Skip to main content

Diagnostic Applications of Nuclear Medicine: Sarcomas

  • Reference work entry
  • First Online:
Book cover Nuclear Oncology
  • 2005 Accesses

Abstract

Sarcomas most commonly occur in the muscles, bones, fat, and connective tissues. These tumors constitute approximately 1% of cancers in adults and about 20% of pediatric cancer. The American Joint Committee on Cancer (AJCC) criteria are often used clinically for staging soft tissue sarcoma patients. Bone tumor staging follows the schemes utilized for other tumors. Adverse prognostic factors include deep tumor location, largest dimension >5 cm, locally recurrent disease, proximal lower extremity site, and presence of metastasis.

Imaging studies, including plain films, chest X-ray, CT with and without contrast, MRI, and [18F]FDG PET, are used in combination to stage and restage sarcoma patients. Serial imaging studies, especially [18F]FDG PET scans, can identify treatment response to neoadjuvant chemo- and radiation therapy. The bone scan with99mTc-MDP is still routinely used because of its sensitivity in detection of bone metastases and to occasionally identify metastatic lesions in soft tissues.18F-Fluoride is increasingly being used as a sensitive bone scanning agent for metastatic surveys.

[18F]FDG PET/CT can reliably distinguish low-grade from high-grade soft tissue sarcoma based on the SUV. Special features and [18F]FDG uptake are related to specific histologic types. Moreover, by identifying areas of increased uptake within a lesion, [18F]FDG PET can be helpful to localize a site for diagnostic biopsy. [18F]FDG PET has been used for tumor staging identifying bone and soft tissue metastases and nodal metastases. A high-resolution contrast chest CT is preferred to visualize small lung metastases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

[18F]FDG:

2-Deoxy-2-[18F]fluoro-d-glucose

99mTc-HDP:

99mTc-hydroxyethylenediphosphonate

99mTc-MDP:

99mTc-methylenediphosphonate

AJCC:

American Joint Committee on Cancer

CT:

X-ray computed tomography

EWS-FL1:

Ewing’s sarcoma fusion gene encoding for a transcriptional activator

FNCLCC:

Fédération Nationale des Centres de Lutte Contre le Cancer

G:

Histologic tumor grade

GIST:

Gastrointestinal stromal tumor

M:

Metastasis status according to the AJCC TNM staging system

MFH:

Malignant fibrous histiocytoma

MRI:

Magnetic resonance imaging

N:

Lymph node status according to the AJCC TNM staging system

NF:

Neurofibromatosis

PET:

Positron emission tomography

PET/CT:

Positron emission tomography/computed tomography

PET/MR:

Positron emission tomography/magnetic resonance

PNET:

Primitive neuroectodermal tumor/peripheral neuroepithelioma

RECIST:

Response evaluation criteria in solid tumors

SUV:

Standardized uptake value

SUVmax :

Standardized uptake value at point of maximum

T:

Tumor status according to the AJCC TNM staging system

References

  1. Pisters PW, Leung DH, Woodruff J, et al. Analysis of prognostic factors in 1,041 patients with localized soft tissue sarcomas of the extremities. J Clin Oncol. 1996;14:1679–89.

    Google Scholar 

  2. Gadgeel SM, Harlan LC, Zeruto CA, et al. Patterns of care in a population-based sample of soft tissue sarcoma patients in the United States. Cancer. 2009;115:2744–54.

    Google Scholar 

  3. Salas S, Stoeckle E, Collin F, et al. Superficial soft tissue sarcomas (S-STS): a study of 367 patients from the French Sarcoma Group (FSG) database. Eur J Cancer. 2009;45:2091–102.

    Article  PubMed  Google Scholar 

  4. Engellau J, Bendahl PO, Persson A, et al. Improved prognostication in soft tissue sarcoma: independent information from vascular invasion, necrosis, growth pattern, and immunostaining using whole­tumor sections and tissue microarrays. Hum Pathol. 2005;36:994–1002.

    Article  CAS  PubMed  Google Scholar 

  5. Eary JF. PET-CT and SPECT-CT of malignant bone tumors and PET and PET-CT in soft tissue sarcomas. In: von Schulthess GK, editor. Molecular anatomic imaging: PET-CT and SPECT-CT integrated modality imaging. 2nd ed. Schmid DT, CD-ROM editor. Philadelphia: Lippincott Williams & Wilkins; 2007. p. 443–9,456–67.

    Google Scholar 

  6. Coley HM, Verrill MW, Gregson SE, et al. Incidence of P-glycoprotein overexpression and multidrug resistance (MDR) reversal in adult soft tissue sarcoma. Br J Cancer. 2000;36:881–8.

    Google Scholar 

  7. Komdeur R, Plaat BE, van der Graaf WT, et al. Expression of P-glycoprotein, multidrug resistance-associated protein 1, and lung resistance-related protein in human soft tissue sarcomas before and after hyperthermic isolated limb perfusion with tumor necrosis factor-alpha and melphalan. Cancer. 2001;91:1940–8.

    Article  CAS  PubMed  Google Scholar 

  8. Komdeur R, Plaat BE, van der Graaf WT, et al. Expression of multidrug resistance proteins, P-gp, MRP1 and LRP, in soft tissue sarcomas analyzed according to their histological type and grade. Eur J Cancer. 2003;39:909–16.

    Article  CAS  PubMed  Google Scholar 

  9. Komdeur R, Molenaar WM, Zwart N, et al. Multidrug resistance proteins in primary and metastatic soft-tissue sarcomas: down-regulation of P-glycoprotein during metastatic progression. Anticancer Res. 2004;24:291–5.

    Google Scholar 

  10. Oda Y, Saito T, Tateishi N, et al. ATP-binding cassette superfamily transporter gene expression in human soft tissue sarcomas. Int J Cancer. 2005;114:854–62.

    Article  CAS  PubMed  Google Scholar 

  11. Helman LJ, Meltzer P. Mechanisms of sarcoma development. Nat Rev Cancer. 2003;3:685–94.

    Article  CAS  PubMed  Google Scholar 

  12. Coindre JM, Terrier P, Guillou L, et al. Predictive value of grade for metastasis development in the main histologic types of adult soft tissue sarcomas: a study of 1240 patients from the French Federation of Cancer Centers Sarcoma Group. Cancer. 2001;91:1914–26.

    Article  CAS  PubMed  Google Scholar 

  13. Deyrup AT, Weiss SW. Grading of soft tissue sarcomas: the challenge of providing precise information in an imprecise world. Histopathology. 2006;48:42–50.

    Article  CAS  PubMed  Google Scholar 

  14. Wunder JS, Healey JH, Davis AM, Brennan MF. A comparison of staging systems for localized extremity soft tissue sarcoma. Cancer. 2000;88:2721–30.

    Article  CAS  PubMed  Google Scholar 

  15. International Union Against Cancer, Spiess B, Beahrs OH, Hermanek P, Hutter RVP, Scheibe O, Sobin LH, Wagner G, editors. TNM Atlas: illustrated guide to the TNM/pTNM classification of malignant tumors. 3rd ed., 2nd rev. Berlin: Springer; 1992.

    Google Scholar 

  16. Kim MS, Lee SY, Lee TR, et al. Prognostic nomogram for predicting the 5-year probability of developing metastasis after neoadjuvant chemotherapy and definitive surgery for AJCC stage IT extremity osteosarcoma. Ann Oncol. 2009;20:955–60.

    Article  CAS  PubMed  Google Scholar 

  17. Antunes M, Bernardo J, Salete M, et al. Excision of pulmonary metastases of osteogenic sarcoma of the limbs. Eur J Cardiothorac Surg. 1999;15:592–6.

    Google Scholar 

  18. Iagaru A, Goris ML. Rhabdomyosarcoma diffusely metastatic to the bone marrow: suspicious findings on 99mTc-MDP bone scintigraphy confirmed by 18F-FDG PET/CT and bone marrow biopsy. Eur J Nucl Med Mol Imaging. 2008;35:1746.

    Article  PubMed  Google Scholar 

  19. Goto Y, Ihara K, Kawauchi S, et al. Clinical significance of thallium-201 scintigraphy in bone and soft tissue tumors. J Orthop Sci. 2002;7:304–12.

    Google Scholar 

  20. McCarville MB, Barton EH, Cameron JR, et al. The cause and clinical significance of central tumor photopenia on thallium scintigraphy of pediatric osteosarcoma of the extremity. AJR Am J Roentgenol. 2007;188:572–8.

    Article  PubMed  Google Scholar 

  21. Jackson T, Mosci C, von Eyben R, et al. Combined 18F-NaF and 18F-FDG PET/CT in the evaluation of sarcoma patients. Clin Nucl Med. 2015;40:720–4.

    Google Scholar 

  22. Amini B, Jessop AC, Ganeshan DM, et al. Contemporary imaging of soft tissue sarcomas. J Surg Oncol. 2015;111:496–503.

    Google Scholar 

  23. Costelloe CM, Chuang HH, Madewell JE. FDG PET/CT of primary bone tumors. AJR Am J Roentgenol. 2014;202:W521–31.

    Article  PubMed  Google Scholar 

  24. Choi YY, Kim JY, Yang SO. PET/CT in benign and malignant musculoskeletal tumors and tumor-like conditions. Semin Muscoloskelet Radiol. 2014;18:133–48.

    Article  Google Scholar 

  25. Quartuccio N, Fox J, Kuk D, et al. Pediatric bone sarcoma: diagnostic performance of 18F-FDG PET/CT versus conventional imaging for initial staging and follow-up. AJR Am J Roentgenol. 2015;204:153–60.

    Article  PubMed  Google Scholar 

  26. Fuglø HM, Jørgensen SM, Loft A, et al. The diagnostic and prognostic value of 18F-FDG PET/CT in the initial assessment of high-grade bone and soft tissue sarcoma. A retrospective study of 89 patients. Eur J Nucl Med Mol Imaging. 2012;39:1416–24.

    Google Scholar 

  27. Etchebehere EC, Hobbs BP, Milton DR, et al. Assessing the role of 18F-FDG PET and 18F-FDG PET/CT in the diagnosis of soft tissue musculoskeletal malignancies: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging. 2016;43:860–70.

    Google Scholar 

  28. Quartuccio N, Treglia G, Salsano M, et al. The role of Fluorine-18-Fluorodeoxyglucose positron emission tomography in staging and restaging of patients with osteosarcoma. Radiol Oncol. 2013;47:97–102.

    Google Scholar 

  29. Kubo T, Furuta T, Johan MP, Ochi M. Prognostic significance of 18F-FDG PET at diagnosis in patients with soft tissue sarcoma and bone sarcoma; systematic review and meta-analysis. Eur J Cancer. 2016;58:104–11.

    Article  PubMed  Google Scholar 

  30. Sheikhbahaei S, Marcus C, Hafezi-Nejad N, et al. Value of FDG PET/CT in patient management and outcome of skeletal and soft tissue sarcomas. PET Clin. 2015;10:375–93.

    Google Scholar 

  31. Fendler WP, Chalkidis RP, Ilhan H, et al. Evaluation of several FDG PET parameters for prediction of soft tissue tumour grade at primary diagnosis and recurrence. Eur Radiol. 2015;25:2214–21.

    Google Scholar 

  32. Liu F, Zhang Q, Zhu D, et al. Performance of positron emission tomography and positron emission tomography/computed tomography using fluorine-18-fluorodeoxyglucose for the diagnosis, staging, and recurrence assessment of bone sarcoma: a systematic review and meta-analysis. Medicine (Baltimore). 2015;94:e1462.

    Google Scholar 

  33. Norman G, Fayter D, Lewis-Light K, et al. An emerging evidence base for PET-CT in the management of childhood rhabdomyosarcoma: systematic review. BMJ Open. 2015;5:e006030.

    Google Scholar 

  34. Eugene T, Corradini N, Carlier T, et al. 18F-FDG-PET/CT in initial staging and assessment of early response to chemotherapy of pediatric rhabdomyosarcomas. Nucl Med Commun. 2012;33:1089–95.

    Google Scholar 

  35. Johnsen B, Boye K, Rosendahl K, et al. F-18-FDG PET-CT in children and young adults with Ewing sarcoma diagnosed in Norway during 2005–2012: a national population-based study. Clin Physiol Funct Imaging. 2016;36(6):441–446.

    Google Scholar 

  36. Newman EN, Jones RL, Hawkins DS. An evaluation of [F-18]-fluorodeoxy-D-glucose positron emission tomography, bone scan, and bone marrow aspiration/biopsy as staging investigations in Ewing sarcoma. Pediatr Blood Cancer. 2013;60:1113–7.

    Article  CAS  PubMed  Google Scholar 

  37. Guimarães JB, Rigo L, Lewin F, Emerick A. The importance of PET/CT in the evaluation of patients with Ewing tumors. Radiol Bras. 2015;48:175–80.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Eary JF, O’Sullivan F, Powitan Y, et al. Sarcoma tumor FDG uptake measured by PET and patient outcome: a retrospective analysis. Eur J Nucl Med Mol Imaging. 2002;29:1149–54.

    Google Scholar 

  39. Andersen KF, Fuglo HM, Rasmussen SH, et al. Semi-quantitative calculations of primary tumor metabolic activity using F-18 FDG PET/CT as a predictor of survival in 92 patients with high-grade bone or soft tissue sarcoma. Medicine (Baltimore). 2015;94:e1142.

    Google Scholar 

  40. Casey DL, Wexler LH, Fox JJ, et al. Predicting outcome in patients with rhabdomyosarcoma: role of [18F]fluorodeoxyglucose positron emission tomography. Int J Radiat Oncol Biol Phys. 2014;90:1136–42.

    Google Scholar 

  41. Fendler WP, Chalkidis RP, Ilhan H, et al. Evaluation of several FDG PET parameters for prediction of soft tissue tumour grade at primary diagnosis and recurrence. Eur Radiol. 2015;2598:2214–21.

    Google Scholar 

  42. Chang KJ, Lim I, Park JY, et al. The role of 18F-FDG PET/CT as a prognostic factor in patients with synovial sarcoma. Nucl Med Mol Imaging. 2015;49:33–41.

    Google Scholar 

  43. Skamene SR, Rakheja R, Dahlstrom KR, et al. Metabolic activity measured on PET/CT correlates with clinical outcomes in patients with limb and girdle sarcomas. J Surg Oncol. 2014;109:410–4.

    Google Scholar 

  44. Yoshikawa K, Shimada M, Kurita N, et al. Efficacy of PET-CT for predicting the malignant potential of gastrointestinal stromal tumors. Surg Today. 2013;43:1162–7.

    Google Scholar 

  45. Byun BH, Kim SH, Lim SM, et al. Prediction of response to neoadjuvant chemotherapy in osteosarcoma using dual-phase18F-FDG PET/CT. Eur Radiol. 2015;25:2015–24.

    Article  PubMed  Google Scholar 

  46. Choi ES, Ha SG, Kim HS, et al. Total lesion glycolysis by 18F-FDG PET/CT is a reliable predictor of prognosis in soft-tissue sarcoma. Eur J Nucl Med Mol Imaging. 2013;40:1839–42.

    Google Scholar 

  47. Hong SP, Lee SE, Choi YL, et al. Prognostic value of 18F-FDG PET/CT in patients with soft tissue sarcoma: comparisons between metabolic parameters. Skelet Radiol. 2014;43:641–8.

    Google Scholar 

  48. Rakheja R, Makis W, Tulbah R, et al. Necrosis on FDG PET/CT correlates with prognosis and mortality in sarcomas. AJR Am J Roentgenol. 2013;201:170–7.

    Google Scholar 

  49. Byun BH, Kong CB, Lim I, et al. Combination of 18F-FDG PET/CT and diffusion-weighted MR imaging as a predictor of histologic response to neoadjuvant chemotherapy: preliminary results in osteosarcoma. J Nucl Med. 2013;54:1053–9.

    Google Scholar 

  50. Byun BH, Kong CB, Lim I, et al. Early response monitoring to neoadjuvant chemotherapy in osteosarcoma using sequential 18F-FDG PET/CT and MRI. Eur J Nucl Med Mol Imaging. 2014;41:1553–62.

    Google Scholar 

  51. Nose H, Otsuka H, Otomi Y, et al. Correlations between F-18 FDG PET/CT and pathological findings in soft tissue lesions. J Med Invest. 2013;60(3–4):184–90.

    Google Scholar 

  52. Eary JF, Conrad EU, Bruckner JD, et al. Quantitative [F-18]fluorodeoxyglucose positron emission tomography in pretreatment and grading of sarcoma. Clin Cancer Res. 1998;4:1215–20.

    Google Scholar 

  53. Nieweg OE, Pruirn J, van Ginkel RJ, et al. Fluorine-18-fluorodeoxyglucose PET imaging of soft-tissue sarcoma. J Nucl Med. 1996;37:257–61.

    CAS  PubMed  Google Scholar 

  54. Griffet LK, Dehdashti F, McGuire AH, et al. PET evaluation of soft-tissue masses with f!uorine-18 fluoro-2-deoxy-D-glucose. Radiology. 1992;182:185–94.

    Google Scholar 

  55. Combemale P, Valeyrie-Allanore L, Giammarile F, et al. Utility of 18F-FDG PET with a semi-quantitative index in the detection of sarcomatous transformation in patients with neurofibromatosis type 1. PLoS ONE. 2014;9(2), e85954.

    Google Scholar 

  56. Eary JF, O’Sullivan F, O’Sullivan J, Conrad EU. Spatial heterogeneity in sarcoma 18F-FDG uptake as a predictor of patient outcome. J Nucl Med. 2008;49:1973–9.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Vallières M, Freeman CR, Skamene SR, El Naqa I. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol. 2015;60:5471–96.

    Article  PubMed  Google Scholar 

  58. Evilevitch V, Weber WA, Tap WD, et al. Reduction of glucose metabolic activity is more accurate than change in size at predicting histopathologic response to neoadjuvant therapy in high-grade soft­tissue sarcomas. Clin Cancer Res. 2008;14:715–20.

    Article  CAS  PubMed  Google Scholar 

  59. Benjamin RS, Choi H, Macapinlac HA, et al. We should desist using RECIST, at least in GIST. J Clin Oncol. 2007;25:1760–4.

    Article  PubMed  Google Scholar 

  60. Schuetze SM, Baker LH, Benjamin RS, Canetta R. Selection of response criteria for clinical trials of sarcoma treatment. Oncologist. 2008;13 Suppl 2:32–40.

    Article  PubMed  Google Scholar 

  61. Kelloff GJ, Hoffman JM, Johnson B, et al. Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin Cancer Res. 2005;11:2785–808.

    Article  CAS  PubMed  Google Scholar 

  62. Shankar LK, Hoffman JM, Bacharach S, et al. Consensus recommendations for the use of 18F-FDG PET as an indicator of therapeutic response in patients in National Cancer Institute Trials. J Nucl Med. 2006;47:1059–66.

    CAS  PubMed  Google Scholar 

  63. Benz MR, Allen-Auerbach MS, Eilber FC, et al. Combined assessment of metabolic and volumetric changes for assessment of tumor response in patients with soft-tissue sarcomas. J Nucl Med. 2008;49:1579–84.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Weber WA. Use of PET for monitoring cancer therapy and for predicting outcome. J Nucl Med. 2005;46:983–95.

    CAS  PubMed  Google Scholar 

  65. Jerusalem G, Belhocine TZ. Metabolic monitoring of chemosensitivity with 18FDG PET. Methods Mol Med. 2005;111:417–40.

    CAS  PubMed  Google Scholar 

  66. Larson SM, Erdi Y, Akhurst T, et al. Tumor treatment response based on visual and quantitative changes in global tumor glycolysis using PET-FDG imaging. The visual response score and the change in total lesion glycolysis. Clin Positron Imaging. 1999;2:159–71.

    Article  PubMed  Google Scholar 

  67. Goerres GW, Stupp R, Barghouth G, et al. The value of PET, CT and in-line PET/CT in patients with gastrointestinal stromal tumors: long-term outcome of treatment with imatinib mesylate. Eur J Nucl Med Mol Imaging. 2005;32:153–62.

    Article  CAS  PubMed  Google Scholar 

  68. Stroobants S, Goeminne J, Seegers M, et al. 18FDG-Positron emission tomography for the early prediction of response in advanced soft tissue sarcoma treated with imatinib mesylate (Glivec). Br J Cancer. 2003;39:2012–20.

    CAS  Google Scholar 

  69. Van den Abbeele AD, Badawi RD. Use of positron emission tomography in oncology and its potential role to assess response to imatinib mesylate therapy in gastrointestinal stromal tumors (GISTs). Eur J Cancer. 2002;38 Suppl 15:S60–5.

    Article  PubMed  Google Scholar 

  70. Antoch G, Kanja J, Bauer S, et al. Comparison of PET, CT, and dual-modality PET/CT imaging for monitoring of imatinib (STI571) therapy in patients with gastrointestinal stromal tumors. J Nucl Med. 2004;45:357–65.

    CAS  PubMed  Google Scholar 

  71. Gayed I, Vu Y, Iyer R, et al. The role of 18F-FDG PET in staging and early prediction of response to therapy of recurrent gastrointestinal stromal tumors. J Nucl Med. 2004;45:17–21.

    Google Scholar 

  72. Jager PL, Gietma JA, van der Graaf WT. Imatinib mesylate for the treatment of gastrointestinal stromal tumours: best monitored with FDG PET. Nucl Med Commun. 2004;25:433–8.

    Article  CAS  PubMed  Google Scholar 

  73. McAuliffe JC, Hunt KK, Lazar AJ, et al. A randomized, phase II study of preoperative plus postoperative imatinib in GIST: evidence of rapid radiographic response and temporal induction of tumor cell apoptosis. Ann Surg Oncol. 2009;16:910–9.

    Article  PubMed  Google Scholar 

  74. Blay JY, Bonvalot S, Casali P, et al. Consensus meeting for the management of gastrointestinal stromal tumors. Report of the GIST Consensus Conference of 20–21 March 2004, under the auspices of ESMO. Ann Oncol. 2005;16:566–78.

    Article  PubMed  Google Scholar 

  75. Schuetze SM. Imaging and response in soft tissue sarcomas. Hematol Oncol Clin N Am. 2005;19:471–87.

    Article  Google Scholar 

  76. Schuetze SM. Utility of positron emission tomography in sarcomas. Curr Opin Oncol. 2006;18:369–73.

    Article  PubMed  Google Scholar 

  77. Hicks RJ. Functional imaging techniques for evaluation of sarcomas. Cancer Imaging. 2005;5:58–65.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Khamly KK, Hicks RJ, McArthur GA, Thomas DM. The promise of PET in clinical management and as a sensitive test for drug cytotoxicity in sarcomas. Expert Rev Mol Diagn. 2008;8:105–19.

    Article  CAS  PubMed  Google Scholar 

  79. Toner GC, Hicks RJ. PET for sarcomas other than gastrointestinal stromal tumors. Oncologist. 2008;13 Suppl 2:22–6.

    Article  PubMed  Google Scholar 

  80. Schuetze SM, Rubin BP, Vernon C, et al. Use of positron emission tomography in localized extremity soft tissue sarcoma treated with neoadjuvant chemotherapy. Cancer. 2005;103:339–48.

    Google Scholar 

  81. Hawkins DS, Schuetze SM, Butrynski JE, et al. [18F]Fluorodeoxyglucose positron emission tomography predicts outcome for Ewing sarcoma family of tumors. J Clin Oncol. 2005;23:8828–34.

    Google Scholar 

  82. Schulte M, Brecht-Krauss D, Werner M, et al. Evaluation of neoadjuvant therapy response of osteogenic sarcoma using FDG PET. J Nucl Med. 1999;40:1637–43.

    CAS  PubMed  Google Scholar 

  83. Sato J, Yanagawa T, Dobashi Y, et al. Prognostic significance of 18F-FDG uptake in primary osteosarcoma after but not before chemotherapy: a possible association with autocrine motility factor/phosphoglucose isomerase expression. Clin Exp Metastasis. 2008;25:427–35.

    Google Scholar 

  84. Ye Z, Zhu J, Tian M, et al. Response of osteogenic sarcoma to neoadjuvant therapy: evaluated by 18F-FDG-PET. Ann Nucl Med. 2008;22:475–80.

    Google Scholar 

  85. Hawkins DS, Rajendran JG, Conrad 3rd EU, et al. Evaluation of chemotherapy response in pediatric bone sarcomas by [F-18]-fluorodeoxy-n-glucose positron emission tomography. Cancer. 2002;94:3277–84.

    Google Scholar 

  86. Franzius C, Schober O. Assessment of therapy response by FDG PET in pediatric patients. Q J Nucl Med. 2003;47:41–5.

    CAS  PubMed  Google Scholar 

  87. McCarville MB, Christie R, Daw NC, et al. PET/CT in the evaluation of childhood sarcomas. AIR Am J Roentgenol. 2005;184:1293–304.

    Google Scholar 

  88. Andreou D, Boldt H, Pink D, et al. Prognostic relevance of 18F-FDG PET uptake in patients with locally advanced, extremity soft tissue sarcomas undergoing neoadjuvant isolated limb perfusion with TNF-α and melphalan. Eur J Nucl Med Mol Imaging. 2014;41:1076–83.

    Google Scholar 

  89. Stacchiotti S, Dagrada GP, Morosi C, et al. Extraskeletal myxoid chondrosarcoma: tumor response to sunitinib. Clin Sarcoma Res. 2012;2:22.

    Google Scholar 

  90. Kasper B, Dimitrakopoulou-Strauss A, Pilz LR, et al. Positron emission tomography as a surrogate marker for evaluation of treatment response in patients with desmoid tumors under therapy with imatinib. Biomed Res Int. 2013;2013:389672.

    Google Scholar 

  91. Hyun OJ, Luber BS, Leal JP, et al. Response to early treatment evaluated with 18F-FDG PET and PERCIST 1.0 predicts survival in patients with Ewing sarcoma family of tumors treated with a monoclonal antibody to the insulin-like growth factor 1 receptor. J Nucl Med. 2016;57:735–40.

    Google Scholar 

  92. Fendler WP, Lehmann M, Todica A, et al. PET response criteria in solid tumors predicts progression-free survival and time to local or distant progression after chemotherapy with regional hyperthermia for soft-tissue sarcoma. J Nucl Med. 2015;56:530–7.

    Google Scholar 

  93. Herrmann K, Benz MR, Czernin J, et al. 18F-FDG-PET/CT Imaging as an early survival predictor in patients with primary high-grade soft tissue sarcomas undergoing neoadjuvant therapy. Clin Cancer Res. 2012;18:2024–31.

    Google Scholar 

  94. Dharmarajan KV, Wexler LH, Gavane S, et al. Positron emission tomography (PET) evaluation after initial chemotherapy and radiation therapy predicts local control in rhabdomyosarcoma. Int J Radiat Oncol Biol Phys. 2012;84:996–1002.

    Google Scholar 

  95. Loft A, Jensen KE, Löfgren J, et al. PET/MRI for preoperative planning in patients with soft tissue sarcoma: a technical report of two patients. Case Rep Med. 2013;2013:791078.

    Google Scholar 

  96. Krohn KA, Link JM, Mason RP. Molecular imaging of hypoxia. J Nucl Med. 2008;49 Suppl 2:129S–48.

    Article  CAS  PubMed  Google Scholar 

  97. Rajendran JG, Wilson DC, Conrad EU, et al. [18F]FMISO and [18F]FDG PET imaging in soft tissue sarcomas: correlation of hypoxia, metabolism and VEGF expression. Eur J Nucl Med Mol Imaging. 2003;30:695–704.

    Article  CAS  PubMed  Google Scholar 

  98. Tatum JL, Kelloff GJ, Gillies RJ, et al. Hypoxia: importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy. Int J Radiat Biol. 2006;82:699–757.

    Article  CAS  PubMed  Google Scholar 

  99. Kelloff GJ, Krohn KA, Larson SM, et al. The progress and promise of molecular imaging probes in oncologic drug development. Clin Cancer Res. 2005;11:7967–85.

    Article  CAS  PubMed  Google Scholar 

Suggested Reading

  • Helman U, Meltzer P. Mechanisms of sarcoma development. Nat Rev Cancer. 2003;3:685–94.

    Article  CAS  PubMed  Google Scholar 

  • Kelloff GJ, Hoffman JM, Johnson B, et al. Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin Cancer Res. 2005a;11:2785–808.

    Google Scholar 

  • Pisters PW, Leung DH, Woodruff J, Shi W, Brennan MF. Analysis of prognostic factors in 1,041 patients with localized soft tissue sarcomas of the extremities. J Clin Oncol. 1996;14:1679–89.

    Article  CAS  PubMed  Google Scholar 

  • Schuetze SM, Baker LH, Benjamin RS, Canetta R. Selection of response criteria for clinical trials of sarcoma treatment. Oncologist. 2008;13 Suppl 2:32–40.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janet F. Eary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Eary, J.F. (2017). Diagnostic Applications of Nuclear Medicine: Sarcomas. In: Strauss, H., Mariani, G., Volterrani, D., Larson, S. (eds) Nuclear Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-26236-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26236-9_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26234-5

  • Online ISBN: 978-3-319-26236-9

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics