima N, Liebes L, et al. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys. 2004;58(3):862–70.

    Article  PubMed  Google Scholar 

  116. De Ridder M, Jiang H, Van Esch G, Law K, Monsaert C, Van den Berge DL, et al. IFN-gamma+ CD8+ T lymphocytes: possible link between immune and radiation responses in tumor-relevant hypoxia. Int J Radiat Oncol Biol Phys. 2008;71(3):647–51.

    Article  CAS  PubMed  Google Scholar 

  117. Lee Y, Auh SL, Wang Y, Burnette B, Wang Y, Meng Y, et al. Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood. 2009;114(3):589–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Brady D, O’Sullivan JM, Prise KM. What is the role of the bystander response in radionuclide therapies? Front Oncol. 2013;3:1–5.

    Article  Google Scholar 

  119. Pouget J-P, Lozza C, Deshayes E, Boudousq V, Navarro-Teulon I. Introduction to radiobiology of targeted radionuclide therapy. Front Med. 2015;2:1–11.

    Article  Google Scholar 

  120. Bishayee A, Rao DV, Howell RW. Evidence for pronounced bystander effects caused by nonuniform of radioactivity distributions using a novel three-dimensional tissue culture model. Radiat Res. 1999;97152:88–97.

    Article  Google Scholar 

  121. Bishayee A, Hill HZ, Stein D, Rao DV, Howell RW. Free radical- initiated and gap junction- mediated Bystander effect due to nonuniform distribution of incorporated radioactivity in a three-dimensional tissue culture model. Radiat Res. 2001;155:335–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Persaud R, Zhou H, Baker SE, Hei TK, Hall EJ. Assessment of low linear energy transfer radiation- induced bystander mutagenesis in a three-dimensional culture model. Cancer Res. 2005;65:9876–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kassis AI. In vivo validation of the bystander effect. Hum Exp Toxicol. 2004;23:71–3.

    Article  PubMed  Google Scholar 

  124. Mamlouk O, Balagurumoorthy P, Wang K, Adelstein SJ, Kassis AI. Bystander effect in tumor cells produced by Iodine-125 labeled human lymphocytes. Int J Radiat Biol. 2012;88:1019–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Akudugu JM, Azzam EI, Howell RW. Induction of lethal bystander effects in human breast cancer cell cultures by DNA-incorporated Iodine-125 depends on phenotype. Int J Radiat Biol. 2012;88:1028–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Chouin N, Bernardeau K. Evidence of extranuclear cell sensitivity to alpha-particle radiation using a microdosimetric model. II. Application of the microdosimetric model to experimental results. Radiat Res. 2009;171(6):664–73.

    Article  CAS  PubMed  Google Scholar 

  127. Howell RW, Rajon D, Bolch WE. Monte Carlo simulation of irradiation and killing in three-dimensional cell populations with lognormal cellular uptake of radioactivity. Int J Radiat Biol. 2012;88:115–22.

    Article  CAS  PubMed  Google Scholar 

  128. Burdak-Rothkamm S, Rothkamm K, Prise KM. ATM acts downstream of ATR in the DNA damage response signaling of bystander cells. Cancer Res. 2008;68(17):7059–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Alper T. Effects on irradiated micro-organisms of growth in the presence of acriflavine. Nature. 1963;200:534–6.

    Article  CAS  PubMed  Google Scholar 

  130. Hussain SP, Hofseth LJ, Harris CC. Radical causes of cancer. Nat Rev Cancer. 2003;3(4):276–85.

    Article  CAS  PubMed  Google Scholar 

  131. Corre I, Niaudet C, Paris F. Plasma membrane signaling induced by ionizing radiation. Mutat Res. 2010;704(1–3):61–7.

    Article  CAS  PubMed  Google Scholar 

  132. Kolesnick RN, Haimovitz-Friedman A, Fuks Z. The sphingomyelin signal transduction pathway mediates apoptosis for tumor necrosis factor, Fas, and ionizing radiation. Biochem Cell Biol. 1994;72(11–12):471–4.

    Article  CAS  PubMed  Google Scholar 

  133. Piron B, Paillas S, Boudousq V, Pèlegrin A, Bascoul-Mollevi C, Chouin N, et al. DNA damage-centered signaling pathways are effectively activated during low dose-rate Auger radioimmunotherapy. Nucl Med Biol. 2014;41(Suppl):e75–83.

    Article  CAS  PubMed  Google Scholar 

  134. Butterworth KT, Coulter JA, Jain S, Forker J, McMahon SJ, Schettino G, et al. Evaluation of cytotoxicity and radiation enhancement using 1.9 nm gold particles: potential application for cancer therapy. Nanotechnology. 2010;21:295101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kam WW, Banati RB. Effects of ionizing radiation on mitochondria. Free Radic Biol Med. 2013;65:607–19.

    Article  CAS  PubMed  Google Scholar 

  136. Samper E, Morgado L, Estrada JC, Bernad A, Hubbard A, Cadenas S, et al. Increase in mitochondrial biogenesis, oxidative stress, and glycolysis in murine lymphomas. Free Radic Biol Med. 2009;46:387–96.

    Article  CAS  PubMed  Google Scholar 

  137. Poyton RO, Ball KA, Castello PR. Mitochondrial generation of free radicals and hypoxic signaling. Trends Endocrinol Metab. 2009;20:332–40.

    Article  CAS  PubMed  Google Scholar 

  138. Liou G-Y, Storz P. Reactive oxygen species in cancer. Free Radic Res. 2010;44:1–31.

    Article  Google Scholar 

  139. Laurent A, Nicco C, Chéreau C, Goulvestre C, Alexandre J, Alves A, et al. Controlling tumor growth by modulating endogenous production of reactive oxygen species. Cancer Res. 2005;65:948–56.

    CAS  PubMed  Google Scholar 

  140. Wang J, Yi J. Cancer cell killing via ROS: to increase or decrease, that is the question. Cancer Biol Ther. 2008;7:1875–84.

    Article  CAS  PubMed  Google Scholar 

  141. Ralph SJ, Rodríguez-Enríquez S, Neuzil J, Saavedra E, Moreno-Sánchez R. The causes of cancer revisited: “mitochondrial malignancy” and ROS-induced oncogenic transformation – why mitochondria are targets for cancer therapy. Mol Asp Med. 2010;31:145–70.

    Article  CAS  Google Scholar 

  142. Murphy JE, Nugent S, Seymour C, Mothersill C. Mitochondrial DNA point mutations and a novel deletion induced by direct low-LET radiation and by medium from irradiated cells. Mutat Res. 2005;585(1–2):127–36.

    Article  CAS  PubMed  Google Scholar 

  143. Hei TK, Zhou H, Ivanov VN, Hong M, Lieberman HB, Brenner DJ, et al. Mechanism of radiation-induced bystander effects: a unifying model. J Pharm Pharmacol. 2008;60(8):943–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Sutherland RM, Inch WR, McCredie JA, Kruuv J. A multi-component radiation survival curve using an in vitro tumour model. Int J Radiat Biol Relat Stud Phys Chem Med. 1970;18:491–5.

    Article  CAS  PubMed  Google Scholar 

  145. Mueller-Klieser W. Multicellular spheroids. A review on cellular aggregates in cancer research. J Cancer Res Clin Oncol. 1987;113:101–22.

    Article  CAS  PubMed  Google Scholar 

  146. Knuechel R, Sutherland RM. Recent developments in research with human tumour spheroids. Cancer J. 1990;3:234–43.

    Google Scholar 

  147. Carlsson J, Nederman T. Tumour spheroids as a model in studies of drug effects. In: Bjerkvig R, editor. Spheroid culture in cancer research. Boca Raton: CRC Press; 1992. p. 245–69.

    Google Scholar 

  148. Mikhail AS, Eetezadi S, Allen C. Multicellular tumor spheroids for evaluation of cytotoxicity and tumor growth inhibitory effects of nanomedicines in vitro: a comparison of docetaxel-loaded block copolymer micelles and Taxotere. PLoS One. 2013;8(4):e62630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Hickman J, Graeser R, de Hoogt R, Vidic S, Brito C, Gutekunst M, Van der Kuip H. Three-dimensional models of cancer for pharmacology and cancer cell biology: capturing tumor complexity in vitro/ex vivo. Biotechnol J. 2014;9:1115–28.

    Article  CAS  PubMed  Google Scholar 

  150. Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W, Kunz-Schughart LA. Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol. 2010;148(1):3–15.

    Article  CAS  PubMed  Google Scholar 

  151. Sutherland RM. Cell and environment interactions in tumour microregions: the multicell spheroid model. Science. 1988;240:177–84.

    Article  CAS  PubMed  Google Scholar 

  152. Senavirathna LK, Fernando R, Maples D, Zheng Y, Polf JC, Ranjan A. Tumor spheroids as an in vitro model for determining the therapeutic response to proton beam radiotherapy and thermally sensitive nanocarriers. Theranostics. 2013;3(9):687–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Boyd M, Mairs SC, Stevenson K, Livingstone A, McCluskey AG, Ross SC, Mairs RJ. Transfectant mosaic spheroids: a new model for the evaluation of bystander effects in experimental gene therapy. J Gene Med. 2002;4:567–76.

    Article  CAS  PubMed  Google Scholar 

  154. Lybarger L, Dempsey D, Franek KJ, Chervenak R. Rapid generation and flow cytometric analysis of stable GFP-expressing cells. Cytometry. 1996;25:211–20.

    Article  CAS  PubMed  Google Scholar 

  155. Boyd M, Mairs RJ. Tumour spheroids. In: Freshney RI, editor. The culture of animal cells. 5th ed. New York: Alan R. Liss; 2006. p. 281–98.

    Google Scholar 

  156. Boyd M, Cunningham SH, Brown MM, Mairs RJ, Wheldon TE. Noradrenaline transporter gene transfer for radiation cell kill by [131I]meta-iodobenzylguanidine. Gene Ther. 1999;6:1147–52.

    Article  CAS  PubMed  Google Scholar 

  157. Vaidyanathan G, Affleck DJ, Alston KL, Zhao XG, Hens M, Hunter DH, et al. A kit method for the high level synthesis of [211At]MABG. Bioorg Med Chem. 2007;15:3430–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Zalutsky MR, Vaidyanathan G. Astatine-211-labeled radiotherapeutics: an emerging approach to targeted alpha particle therapy. Curr Pharm Des. 2000;6:1433–55.

    Article  CAS  PubMed  Google Scholar 

  159. Mairs RJ, Ross SC, McCluskey AG, Boyd M. A transfectant mosaic xenograft model for the evaluation of targeted radiotherapy in combination with gene therapy in vivo. J Nucl Med. 2007;48:1519–26.

    Article  CAS  PubMed  Google Scholar 

  160. Boyd M, Mairs SC, Stevenson K, Livingstone A, McCluskey AG. Radiation quality-dependent bystander effects elicited by targeted radionuclides. J Pharm Pharmacol 2008;60:951–958.

    Google Scholar 

  161. Sisson JC, Shapiro B, Hutchinson RJ, Zasadny KR, Mallette S, Mudgett EE, Weiland DM. Treatment of neuroblastoma with [125I]metaiodobenzylguanidine. J Nucl Biol Med. 1991;35:255–9.

    CAS  PubMed  Google Scholar 

  162. de Jong M, Bakker WH, Breeman WAP. Pre-clinical comparison of [DTPA0] octreotide, [DTPA0, Tyr3] octreotide and [DOTA0, Tyr3] octreotide as carriers for somatostatin receptor-targeted scintigraphy and radionuclide therapy. Int J Cancer. 1998;75:406–11.

    Article  PubMed  Google Scholar 

  163. Kishikawa H, Wang K, Adelstein SJ, Kassis AI. Inhibitory and stimulatory bystander effects are differentially induced by iodine-125 and iodine-123. Radiat Res. 2006;165:688–94.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William C. Eckelman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Eckelman, W.C., Boyd, M., Mairs, R.J. (2017). Principles of Molecular Targeting for Radionuclide Therapy. In: Strauss, H., Mariani, G., Volterrani, D., Larson, S. (eds) Nuclear Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-26236-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26236-9_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26234-5

  • Online ISBN: 978-3-319-26236-9

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics