Skip to main content

Diagnostic Applications of Nuclear Medicine: Malignant Melanoma

  • Reference work entry
  • First Online:
  • 1995 Accesses

Abstract

Malignant melanoma was diagnosed in approximately 74,000 patients in 2015 in the USA. Melanoma accounts for about 3% of all skin cancers. Major parameters that impact prognosis include Breslow thickness, ulceration, tumor location, growth pattern, histological subtype, patient’s age, gender, and tumor status of regional lymph nodes. Melanomas are staged using the American Joint Committee on Cancer (AJCC) TNM system, which has incorporated the histological status of SLN into its latest staging system version of cutaneous malignant melanoma.

In early stage melanoma (AJCC I–II), sentinel lymph node biopsy (SLNB) is the standard of care for nodal staging. Lymphoscintigraphy with SPECT/CT improves the detection of SLN. In AJCC stage I–II melanoma, [18F]FDG PET/CT has poor sensitivity for the detection of nodal metastases but it is sensitive for the detection of distant metastases. In patients with AJCC stage III (regional nodal involvement) or stage IV disease (systemic metastases), [18F]FDG PET/CT is useful to identify metastatic disease. PET imaging in melanoma patients should include the arms and legs, especially in patients whose primary lesions arise on extremities. False-negative results can occur with small skin and brain metastases, and lesions adjacent to the heart, kidneys, or urinary bladder.

Although [18F]FDG PET/CT is more specific in the diagnosis of melanoma pulmonary metastases, chest CT is more sensitive. Most PET false negatives in recurrent disease are typically less than 1 cm in diameter and are mainly pulmonary and hepatic in location, or in the brain. [18F]FDG PET/CT is useful in treatment monitoring of metastatic melanoma and in posttherapy surveillance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

[18F]FDG:

2-Deoxy-2-[18F]fluoro-d-glucose

18F-FLT:

3′-18F-fluoro-3′-deoxythymidine

AJCC:

American Joint Committee on Cancer

APC:

Antigen-presenting cell

bFGF:

Basic fibroblast growth factor

BRAF:

RAF serine-/threonine-specific protein kinase

Breslow thickness:

A prognostic factor in cutaneous melanoma, based on description of how deeply tumor cells have invaded the skin (also called “Breslow depth”)

c-KIT:

A proto-oncogene encoding for tyrosine-protein kinase Kit (or CD117), also known as mast/stem cell growth factor receptor (SCFR)

CDK4:

Cyclin-dependent kinase 4

CDKN2A:

Cyclin-dependent kinase inhibitor 2A

ceCT:

Contrast-enhanced computed tomography

CI:

Confidence interval

Clark level:

A staging system for cutaneous melanoma based on description of the level of anatomic invasion of the melanoma in the skin (generally used in conjunction with Breslow’s depth)

COT:

A mitogen-activated protein serine/threonine kinase involved in T-cell activation

CR:

Complete response

CT:

X-ray computed tomography

ERK:

Extracellular signal-regulated kinase

FDA:

United States Food and Drug Administration

GLUT:

Glucose transporter family

HR:

Hazard ratio, a statistical parameter used in survival analysis

IDO:

Indoleamine 2,3-dioxygenase

IFN:

Interferon

IGFR1:

Insulin-like growth factor 1

LAG-3:

Lymphocyte-activation gene 3

LDH:

Lactate dehydrogenase

LS:

Lymphoscintigraphy

M:

Metastasis status according to the AJCC/UICC TNM staging system

MAGE:

Melanoma-associated antigen gene

MAPK:

Mitogen-activated protein kinase

MHC:

Major histocompatibility complex

MRI:

Magnetic resonance imaging

N:

Lymph node status according to the AJCC/UICC TNM staging system

NCCN:

National Comprehensive Cancer Network

NRAS:

Oncogene encoding for a membrane protein that shuttles between the Golgi apparatus and the plasma membrane

ORR:

Overall response rate

OS:

Overall survival

PD-L1:

Programmed death ligand

PDGF:

Platelet-derived growth factor

PET:

Positron emission tomography

PET/CT:

Positron emission tomography/computed tomography

PFS:

Progression-free survival

PFS:

Progression-free survival

PI3K:

Phosphatidylinositol 3-kinase

PlGF:

Placental growth factor

PTEN:

Gene encoding for the phosphatase and tensin homolog protein, a tumor suppressor (PTEN deletions indicate a poor prognosis)

RAF:

Rapidly accelerated fibrosarcoma, related to retroviral oncogenes

RECIST:

Response evaluation criteria in solid tumors

S-100:

A low-molecular-weight calcium-binding protein expressed in melanomas, but also in other benign and malignant conditions

SLN:

Sentinel lymph node

SLNB:

Sentinel lymph node biopsy

SLNE:

Sentinel lymph node excision

SPECT:

Single photon emission computed tomography

SPECT/CT:

Single photon emission computed tomography/computed tomography

SUV:

Standardized uptake value

SUVmax :

Standardized uptake value at point of maximum

T:

Tumor status according to the AJCC/UICC TNM staging system

TGF:

Transforming growth factor

TIM-3:

T-cell immunoglobulin and mucin-domain containing-3

UICC:

Union Internationale Contre le Cancer (International Union Against Cancer)

UV:

Ultraviolet

VEGF:

Vascular endothelial growth factor

WHO:

World Health Organization

References

  1. Diepgen TL, Mahler V. The epidemiology of skin cancer. Br J Dermatol. 2002;146 Suppl 61:1–6.

    Article  PubMed  Google Scholar 

  2. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, et al. GLOBOCAN 2012 v1.0, Cancer incidence and mortality worldwide: IARC CancerBase No. 11 [Internet]. Lyon: International Agency for Research on Cancer; 2013.

    Google Scholar 

  3. Australian Institute of Health and Welfare. Cancer in Australia: an overview, 2014. Canberra: Australian Government; 2014.

    Google Scholar 

  4. European Network of Cancer Registries No. 4, November 2003.

    Google Scholar 

  5. American Cancer Society. Cancer facts & figures 2009. Atlanta: American Cancer Society; 2009.

    Google Scholar 

  6. Bishop DT, Demenais F, Goldstein AM, et al. Geographical variation in the penetrance of CDKN2A mutations for melanoma. J Natl Cancer Inst. 2002;94:894–903.

    Article  CAS  PubMed  Google Scholar 

  7. Goggins WB, Tsao H. A population-based analysis of risk factors for a second primary cutaneous melanoma among melanoma survivors. Cancer. 2003;97:639–43.

    Article  PubMed  Google Scholar 

  8. Miller AJ, Mihm Jr MC. Melanoma. N Engl J Med. 2004;351:998–1012.

    Article  Google Scholar 

  9. Gilchrest BA, Eller MS, Geller AC, Yaar M. The pathogenesis of melanoma induced by ultraviolet radiation. N Engl J Med. 1999;340:1341–8.

    Article  CAS  PubMed  Google Scholar 

  10. Haluska FG, Tsao H, Wu H, Haluska FS, Lazar A, Goel V. Genetic alterations in signaling pathways in melanoma. Clin Cancer Res. 2006;12(7 Pt 2):2301s–7.

    Article  CAS  PubMed  Google Scholar 

  11. Davies H, Bignell GR, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417:949–54.

    Article  CAS  PubMed  Google Scholar 

  12. Disis ML. Mechanism of action of immunotherapy. Semin Oncol. 2014;41 Suppl 5:S3–13.

    Article  CAS  PubMed  Google Scholar 

  13. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000;407(6801):249–57.

    Article  CAS  PubMed  Google Scholar 

  14. Ferrara N. Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev. 2004;25:581–611.

    Article  CAS  PubMed  Google Scholar 

  15. Salven P, Heikkila P, Joensuu H. Enhanced expression of vascular endothelial growth factor in metastatic melanoma. Br J Cancer. 1997;76:930–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bayer-Garner IB, Hough Jr AJ, Smoller BR. Vascular endothelial growth factor expression in malignant melanoma: prognostic versus diagnostic usefulness. Mod Pathol. 1999;12:770–4.

    CAS  PubMed  Google Scholar 

  17. Barnhill RL, Xiao M, Graves D, Antoniades HN. Expression of platelet-derived growth factor (PDGF)-A, PDGF-B and the PDGF-alpha receptor, but not the PDGF-beta receptor, in human malignant melanoma in vivo. Br J Dermatol. 1996;135:898–904.

    Article  CAS  PubMed  Google Scholar 

  18. Rofstad EK, Halsor EF. Vascular endothelial growth factor, interleukin 8, platelet-derived endothelial cell growth factor, and basic fibroblast growth factor promote angiogenesis and metastasis in human melanoma xenografts. Cancer Res. 2000;60:4932–8.

    CAS  PubMed  Google Scholar 

  19. Jost LM. ESMO minimum clinical recommendations for diagnosis, treatment and follow-up of cutaneous malignant melanoma. Ann Oncol. 2003;14:1012–3.

    Article  CAS  PubMed  Google Scholar 

  20. American Joint Committee on Cancer (AJCC). TNM staging system for melanoma. 7th ed. New York: Springer; 2010.

    Google Scholar 

  21. Balch CM, Soong SJ, Gershenwald JE, et al. Prognostic factors analysis of 17,600 melanoma patients: validation of the American Joint Committee on Cancer melanoma staging system. J Clin Oncol. 2001;19:3622–34.

    Article  CAS  PubMed  Google Scholar 

  22. Morton DL, Thompson JF, Essner R. Validation of the accuracy of intraoperative lymphatic mapping and sentinel lymphadenectomy for early-stage melanoma: a multicenter trial. Multicenter Selective Lymphadenectomy Trial Group. Ann Surg. 1999;230:453–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gershenwald JE, Thompson W, Mansfield PF, et al. Multi-institutional melanoma lymphatic mapping experience: the prognostic value of sentinel lymph node status in 612 stage I or II melanoma patients. J Clin Oncol. 1999;17:976–83.

    Article  CAS  PubMed  Google Scholar 

  24. Meier F, Will S, Ellwanger U, Schlagenhauff B, Schittek B, Rassner G, Garbe C. Metastatic pathways and time courses in the orderly progression of cutaneous melanoma. Br J Dermatol. 2002;147:62–70.

    Article  CAS  PubMed  Google Scholar 

  25. Leiter U, Meier F, Schittek B, Garbe C. The natural course of cutaneous melanoma. J Surg Oncol. 2004;86:172–8.

    Article  PubMed  Google Scholar 

  26. Manola J, Atkins M, Ibrahim J, Kirkwood J. Prognostic factors in metastatic melanoma: a pooled analysis of Eastern Cooperative Oncology Group trials. J Clin Oncol. 2000;18:3782–93.

    Article  CAS  PubMed  Google Scholar 

  27. NCCN Clinical Practice Guidelines in Oncology™ Melanoma. V.2.2016.

    Google Scholar 

  28. Morton DL, Thompson JF, Cochran AJ, et al. Sentinel-node biopsy or nodal observation in melanoma. N Engl J Med. 2006;355:1307–17.

    Article  CAS  PubMed  Google Scholar 

  29. Barnhill RL, Katzen J, Spatz A, Fine J, Berwick M. The importance of mitotic rate as a prognostic factor for localized cutaneous melanoma. J Cutan Pathol. 2005;32:268–73.

    Article  PubMed  Google Scholar 

  30. Azzola MF, Shaw HM, Thompson JF, et al. Tumor mitotic rate is a more powerful prognostic indicator than ulceration in patients with primary cutaneous melanoma. Cancer. 2003;97:1488–98.

    Article  PubMed  Google Scholar 

  31. Thompson JF, Shaw HM. Is sentinel lymph node biopsy appropriate in patients with thin melanomas: too early to tell? Ann Surg Oncol. 2006;13:279–81.

    Article  PubMed  Google Scholar 

  32. Nathan FE, Mastrangelo MJ. Adjuvant therapy for cutaneous melanoma. Semin Oncol. 1995;22:647–61.

    CAS  PubMed  Google Scholar 

  33. Santinami M, Maurichi A, Patuzzo R, Pennacchioli E, Cascinelli N. Impact of clinical trials on the treatment of melanoma. Surg Oncol Clin N Am. 2001;10:935–47.

    CAS  PubMed  Google Scholar 

  34. Kirkwood JM, Strawderman MH, Ernstoff MS, et al. Interferon alpha-2b adjuvant therapy of high-risk resected cutaneous melanoma: the Eastern Cooperative Oncology Group Trial EST 1684. J Clin Oncol. 1996;14:7–17.

    Article  CAS  PubMed  Google Scholar 

  35. Kirkwood JM, Manola J, Ibrahim J, et al. A pooled analysis of Eastern Cooperative Oncology Group and intergroup trials of adjuvant high-dose interferon for melanoma. Clin Cancer Res. 2004;10:1670–7.

    Article  CAS  PubMed  Google Scholar 

  36. Eggermont AM, Suciu S, Santinami M, et al. Adjuvant therapy with pegylated interferon alpha-2b versus observation alone in resected stage III melanoma: final results of EORTC 18991, a randomized phase III trial. Lancet. 2008;372:117–26.

    Article  CAS  PubMed  Google Scholar 

  37. Grob JJ, Dreno B, de la Salmoniere P, et al. Randomised trial of interferon alpha-2a as adjuvant therapy in resected primary melanoma thicker than 1.5 mm without clinically detectable node metastases. French Cooperative Group on Melanoma. Lancet. 1998;351:1905–10.

    Article  CAS  PubMed  Google Scholar 

  38. Mitchell MS, Abrams J, Thompson JA, et al. Randomized trial of an allogeneic melanoma lysate vaccine with low-dose interferon alpha-2b compared with high-dose interferon alpha-2b for resected stage III cutaneous melanoma. J Clin Oncol. 2007;25:2078–85.

    Article  CAS  PubMed  Google Scholar 

  39. Kevin B, Kima KB, Sewa S, et al. A randomized phase III trial of biochemotherapy versus interferon-α-2b for adjuvant therapy in patients at high risk for melanoma recurrence. Melanoma Res. 2009;19:42–9.

    Article  CAS  Google Scholar 

  40. Eggermont AM, Chiaron-Sileni V, Grob JJ, et al. Adjuvant ipilimumab versus placebo after complete resection of high risk stage III melanoma (EORTC 18071): a randomized, double blind, phase III trial. Lancet Oncol. 2015;16:522–30.

    Article  CAS  PubMed  Google Scholar 

  41. NCCN Clinical Practice Guidelines in Oncology Melanoma v.2.2009.

    Google Scholar 

  42. Balch CM, Gershenwald JE, Soong S-J, et al. Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol. 2009;27:6199–206.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Blesa JMG, Pulido EG, Pulla MP, Cande VA. Treatment options for metastatic melanoma. A systematic review. Cancer Ther. 2009;7:188–99.

    Google Scholar 

  44. Sosman JA, Kim KB, Schuchter L, et al. Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med. 2012;366:707–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chapman PB, Hauschild A, Robert C, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364:2507–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Trefzer U, Minor D, Ribas A, et al. BREAK-2: a phase IIA trial of the selective BRAF kinase inhibitor GSK2118436 in patients with BRAF mutation-positive (V600E/K) metastatic melanoma. Pigment Cell Melanoma Res. 2011;24:1020.

    Google Scholar 

  47. Falchook GS, Long GV, Kurzrock R, et al. Dabrafenib in patients with melanoma, untreated brain metastases, and other solid tumours: a phase 1 dose-escalation trial. Lancet. 2012;379:1893–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hauschild A, Grob JJ, Demidov LV, et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2012;380(9839):358–65.

    Article  CAS  PubMed  Google Scholar 

  49. Flaherty KT, Robert C, Hersey P, et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med. 2012;367:107–14.

    Article  CAS  PubMed  Google Scholar 

  50. Long GV, Stroyakovskiy D, Gogas H, et al. Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. N Engl J Med. 2014;371:1877–88.

    Article  PubMed  CAS  Google Scholar 

  51. Larkin J, Ascierto PA, Dreno B, et al. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N Engl J Med. 2014;371:1867–76.

    Article  PubMed  CAS  Google Scholar 

  52. Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Robert C, Thomas L, Bondarenko I, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364:2517–26.

    Article  CAS  PubMed  Google Scholar 

  54. Daud A, Robert C, Hodi S, et al. Long-term efficacy of pembrolizumab (MK-3475) in a pooled analysis of 655 patients with advanced melanoma enrolled in KEYNOTE-001. ASCO Annual meeting; 2015.

    Google Scholar 

  55. Ribas A PI, et al. A randomized controlled comparison of pembrolizumab and chemotherapy in patients with ipilimumab refractor melanoma. In: Society of Melanoma Research Conference; 2014.

    Google Scholar 

  56. Robert C, Schachter J, Long GV, et al. Pembrolizimab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372:2521–32.

    Article  CAS  PubMed  Google Scholar 

  57. Weber JS, D’Angelo SP, Minor D, et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomized, controlled, open-label phase # trial. Lancet Oncol. 2015;16:375–84.

    Article  CAS  PubMed  Google Scholar 

  58. Robert C, Long GV, Brady B, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372:320–30.

    Article  CAS  PubMed  Google Scholar 

  59. Larkin J, Chiarion-Sileni V, Gonzales R, et al. Combined nivolumab and ipilimumab or monotherapy in intreated melanoma. N Engl J Med. 2015;372:2521–32.

    Article  PubMed  CAS  Google Scholar 

  60. Ribas A, Hodi FS, Callahan M, Konto C, Wolchok J. Hepatotoxicity with combination of vemurafenib and ipilimumab. N Engl J Med. 2013;368:1365–6.

    Article  CAS  PubMed  Google Scholar 

  61. Ribas A, et al. Phase I study combining anti-PD-L1 (MEDI4736) with BRAF (dabrafenib) and/or MEK (trametinib) inhibitors in advanced melanoma. J Clin Oncol. 2015;33(Suppl):3003.

    Google Scholar 

  62. Carvajal RD, Antonescu CR, Wolchok JD, et al. KIT as a therapeutic target in metastatic melanoma. JAMA. 2011;305:2327–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Varker A, Biber J, Kefauver C, et al. A randomized phase 2 trial of bevacizumab with or without daily low-dose interferon alpha-2b in metastatic malignant melanoma. Ann Surg Oncol. 2007;14:2367–76.

    Article  PubMed  Google Scholar 

  64. Perez DG, Suman VJ, Fitch TR, et al. Phase 2 trial of carboplatin, weekly paclitaxel, and biweekly bevacizumab in patients with unresectable stage IV melanoma: a North Central Cancer Treatment Group study, N047 A. Cancer. 2009;115:119–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Vihinen PP, Hernberg M, Vuoristo MS, et al. A phase II trial of bevacizumab with dacarbazine and daily low-dose interferon-alpha2a as first line treatment in metastatic melanoma. Melanoma Res. 2010;20:318–25.

    Article  CAS  PubMed  Google Scholar 

  66. Slingluff Jr CR, Petroni GR, Molhoek KR, et al. Clinical activity and safety of combination therapy with temsirolimus and bevacizumab for advanced melanoma: a phase II trial (CTEP 7190/Mel47). Clin Cancer Res. 2013;19:3611–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bedikian AY, Millward M, Pehamberger H, et al. Bcl-2 antisense (oblimersen sodium) plus dacarbazine in patients with advanced melanoma: the Oblimersen Melanoma Study Group. J Clin Oncol. 2006;24:4738–45.

    Article  CAS  PubMed  Google Scholar 

  68. Wagner JD, Schauwecker D, Davidson D, Coleman 3rd JJ, Saxman S, Hutchins G, Love C, Hayes JT. Prospective study of fluorodeoxyglucose-positron emission tomography imaging of lymph node basins in melanoma patients undergoing sentinel node biopsy. J Clin Oncol. 1999;17:1508–15.

    Article  CAS  PubMed  Google Scholar 

  69. Belhocine T, Scott AM, Even-Sapir E, Essner R. The role of nuclear medicine in the management of cutaneous malignant melanoma. J Nucl Med. 2006;47:957–67.

    PubMed  Google Scholar 

  70. Klein M, Freedman N, Lotem M, et al. Contribution of whole body F-18-FDG-PET and lymphoscintigraphy to the assessment of regional and distant metastases in cutaneous malignant melanoma. A pilot study. Nuklearmedizin. 2000;39:56–61.

    CAS  PubMed  Google Scholar 

  71. Acland KM, Healy C, Calonje E, et al. Comparison of positron emission tomography scanning and sentinel node biopsy in the detection of micrometastases of primary cutaneous malignant melanoma. J Clin Oncol. 2001;19:2674–8.

    Article  CAS  PubMed  Google Scholar 

  72. Kokoska MS, Olson G, Kelemen PR, et al. The use of lymphoscintigraphy and PET in the management of head and neck melanoma. Otolaryngol Head Neck Surg. 2001;125:213–20.

    Article  CAS  PubMed  Google Scholar 

  73. Belhocine T, Pierard G, De Labrassinne M, Lahaye T, Rigo P. Staging of regional node in AJCC stage I and II melanoma: [18F]FDG PET imaging versus sentinel node detection. Oncologist. 2002;7:271–8.

    Article  PubMed  Google Scholar 

  74. Havenga K, Cobben DC, Oyen WJ, et al. Fluorodeoxyglucose-positron emission tomography and sentinel lymph node biopsy in staging primary cutaneous melanoma. Eur J Surg Oncol. 2003;29:662–4.

    Article  CAS  PubMed  Google Scholar 

  75. Longo MI, Lazaro P, Bueno C, Carreras JL, Montz R. Fluorodeoxyglucose-positron emission tomography imaging versus sentinel node biopsy in the primary staging of melanoma patients. Dermatol Surg. 2003;29:245–8.

    PubMed  Google Scholar 

  76. Schafer A, Herbst RA, Beiteke U, et al. Sentinel lymph node excision (SLNE) and positron emission tomography in the staging of stage I–II melanoma patients. Hautarzt. 2003;54:440–7.

    Article  CAS  PubMed  Google Scholar 

  77. Fink AM, Holle-Robatsch S, Herzog N, et al. Positron emission tomography is not useful in detecting metastasis in the sentinel lymph node in patients with primary malignant melanoma stage I and II. Melanoma Res. 2004;14:141–5.

    Article  PubMed  Google Scholar 

  78. Hafner J, Schmid MH, Kempf W, Burg G, Kunzi W, Meuli-Simmen C, et al. Baseline staging in cutaneous malignant melanoma. Br J Dermatol. 2004;150:677–86.

    Article  CAS  PubMed  Google Scholar 

  79. Libberecht K, Husada G, Peeters T, Michiels P, Gys T, Molderez C. Initial staging of malignant melanoma by positron emission tomography and sentinel node biopsy. Acta Chir Belg. 2005;105:621–5.

    Article  CAS  PubMed  Google Scholar 

  80. Wagner JD, Schauwecker D, Davidson D, et al. Inefficacy of F-18 fluorodeoxy-d-glucose-positron emission tomography scans for initial evaluation in early-stage cutaneous melanoma. Cancer. 2005;104:570–9.

    Article  PubMed  Google Scholar 

  81. Vereecken P, Laporte M, Petein M, Steels E, Heenen M. Evaluation of extensive initial staging procedure in intermediate/high-risk melanoma patients. J Eur Acad Dermatol Venereol. 2005;19:66–73.

    Article  CAS  PubMed  Google Scholar 

  82. Clark PB, Soo V, Kraas J, Shen P, Levine EA. Futility of fluorodeoxyglucose F-18 positron emission tomography in initial evaluation of patients with T2 to T4 melanoma. Arch Surg. 2006;141:284–8.

    Article  PubMed  Google Scholar 

  83. Kell MR, Ridge JA, Joseph N, Sigurdson ER. PET/CT imaging in patients undergoing sentinel node biopsy for melanoma. Eur J Surg Oncol. 2007;33:911–3.

    Article  CAS  PubMed  Google Scholar 

  84. Maubec E, Lumbroso J, Masson F, et al. F-18 fluorodeoxy-d-glucose positron emission tomography scan in the initial evaluation of patients with a primary melanoma thicker than 4 mm. Melanoma Res. 2007;17:147–54.

    Article  PubMed  Google Scholar 

  85. Constantinidou A, Hofman M, O’Doherty M, Acland KM, Healy C, Harries M. Routine positron emission tomography and positron emission tomography/computed tomography in melanoma staging with positive sentinel node biopsy is of limited benefit. Melanoma Res. 2008;18:56–60.

    Article  PubMed  Google Scholar 

  86. Singh B, Ezziddin S, Palmedo H, et al. Preoperative [18F]-FDG-PET/CT imaging and sentinel node biopsy in the detection of regional lymph node metastases in malignant melanoma. Melanoma Res. 2008;18:346–52.

    Article  PubMed  Google Scholar 

  87. Klode J, Dissemond J, Grabbe S, Hillen U, Poeppel T, Boeing C. Sentinel lymph node excision and PET-CT in the initial stage of malignant melanoma: a retrospective analysis of 61 patients with malignant melanoma in American Joint Committee on cancer stages I and II. Dermatol Surg. 2010;36:439–45.

    Article  CAS  PubMed  Google Scholar 

  88. Crippa F, Leutner M, Belli F, et al. Which kinds of lymph node metastases can FDG PET detect? A clinical study in melanoma. J Nucl Med. 2000;41:1491–4.

    CAS  PubMed  Google Scholar 

  89. Mijnhout GS, Hoekstra OS, van Lingen A, van Diest PJ, Adèr HJ, Lammertsma AA, Pijpers R, Meijer S, Teule GJJ. How morphometric analysis of metastatic load predicts the (un)usefulness of PET scanning: the case of lymph node staging in melanoma. J Clin Pathol. 2003;56:283–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Fletcher JW, Djulbegovic B, Soares HP, et al. Recommendations on the use of [18F]FDG PET in oncology. J Nucl Med. 2008;49:480–508.

    Article  PubMed  Google Scholar 

  91. Steinert HC, Huch Boni RA, Buck A, et al. Malignant melanoma: staging with whole-body positron emission tomography and 2-[F-18]-fluoro-2-deoxy-d-glucose. Radiology. 1995;195:705–9.

    Article  CAS  PubMed  Google Scholar 

  92. Damian DL, Fulham MJ, Thompson E, Thompson JF. Positron emission tomography in the detection and management of metastatic melanoma. Melanoma Res. 1996;6:325–9.

    Article  CAS  PubMed  Google Scholar 

  93. Rinne D, Baum RP, Hor G, Kaufmann R. Primary staging and follow-up of high risk melanoma patients with whole-body [18F]fluorodeoxyglucose positron emission tomography: results of a prospective study of 100 patients. Cancer. 1998;82:1664–71.

    Article  CAS  PubMed  Google Scholar 

  94. Tyler DS, Onaitis M, Kherani A, et al. Positron emission tomography scanning in malignant melanoma. Cancer. 2000;89:1019–25.

    Article  CAS  PubMed  Google Scholar 

  95. Stas M, Stroobants S, Dupont P, et al. [18F]FDG PET scan in the staging of recurrent melanoma: additional value and therapeutic impact. Melanoma Res. 2002;12:479–90.

    Article  CAS  PubMed  Google Scholar 

  96. Harris MT, Berlangieri SU, Cebon JS, Davis ID, Scott AM. Impact of 2-deoxy-2[F-18]fluoro-d-glucose positron emission tomography on the management of patients with advanced melanoma. Mol Imaging Biol. 2005;7:304–8.

    Article  PubMed  Google Scholar 

  97. Bastiaannet E, Wobbes T, Hoekstra OS, et al. Prospective comparison of [18F]FDG PET/CT in patients with melanoma and palpable lymph node metastases: diagnostic accuracy and impact on treatment. J Clin Oncol. 2009;27:4774–80.

    Article  PubMed  Google Scholar 

  98. Niebling MG, Bastiaannet E, Hoekstra OS, Bonenkamp JJ, Koelemij R, Hoekstra HJ. Outcome of clinical stage III melanoma patients with FDG-PET and whole-body CT added to the diagnostic workup. Ann Surg Oncol. 2013;20:3098–105.

    Article  CAS  PubMed  Google Scholar 

  99. Swetter SM, Carroll LA, Johnson DL, Segall GM. Positron emission tomography is superior to computed tomography for metastatic detection in melanoma patients. Ann Surg Oncol. 2002;9:646–53.

    Article  PubMed  Google Scholar 

  100. Brady MS, Akhurst T, Spanknebel K, et al. Utility of preoperative [18]F-fluorodeoxyglucose-positron emission tomography scanning in high-risk melanoma patients. Ann Surg Oncol. 2006;13:525–32.

    Article  PubMed  Google Scholar 

  101. Veit-Haibach P, Vogt FM, Jablonka R, et al. Diagnostic accuracy of contrast enhanced FDG-PET/CT in primary staging of cutaneous malignant melanoma. Eur J Nucl Med Mol Imaging. 2009;36:910–8.

    Article  PubMed  Google Scholar 

  102. Aukema TS, Valdés Olmos RA, Wouters WJM, et al. Utility of preoperative [18F]FDG PET/CT and brain MRI in melanoma patients with palpable lymph node metastases. Ann Surg Oncol. 2010;17:2773–8.

    Article  PubMed  Google Scholar 

  103. Mijnhout GS, Comans EF, Raijmakers P, et al. Reproducibility and clinical value of [18F]-fluorodeoxyglucose positron emission tomography in recurrent melanoma. Nucl Med Commun. 2002;23:475–81.

    Article  CAS  PubMed  Google Scholar 

  104. Gulec SA, Faries MB, Lee CC, et al. The role of fluorine-18 deoxyglucose positron emission tomography in the management of patients with metastatic melanoma: impact on surgical decision making. Clin Nucl Med. 2003;28:961–5.

    Article  PubMed  Google Scholar 

  105. Fuster D, Chiang S, Johnson G, Schuchter LM, Zhuang H, Alavi A. Is [18F]FDG PET more accurate than standard diagnostic procedures in the detection of suspected recurrent melanoma? J Nucl Med. 2004;45:1323–7.

    PubMed  Google Scholar 

  106. Bastiaannet E, Oyen WJ, Meijer S, et al. Impact of [18F]fluorodeoxyglucose positron emission tomography on surgical management of melanoma patients. Br J Surg. 2006;93:243–9.

    Article  CAS  PubMed  Google Scholar 

  107. Reinhardt MJ, Joe AY, Jaeger U, et al. Diagnostic performance of whole body dual modality [18F]FDG PET/CT imaging for N- and M-staging of malignant melanoma: experience with 250 consecutive patients. J Clin Oncol. 2006;24:1178–87.

    Article  PubMed  Google Scholar 

  108. Falk MS, Truitt AK, Coakley FV, Kashani-Sabet M, Hawkins RA, Franc B. Interpretation, accuracy and management implications of FDG PET/CT in cutaneous malignant melanoma. Nucl Med Commun. 2007;28:273–80.

    Article  CAS  PubMed  Google Scholar 

  109. Lagaru A, Quon A, Johnson D, Gambhir SS, McDougall IR. 2-Deoxy-2-[F-18]fluorodeoxyglucose positron emission tomography/computed tomography in the management of melanoma. Mol Imaging Biol. 2007;9:50–7.

    Article  Google Scholar 

  110. Fulham MJ, Kelley B, Ramshaw J, Scott AM. Impact of FDG PET on the management of patients with suspected or proven metastatic melanoma prior to surgery: a prospective, multi-centre study as part of the Australian PET Data Collection Project. J Nucl Med. 2007;48 Suppl 2:191P.

    Google Scholar 

  111. Strobel K, Bode B, Dummer R, et al. Limited value of [18F]FDG PET/CT and S-100B tumour marker in the detection of liver metastases from uveal melanoma compared to liver metastases from cutaneous melanoma. Eur J Nucl Med Mol Imaging. 2009;36:1774–82.

    Article  CAS  PubMed  Google Scholar 

  112. Loffler M, Weckesser M, Franzius Ch, Nashan D, Schober O. Malignant melanoma and [18F]FDG PET: should the whole body scan include the legs? Nuklearmedizin. 2003;42:167–72.

    Google Scholar 

  113. Coleman RE, Delbeke D, Guiberteau MJ, et al. Concurrent PET/CT with an integrated imaging system: intersociety dialogue from the Joint Working Group of the American College of Radiology, the Society of Nuclear Medicine, and the Society of Computed Body Tomography and Magnetic Resonance. J Nucl Med. 2005;46:1225–39.

    PubMed  Google Scholar 

  114. Hofmann U, Szedlak M, Rittgen W, Jung EG, Shadendorf D. Primary staging and follow-up in melanoma patient-monocenter evaluation of methods, costs and patient survival. Br J Cancer. 2002;87:151–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Weiss M, Loprinzi CL, Creagan ET, Dalton RJ, Novotny P, O’Fallon JR. Utility of follow-up tests for detecting recurrent disease in patients with malignant melanomas. JAMA. 1995;274:1703–5.

    Article  CAS  PubMed  Google Scholar 

  116. Kuvshinoff BW, Kurtz C, Coit DG. Computed tomography in evaluation of patients with stage III melanoma. Ann Surg Oncol. 1997;4:252–8.

    Article  CAS  PubMed  Google Scholar 

  117. Jiménez-Requena F, Delgado-Bolton RC, Fernández-Pérez C, et al. Meta-analysis of the performance of [18F]FDG PET in cutaneous melanoma. Eur J Nucl Med Mol Imaging. 2010;37:284–300.

    Article  PubMed  Google Scholar 

  118. Dalrymple-Hay MJ, Rome PD, Kennedy C, Fulham M, McCaughan BC. Pulmonary metastatic melanoma – the survival benefit associated with positron emission tomography scanning. Eur J Cardiothorac Surg. 2002;21:611–4.

    Article  CAS  PubMed  Google Scholar 

  119. Schöder H, Larson SM, Yeung HW. PET/CT in oncology: integration into clinical management of lymphoma, melanoma, and gastrointestinal malignancies. J Nucl Med. 2004;45 Suppl 1:72S–81.

    PubMed  Google Scholar 

  120. Mottaghy FM, Sunderkotter C, Schubert R, et al. Direct comparison of [18F]FDG PET/CT with PET alone and with side-by-side PET and CT in patients with malignant melanoma. Eur J Nucl Med Mol Imaging. 2007;34:1355–64.

    Article  PubMed  Google Scholar 

  121. Macapinlac HA. The utility of 2-deoxy-2-[18F]fluoro-d-glucose positron emission tomography and combined positron emission tomography and computed tomography in lymphoma and melanoma. Mol Imaging Biol. 2004;6:200–7.

    Article  PubMed  Google Scholar 

  122. Pfannenberg C, Aschoff P, Schanz S, et al. Prospective comparison of [18F]fluorodeoxyglucose positron emission tomography/computed tomography and whole-body magnetic resonance imaging in staging of advanced melanoma. Eur J Cancer. 2007;43:557–64.

    Article  PubMed  Google Scholar 

  123. Strobel K, Dummer R, Steinert HC, et al. Chemotherapy response assessment in stage IV melanoma patients-comparison of [18F]FDG-PET/CT, CT, brain MRI, and tumor marker S-100B. Eur J Nucl Med Mol Imaging. 2008;35:1786–95.

    Article  PubMed  Google Scholar 

  124. González AB, Jiménez RB, Delgado PJR, et al. Biochemotherapy in the treatment of metastatic melanoma in selected patients. Clin Transl Oncol. 2009;11:382–6.

    Article  CAS  Google Scholar 

  125. Hofman MS, Constantinidou A, Acland K, Healy C, Harries M, O’Doherty M, Melanoma Group. Assessing response to chemotherapy in metastatic melanoma with FDG PET: early experience. Nucl Med Commun. 2007;28:902–6.

    Article  PubMed  Google Scholar 

  126. Zheng B, Jeong JH, Asara JM, et al. Oncogenic B-RAF negatively regulates the tumor suppressor LKB1 to promote melanoma cell proliferation. Mol Cell. 2009;33:237–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Carlino MS, Saunders CA, Haydu LE, et al. [18F]-labelled fluorodeoxyglucose-positron emission tomography (FDG-PET) heterogeneity of response is prognostic in dabrafenib treated BRAF mutant metastatic melanoma. Eur J Cancer. 2013;49:395–402.

    Article  CAS  PubMed  Google Scholar 

  128. McArthur GA, Puzanov I, Amaravadi R, et al. Marked, homogeneous, and early [18F]fluorodeoxyglucose-positron emission tomography responses to vemurafenib in BRAF-mutant advanced melanoma. J Clin Oncol. 2012;30:1628–34.

    Article  CAS  PubMed  Google Scholar 

  129. Koo PJ, Klingensmith WC, Lewis KD, Bagrosky BM, Gonzalez R. Anti-CTLA4 antibody therapy related complications on FDG PET/CT. Clin Nucl Med. 2014;39:e93–6.

    Article  PubMed  Google Scholar 

  130. van der Hiel B, Blank CU, Haanen JB, Stokkel MP. Detection of early onset of hypophysitis by [18F]FDG PET-CT in a patient with advanced stage melanoma treated with ipilimumab. Clin Nucl Med. 2013;38:e182–4.

    Article  PubMed  Google Scholar 

  131. Brand C, Ellwanger U, Stroebel W, et al. Prolonged survival of 2 years or longer for patients with disseminated melanoma: an analysis of related prognostic factors. Cancer. 1997;70:2345–53.

    Article  Google Scholar 

  132. Meyer T, Merkel S, Goehl J, Hohenberger W. Surgical therapy for distant metastases of malignant melanoma. Cancer. 2000;89:1983–91.

    Article  CAS  PubMed  Google Scholar 

  133. Romano E, Scordo M, Dusza SW, Coit DG, Chapman PB. Site and timing of first relapse in stage III melanoma patients: implications for follow-up guidelines. J Clin Oncol. 2010;28:3042–7.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Poo-Hwu W-J, Ariyan S, Lamb L, et al. Follow-up recommendations for patients with American Joint Committee on cancer stages I–III malignant melanoma. Cancer. 1999;88:2252–8.

    Google Scholar 

  135. Soong SJ, Harrison RA, McCarthy WH, Urist MM, Balch CM. Factors affecting survival following local, regional, or distant recurrence from localized melanoma. J Surg Oncol. 1998;67:228–33.

    Google Scholar 

  136. Eigtved A, Andersson AP, Karin Dahlstrøm K, et al. Use of fluorine-18 fluorodeoxyglucose positron emission tomography in the detection of silent metastases from malignant melanoma. Eur J Nucl Med. 2000;27:70–5.

    Google Scholar 

  137. Krug B, Crott R, Roch I, et al. Cost-effectiveness analysis of FDG PET-CT in the management of pulmonary metastases from malig- nant melanoma. Acta Oncol. 2010;49:192–200.

    Google Scholar 

  138. Cobben DC, Jager PL, Elsinga PH, Maas B, Suurmeijer AJ, Hoekstra HJ. 18F-3-fluoro-3-deoxy-l-thymidine: a new tracer for staging of metastatic melanoma? J Nucl Med. 2003;44:1927–32.

    Google Scholar 

  139. Ishiwata K, Kubota K, Kubota R, Iwata R, Takahashi T, Ido T. Selective 2-[18F]fluorodopa uptake for melanogenesis in murine metastatic melanomas. J Nucl Med. 1991;32:95–101.

    Google Scholar 

  140. Dimitrakopoulou-Strauss A, Strauss LG, Burger C. Quantitative PET studies in pretreated melanoma patients: a comparison of 6-[18F]fluoro-l-dopa with 18F-FDG and 15O-water using compartment and noncompartment analysis. J Nucl Med. 2001;42:248–56.

    Google Scholar 

  141. Beer AJ, Haubner R, Sarbia M, et al. Positron emission tomogra- phy using [18F]-Galacto-RGD identifies the level of integrin avb3 expression in man. Clin Cancer Res. 2006;12:3942–9.

    Google Scholar 

  142. Greguric I, Taylor SR, Denoyer D, et al. Discovery of [18F]N-(2-(diethylamino)ethyl)-6-fluoronicotinamide: a melanoma positron emission tomography imaging radiotracer with high tumor to body contrast ratio and rapid renal clearance. J Med Chem. 2009;52:5299–302.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew M. Scott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Scott, A.M., Ciprotti, M., Lee, ST. (2017). Diagnostic Applications of Nuclear Medicine: Malignant Melanoma. In: Strauss, H., Mariani, G., Volterrani, D., Larson, S. (eds) Nuclear Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-26236-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26236-9_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26234-5

  • Online ISBN: 978-3-319-26236-9

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics