Skip to main content

Diagnostic Applications of Nuclear Medicine: Thyroid Tumors

  • Reference work entry
  • First Online:
Book cover Nuclear Oncology

Abstract

Thyroid cancer (TC) is the most frequent endocrine malignancy. Its incidency has been growing in the last three decades reaching a mean of 12/100,000 women and 4/100,000 men. Since the mortality is low (0.5%), the prevalence is very high especially among women who have a higher rate compared to men (3:1). TCs are distinguished into well-differentiated thyroid cancer (DTC) (i.e., papillary and follicular), poorly differentiated thyroid cancer (PDTC), anaplastic (ATC), and medullary cancer (MTC). Other very rare TC accounts for non-epithelial tumors, lymphoma, and carcinomas characterized by the presence of mucin-producing cells and keratin.

TC usually presents as a thyroid nodule. Thyroid ultrasonography (US) is useful to detect thyroid nodules, but since only 5% of thyroid nodules are malignant, the diagnosis of malignancy is done by fine-needle aspiration cytology (FNAC). Radioiodide or 99mTc-pertechnetate thyroid scan has a low diagnostic specificity and sensitivity for characterizing thyroid nodules. X-ray of the neck is useful to disclose a deviation of the trachea or lumen restriction, in large nodules and in multinodular goiter. CT and MRI are generally reserved for mediastinal thyroid masses or the identification of regional or distant metastasis.

The most widely used staging system for TC is the TNM classification that has been defined jointly by the Union Internationale Contre le Cancer (UICC) and by the American Joint Committee on Cancer (AJCC). Thyroid remnant ablation with 131I-iodide is indicated in DTC patients with a moderate to high risk of recurrence. Patients are prepared with rhTSH and low iodine diet.

ATC is a rare tumor (<3% of all TCs) derived from follicular cells with a very poor prognosis and almost invariably lethal. The most common clinical presentation of ATC is a new, large, firm thyroid mass, often associated with signs/symptoms of local compression/invasion. Multimodality treatment of ATC includes surgery, EBRT, and combination of chemotherapies. Therapy with 131I-iodide is not useful, since these tumors do not concentrate radioiodide. Preoperative imaging with US, CT, and MRI plays an important role, and [18F]FDG PET is useful to plan the therapeutic strategy.

MTC is a well-differentiated TC arising from the parafollicular, calcitonin-producing C cells. Its prevalence is 5–10% in all TCs. Sporadic and familial forms are recognized. Elevated baseline serum levels of calcitonin (Ct) are suspicious for MTC. Following surgery, MTC patients are monitored with serum Ct and CEA levels, and serial neck US examinations are performed. Ct doubling time in serum is the most sensitive biomarker for MTC progression. Scintigraphy with 123I-MIBG has very high sensitivity for staging patients with MEN II and familial MTC. However, it has a low sensitivity in patients with increased serum Ct but no clinical site of disease. 68Ga-DOTATATE PET/CT is now the best imaging modality in the detection of metastatic MTC lesions in the presence of high levels of serum Ct. Radionuclide therapy with the radiolabeled somatostatin analogue 90Y-DOTA-Tyr3-octreotide (90Y-DOTA-TOC) has been tested in metastatic MTC. The two TKIs, vandetanib and cabozantinib, represent nowadays the best therapy of metastatic and progressive MTC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

[18F]FDG:

2-Deoxy-2-[18F]fluoro-d-glucose

123I-MIBG:

123I-meta-Iodobenzylguanidine

18F-DOPA:

2-18F-Fluoro-l-3,4-dihydroxyphenylalanine

AJCC:

American Joint Committee on Cancer

ATC:

Anaplastic thyroid cancer

BRAF:

Gene encoding for the B-Raf protein, a serine/threonine-protein kinase; the gene is also known as the proto-oncogene B-Raf and v-Raf murine sarcoma viral oncogene homolog B

CEA:

Carcinoembryonic antigen, a tumor-associated serum marker

CI:

Confidence interval

Ct:

Calcitonin

CT:

X-ray computed tomography

DMSA:

Dimercaptosuccinic acid, a metal-chelating agent

DOTA-TOC:

DOTA-octreotide

DOTA:

1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid

DOTATATE:

DOTA-octreotate

DTC:

Well-differentiated thyroid cancer

EBRT:

External beam radiation therapy

EFVPTC:

Encapsulated follicular variant of papillary thyroid tumor

FNAC:

Fine-needle aspiration cytology

FT3:

Free circulating form of the thyroid hormone tri-iodothyronine

FT4:

Free circulating form of the thyroid hormone tetra-iodothyronine

FTC:

Follicular thyroid tumor

FVPTC:

Follicular variant of papillary thyroid tumor

GLUT:

Glucose transporter family

Gy:

Gray unit (ionizing radiation dose in the International System of Units, corresponding to the absorption of one joule of radiation energy per kilogram of matter)

MAP:

Mitogen-activated protein

MEN:

Multiple endocrine neoplasia

MET:

Gene encoding for a protein of the receptor tyrosine kinase family

MIBG:

meta-Iodobenzylguanidine

MIP:

Maximum intensity projection

MRI:

Magnetic resonance imaging

MTC:

Medullary thyroid cancer

mTOR:

Mammalian target of rapamycin

NEFVPTC:

Non-encapsulated follicular variant of papillary thyroid tumor

NIFTP:

Noninvasive follicular variant of papillary thyroid carcinoma

NIS:

Na+/I symporter

p53:

Tumor protein p53, also known as cellular tumor antigen p53, phosphoprotein p53, tumor suppressor p53, antigen NY-CO-13, or transformation-related protein 53 (TRP53)

PAX8:

A member of the paired box (PAX) family of transcription factors

PDTC:

Poorly differentiated thyroid cancer

PET:

Positron emission tomography

PET/CT:

Positron emission tomography/Computed tomography

PI3K/AKT:

Intracellular signalling pathway regulating the cell cycle

PPA Rγ :

Gene encoding for the peroxisome proliferator-activated receptor gamma (or PPARG, a nuclear receptor), also known as the glitazone receptor, or NR1C3 (nuclear receptor subfamily 1, group C, member 3)

PTC:

Papillary thyroid tumor

RAS:

Oncogene regulating signalling intracellular cascades

RET:

A proto-oncogene encoding for a receptor tyrosine kinase for extracellular signalling molecules (from “rearranged during transfection”)

rhTSH:

Recombinant human TSH

SWI/SNF:

A nucleosome remodeling complex (from “SWItch/Sucrose Non-Fermentable”)

TC:

Thyroid cancer

TERT:

Gene encoding for telomerase reverse transcriptase, a catalytic subunit of the enzyme telomerase

Tg:

Thyroglobulin

TKI:

Thymidine kinase inhibitor

TNM:

AJCC/UICC staging system based on parameters “T” (tumor status), “N” (lymph node status), and “M” (distant metastasis status)

TRK:

Gene encoding for a receptor tyrosine kinase for extracellular signalling molecules

TSH:

Thyroid stimulating hormone or thyrotropin

UICC:

Union Internationale Contre le Cancer (International Union Against Cancer)

US:

Ultrasonography

References

  1. Hedinger C, Williams E, Sobin LH, editors. Histological typing of thyroid tumors. Berlin: Springer; 1988.

    Google Scholar 

  2. Chan JK, Saw D. The grooved nucleus. A useful diagnostic criterion of papillary carcinoma of the thyroid. Am J Surg Pathol. 1986;10:672–9.

    Article  CAS  PubMed  Google Scholar 

  3. Johannessen JV, Sobrinho-Simoes M. The origin and significance of thyroid psammoma bodies. Lab Invest. 1980;43:287–96.

    CAS  PubMed  Google Scholar 

  4. LiVolsi VA. Papillary neoplasms of the thyroid. Pathologic and prognostic features. Am J Clin Pathol. 1992;97:426–34.

    Article  CAS  PubMed  Google Scholar 

  5. Rosai J, Zampi G, Carcangiu ML. Papillary carcinoma of the thyroid. A discussion of its several morphologic expressions, with particular emphasis on the follicular variant. Am J Surg Pathol. 1983;7:809–17.

    Article  CAS  PubMed  Google Scholar 

  6. Tielens ET, Sherman SI, Hruban RH, Ladenson PW. Follicular variant of papillary thyroid carcinoma. A clinicopathologic study. Cancer. 1994;73:424–31.

    Article  CAS  PubMed  Google Scholar 

  7. Carcangiu ML, Bianchi S. Diffuse sclerosing variant of papillary thyroid carcinoma. Clinicopathologic study of 15 cases. Am J Surg Pathol. 1989;13:1041–9.

    Article  CAS  PubMed  Google Scholar 

  8. Evans HL. Columnar-cell carcinoma of the thyroid. A report of two cases of an aggressive variant of thyroid carcinoma. Am J Clin Pathol. 1986;85:77–80.

    Article  CAS  PubMed  Google Scholar 

  9. Mizukami Y, Nonomura A, Michigishi T, Noguchi M, Nakamura S, Hashimoto T. Columnar cell carcinoma of the thyroid gland: a case report and review of the literature. Hum Pathol. 1994;25:1098–101.

    Article  CAS  PubMed  Google Scholar 

  10. Gemsenjager E, Heitz PU, Seifert B, Martina B, Schweizer I. Differentiated thyroid carcinoma. Follow-up of 264 patients from one institution for up to 25 years. Swiss Med Wkly. 2001;131:157–63.

    CAS  PubMed  Google Scholar 

  11. Albores-Saavedra J, Wu J. The many faces and mimics of papillary thyroid carcinoma. Endocr Pathol. 2006;17:1–18.

    Article  PubMed  Google Scholar 

  12. Ghossein R. Encapsulated malignant follicular cell-derived thyroid tumors. Endocr Pathol. 2010;21:212–8.

    Article  PubMed  Google Scholar 

  13. Nikiforov YE, Seethala RR, Tallini G, et al. Nomenclature revision for encapsulated follicular variant of papillary thyroid carcinoma: a paradigm shift to reduce overtreatment of indolent tumors. JAMA Oncol. 2016;2:1023–9.

    Google Scholar 

  14. Shi X, Liu R, Basolo F, et al. Differential clinicopathological risk and prognosis of major papillary thyroid cancer variants. J Clin Endocrinol Metab. 2016;101:264–74.

    Article  CAS  PubMed  Google Scholar 

  15. Hedinger C, Williams ED, Sobin LH. The WHO histological classification of thyroid tumors: a commentary on the second edition. Cancer. 1989;63:908–11.

    Article  CAS  PubMed  Google Scholar 

  16. Davies L, Welch HG. Increasing incidence of thyroid cancer in the United States, 1973–2002. JAMA. 2006;295:2164–7.

    Article  CAS  PubMed  Google Scholar 

  17. Yamamoto Y, Maeda T, Izumi K, Otsuka H. Occult papillary carcinoma of the thyroid. A study of 408 autopsy cases. Cancer. 1990;65:1173–9.

    Article  CAS  PubMed  Google Scholar 

  18. Kovacs GL, Gonda G, Vadasz G, et al. Epidemiology of thyroid microcarcinoma found in autopsy series conducted in areas of different iodine intake. Thyroid. 2005;15:152–7.

    Article  PubMed  Google Scholar 

  19. de Matos PS, Ferreira AP, Ward LS. Prevalence of papillary microcarcinoma of the thyroid in Brazilian autopsy and surgical series. Endocr Pathol. 2006;17:165–73.

    Article  PubMed  Google Scholar 

  20. Pellegriti G, Scollo C, Lumera G, Regalbuto C, Vigneri R, Belfiore A. Clinical behavior and outcome of papillary thyroid cancers smaller than 1.5 cm in diameter: study of 299 cases. J Clin Endocrinol Metab. 2004;89:3713–20.

    Article  CAS  PubMed  Google Scholar 

  21. Matsubayashi S, Kawai K, Matsumoto Y, et al. The correlation between papillary thyroid carcinoma and lymphocytic infiltration in the thyroid gland. J Clin Endocrinol Metab. 1995;80:3421–4.

    CAS  PubMed  Google Scholar 

  22. Pacini F, Mariotti S, Formica N, Elisei R, Anelli S, Capotorti E, Pinchera A. Thyroid autoantibodies in thyroid cancer: incidence and relationship with tumour outcome. Acta Endocrinol (Copenh). 1988;119:373–80.

    CAS  Google Scholar 

  23. Feldman PS, Horvath E, Kovacs K. Ultrastructure of three Hurthle cell tumors of the thyroid. Cancer. 1972;30:1279–85.

    Article  CAS  PubMed  Google Scholar 

  24. Herrera MF, Hay ID, Wu PS, et al. Hurthle cell (oxyphilic) papillary thyroid carcinoma: a variant with more aggressive biologic behavior. World J Surg. 1992;16:669–74.

    Article  CAS  PubMed  Google Scholar 

  25. Morris LG, Tuttle RM, Davies L. Changing trends in the incidence of thyroid cancer in the United States. JAMA Otolaryngol Head Neck Surg. 2016;142:709–11.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Baudin E, Travagli JP, Ropers J, et al. Microcarcinoma of the thyroid gland: the Gustave-Roussy Institute experience. Cancer. 1998;83:553–9.

    Article  CAS  PubMed  Google Scholar 

  27. Morris LG, Myssiorek D. Improved detection does not fully explain the rising incidence of well-differentiated thyroid cancer: a population-based analysis. Am J Surg. 2010;200:454–61.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Baverstock K, Egloff B, Pinchera A, Ruchti C, Williams D. Thyroid cancer after Chernobyl. Nature. 1992;359:21–2.

    Article  CAS  PubMed  Google Scholar 

  29. Pacini F, Vorontsova T, Demidchik EP, et al. Post-Chernobyl thyroid carcinoma in Belarus children and adolescents: comparison with naturally occurring thyroid carcinoma in Italy and France. J Clin Endocrinol Metab. 1997;82:3563–9.

    CAS  PubMed  Google Scholar 

  30. Elisei R, Molinaro E, Agate L, Bottici V, et al. Are the clinical and pathological features of differentiated thyroid carcinoma really changed over the last 35 years? Study on 4187 patients from a single Italian institution to answer this question. J Clin Endocrinol Metab. 2010;95:1516–27.

    Article  CAS  PubMed  Google Scholar 

  31. DeGroot LJ. Radiation and thyroid disease. Baillieres Clin Endocrinol Metab. 1988;2:777–91.

    Article  CAS  PubMed  Google Scholar 

  32. Dolphin GW, Beach SA. The relationship between radiation dose delivered to the thyroids of children and the subsequent development of malignant tumours. Health Phys. 1963;9:1385–90.

    Article  CAS  PubMed  Google Scholar 

  33. Rose RG, Hart field JE, Kelsey MP, McDonald EJ. The association of thyroid cancer and prior irradiation in infancy and childhood. J Nucl Med. 1963;4:249–58.

    CAS  PubMed  Google Scholar 

  34. Toyooka ET, Pifer JW, Crump SL, Dutton AM, Hempelmann LH. Neoplasms in children treated with X rays for thymic enlargement. II. Tumor incidence as a function of radiation factor. J Natl Cancer Inst. 1963;31:1357–77.

    CAS  PubMed  Google Scholar 

  35. Pifer JW, Hempelmann LH. Radiation-induced thyroid carcinoma. Ann N Y Acad Sci. 1964;114:838–48.

    Article  Google Scholar 

  36. Morris JH, Hardin CA. Thyroid cancer in adult following external irradiation. Arch Intern Med. 1964;113:97–100.

    Article  CAS  PubMed  Google Scholar 

  37. Silverman C. Thyroid tumors associated with radiation exposure. Public Health Rep. 1984;99:369–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Calandra DB, Shah KH, Lawrence AM, Paloyan E. Total thyroidectomy in irradiated patients. A twenty-year experience in 206 patients. Ann Surg. 1985;202:356–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Naing S, Collins BJ, Schneider AB. Clinical behavior of radiation-induced thyroid cancer: factors related to recurrence. Thyroid. 2009;19:479–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Haddy N, Andriamboavonjy T, Paoletti C, et al. Thyroid adenomas and carcinomas following radiotherapy for a hemangioma during infancy. Radiother Oncol. 2009;93:377–82.

    Article  PubMed  Google Scholar 

  41. Sinnott B, Ron E, Schneider AB. Exposing the thyroid to radiation: a review of its current extent, risks, and implications. Endocr Rev. 2010;31:756–73.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Moysich KB, Menezes RJ, Michalek AM. Chernobyl-related ionising radiation exposure and cancer risk: an epidemiological review. Lancet Oncol. 2002;3:269–79.

    Article  PubMed  Google Scholar 

  43. Cardis E, Kesminiene A, Ivanov V, et al. Risk of thyroid cancer after exposure to 131I in childhood. J Natl Cancer Inst. 2005;97:724–32.

    Article  PubMed  Google Scholar 

  44. Caudill CM, Zhu Z, Ciampi R, Stringer JR, Nikiforov YE. Dose-dependent generation of RET/PTC in human thyroid cells after in vitro exposure to gamma-radiation: a model of carcinogenic chromosomal rearrangement induced by ionizing radiation. J Clin Endocrinol Metab. 2005;90:2364–9.

    Article  CAS  PubMed  Google Scholar 

  45. Nikiforov YE, Rowland JM, Bove KE, Monforte-Munoz H, Fagin JA. Distinct pattern of ret oncogene rearrangements in morphological variants of radiation-induced and sporadic thyroid papillary carcinomas in children. Cancer Res. 1997;57:1690–4.

    CAS  PubMed  Google Scholar 

  46. Hemminki K, Eng C, Chen B. Familial risks for nonmedullary thyroid cancer. J Clin Endocrinol Metab. 2005;90:5747–53.

    Article  CAS  PubMed  Google Scholar 

  47. Franceschi S, Dal Maso L. Hormonal imbalances and thyroid cancers in humans. IARC Sci Publ. 1999;147:33–43.

    CAS  Google Scholar 

  48. Negri E, Dal Maso L, Ron E, et al. A pooled analysis of case-control studies of thyroid cancer. II. Menstrual and reproductive factors. Cancer Causes Control. 1999;10:143–55.

    Article  CAS  PubMed  Google Scholar 

  49. Thiruvengadam A, Govindarajulu P, Aruldhas MM. Modulatory effect of estradiol and testosterone on the development of N-nitrosodiisopropanolamine induced thyroid tumors in female rats. Endocr Res. 2003;29:43–51.

    Article  CAS  PubMed  Google Scholar 

  50. Mack WJ, Preston-Martin S, Bernstein L, Qian D, Xiang M. Reproductive and hormonal risk factors for thyroid cancer in Los Angeles County females. Cancer Epidemiol Biomarkers Prev. 1999;8:991–7.

    CAS  PubMed  Google Scholar 

  51. Rossing MA, Voigt LF, Wicklund KG, Williams M, Daling JR. Use of exogenous hormones and risk of papillary thyroid cancer (Washington, United States). Cancer Causes Control. 1998;9:341–9.

    Article  CAS  PubMed  Google Scholar 

  52. Fiore E, Rago T, Provenzale MA, et al. Lower levels of TSH are associated with a lower risk of papillary thyroid cancer in patients with thyroid nodular disease: thyroid autonomy may play a protective role. Endocr Relat Cancer. 2009;16:1251–60.

    Article  CAS  PubMed  Google Scholar 

  53. Belfiore A, La Rosa GL, Padova G, Sava L, Ippolito O, Vigneri R. The frequency of cold thyroid nodules and thyroid malignancies in patients from an iodine-deficient area. Cancer. 1987;15:3096–102.

    Article  Google Scholar 

  54. Feldt-Rasmussen U. Iodine and cancer. Thyroid. 2001;11:483–6.

    Article  CAS  PubMed  Google Scholar 

  55. Williams ED, Doniach I, Bjamson O, Michie W. Thyroid cancer in an iodide rich area. Cancer. 1997;39:215–22.

    Article  Google Scholar 

  56. Bosetti C, Kolonel L, Negri E, et al. A pooled analysis of case-control studies of thyroid cancer. VI. Fish and shellfish consumption. Cancer Causes Control. 2001;12:375–82.

    Article  CAS  PubMed  Google Scholar 

  57. Dal Maso L, Bosetti C, La Vecchia C, Franceschi S. Risk factors for thyroid cancer: an epidemiological review focused on nutritional factors. Cancer Causes Control. 2009;20:75–86.

    Article  PubMed  Google Scholar 

  58. Kitahara CM, Platz EA, Freeman LE, et al. Obesity and thyroid cancer risk among U.S. men and women: a pooled analysis of five prospective studies. Cancer Epidemiol Biomarkers Prev. 2011;20:464–72.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Duntas LH, Doumas C. The ‘rings of fire’ and thyroid cancer. Hormones (Athens). 2009;8:249–53.

    Article  Google Scholar 

  60. Pellegriti G, De Vathaire F, Scollo C, et al. Papillary thyroid cancer incidence in the volcanic area of Sicily. J Natl Cancer Inst. 2009;101:1575–83.

    Article  CAS  PubMed  Google Scholar 

  61. Lemoine NR, Mayall ES, Wyllie FS, Williams ED, Goyns M, Stringer B, Wynford-Thomas D. High frequency of ras oncogene activation in all stages of human thyroid tumorigenesis. Oncogene. 1989;4:159–64.

    CAS  PubMed  Google Scholar 

  62. Suarez HG, du Villard JA, Severino M, et al. Presence of mutations in all three ras genes in human thyroid tumors. Oncogene. 1990;5:565–70.

    CAS  PubMed  Google Scholar 

  63. Wright PA, Lemoine NR, Mayall ES, Wyllie FS, Hughes D, Williams ED, Wynford-Thomas D. Papillary and follicular thyroid carcinomas show a different pattern of ras oncogene mutation. Br J Cancer. 1989;60:576–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shi YF, Zou MJ, Schmidt H, Juhasz F, Stensky V, Robb D, Farid N. High rates of ras codon 61 mutation in thyroid tumors in an iodide-deficient area. Cancer Res. 1991;51:2690–3.

    CAS  PubMed  Google Scholar 

  65. Santoro M, Grieco M, Melillo RM, Fusco A, Vecchio G. Molecular defects in thyroid carcinomas: role of the RET oncogene in thyroid neoplastic transformation. Eur J Endocrinol. 1995;133:513–22.

    Article  CAS  PubMed  Google Scholar 

  66. Grieco M, Santoro M, Berlingieri MT, et al. PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell. 1990;60:557–63.

    Article  CAS  PubMed  Google Scholar 

  67. Castellone MD, Santoro M. Dysregulated RET signaling in thyroid cancer. Endocrinol Metab Clin North Am. 2008;37:363–74.

    Article  CAS  PubMed  Google Scholar 

  68. Fusco A, Grieco M, Santoro M, et al. A new oncogene in human thyroid papillary carcinomas and their lymph-nodal metastases. Nature. 1987;328:170–2.

    Article  CAS  PubMed  Google Scholar 

  69. Elisei R, Romei C, Vorontsova T, et al. RET/PTC rearrangements in thyroid nodules: studies in irradiated and not irradiated, malignant and benign thyroid lesions in children and adults. J Clin Endocrinol Metab. 2001;86:3211–6.

    CAS  PubMed  Google Scholar 

  70. Romei C, Ciampi R, Elisei R. A comprehensive overview of the role of the RET proto-oncogene in thyroid carcinoma. Nat Rev Endocrinol. 2016;12:192–202.

    Article  CAS  PubMed  Google Scholar 

  71. Bongarzone I, Pierotti MA, Monzini N, et al. High frequency of activation of tyrosine kinase oncogenes in human papillary thyroid carcinoma. Oncogene. 1989;4:1457–62.

    CAS  PubMed  Google Scholar 

  72. Bounacer A, Wicker R, Caillou B, Cailleux AF, Sarasin A, Schlumberger M, Suarez H. High prevalence of activating ret proto-oncogene rearrangements, in thyroid tumors from patients who had received external radiation. Oncogene. 1997;15:1263–73.

    Article  CAS  PubMed  Google Scholar 

  73. Viglietto G, Chiappetta G, Martinez-Tello FJ, et al. RET/PTC oncogene activation is an early event in thyroid carcinogenesis. Oncogene. 1995;11:1207–10.

    CAS  PubMed  Google Scholar 

  74. Zou M, Shi Y, Farid NR. Low rate of ret proto-oncogene activation (PTC/retTPC) in papillary thyroid carcinomas from Saudi Arabia. Cancer. 1994;73:176–80.

    Article  CAS  PubMed  Google Scholar 

  75. Tallini G, Santoro M, Helie M, et al. RET/PTC oncogene activation defines a subset of papillary thyroid carcinomas lacking evidence of progression to poorly differentiated or undifferentiated tumor phenotypes. Clin Cancer Res. 1998;4:287–94.

    CAS  PubMed  Google Scholar 

  76. Xing M. BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications. Endocr Rev. 2007;28:742–62.

    Article  CAS  PubMed  Google Scholar 

  77. Fugazzola L, Puxeddu E, Avenia N, et al. Correlation between B-RAFV600E mutation and clinico-pathologic parameters in papillary thyroid carcinoma: data from a multicentric Italian study and review of the literature. Endocr Relat Cancer. 2006;13:455–64.

    Article  CAS  PubMed  Google Scholar 

  78. Nikiforova MN, Kimura ET, Gandhi M, et al. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab. 2003;88:5399–404.

    Article  CAS  PubMed  Google Scholar 

  79. Xing M, Westra WH, Tufano RP, et al. BRAF mutation predicts a poorer clinical prognosis for papillary thyroid cancer. J Clin Endocrinol Metab. 2005;90:6373–9.

    Article  CAS  PubMed  Google Scholar 

  80. Puxeddu E, Moretti S, Elisei R, et al. BRAF (V599E) mutation is the leading genetic event in adult sporadic papillary thyroid carcinomas. J Clin Endocrinol Metab. 2004;89:2414–20.

    Article  CAS  PubMed  Google Scholar 

  81. Elisei R, Ugolini C, Viola D, et al. BRAF(V600E) mutation and outcome of patients with papillary thyroid carcinoma: a 15-year median follow-up study. J Clin Endocrinol Metab. 2008;93:3943–9.

    Article  CAS  PubMed  Google Scholar 

  82. Jin L, Chen E, Dong S, et al. BRAF and TERT promoter mutations in the aggressiveness of papillary thyroid carcinoma: a study of 653 patients. Oncotarget. 2016;7:18346–55.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Liu X, Qu S, Liu R, et al. TERT promoter mutations and their association with BRAF V600E mutation and aggressive clinicopathological characteristics of thyroid cancer. J Clin Endocrinol Metab. 2014;99:E1130–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159:676–90.

    Google Scholar 

  85. Schlumberger MJ. Papillary and follicular thyroid carcinoma. N Engl J Med. 1998;338:297–306.

    Article  CAS  PubMed  Google Scholar 

  86. Rago T, Vitti P, Chiovato L, et al. Role of conventional ultrasonography and color flow-Doppler sonography in predicting malignancy in ‘cold’ thyroid nodules. Eur J Endocrinol. 1998;138:41–6.

    Article  CAS  PubMed  Google Scholar 

  87. Papini E, Guglielmi R, Bianchini A, et al. Risk of malignancy in nonpalpable thyroid nodules: predictive value of ultrasound and color-Doppler features. J Clin Endocrinol Metab. 2002;87:1941–6.

    Article  CAS  PubMed  Google Scholar 

  88. Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American Thyroid Association Guidelines Task Force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26:1–133.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Ophir J, Alam SK, Garra B, Kallel F, Konofagou E, Krouskop T, Varghese T. Elastography: ultrasonic estimation and imaging of the elastic properties of tissues. Proc Inst Mech Eng H. 1999;213:203–33.

    Article  CAS  PubMed  Google Scholar 

  90. Rago T, Santini F, Scutari M, Pinchera A, Vitti P. Elastography: new developments in ultrasound for predicting malignancy in thyroid nodules. J Clin Endocrinol Metab. 2008;92:2917–22.

    Article  CAS  Google Scholar 

  91. Rubaltelli L, Corradin S, Dorigo A, Stabilito M, Tregnaghi A, Borsato S, Stramare R. Differential diagnosis of benign and malignant thyroid nodules at elastosonography. Ultraschall Med. 2009;30:175–9.

    Article  CAS  PubMed  Google Scholar 

  92. Rago T, Vitti P. Potential value of elastosonography in the diagnosis of malignancy in thyroid nodules. Q J Nucl Med Mol Imaging. 2009;53:455–6.

    CAS  PubMed  Google Scholar 

  93. Rago T, Scutari M, Santini F, et al. Real-time elasto-sonography: useful tool for refining the presurgical diagnosis in thyroid nodules with indeterminate or nondiagnostic cytology. J Clin Endocrinol Metab. 2010;95:5274–80.

    Article  CAS  PubMed  Google Scholar 

  94. Cakir B, Aydin C, Korukluoğlu B, et al. Diagnostic value of elastosonographically determined strain index in the differential diagnosis of benign and malignant thyroid nodules. Endocrine. 2011;39:89–98.

    Article  CAS  PubMed  Google Scholar 

  95. Baloch ZW, LiVolsi VA. Fine-needle aspiration of the thyroid: today and tomorrow. Best Pract Res Clin Endocrinol Metab. 2008;22:929–39.

    Article  PubMed  Google Scholar 

  96. Layfield LJ, Cibas ES, Gharib H, Mandel SJ. Thyroid aspiration cytology: current status. CA Cancer J Clin. 2009;59:99–110.

    Article  PubMed  Google Scholar 

  97. LiVolsi VA, Gupta PK. Thyroid fine-needle aspiration: intranuclear inclusions, nuclear grooves and psammoma bodies—paraganglioma-like adenoma of the thyroid. Diagn Cytopathol. 1992;8:82–3.

    Article  CAS  PubMed  Google Scholar 

  98. Gharib H, Goellner JR, Johnson DA. Fine-needle aspiration cytology of the thyroid. A 12-year experience with 11,000 biopsies. Clin Lab Med. 1993;13:699–709.

    CAS  PubMed  Google Scholar 

  99. Poller DN, Stelow EB, Yiangou C. Thyroid FNAC cytology: can we do it better? Cytopathology. 2008;19:4–10.

    Article  CAS  PubMed  Google Scholar 

  100. Mehanna HM, Jain A, Morton RP, Watkinson J, Shaha A. Investigating the thyroid nodule. BMJ. 2009;338:705–9.

    Article  Google Scholar 

  101. Cooper DS, Doherty GM, Haugen BR, et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 2009;19:1167–214.

    Article  PubMed  Google Scholar 

  102. British Thyroid Association, Royal College of Physicians. British Thyroid Association guidelines for the management of thyroid cancer. 2nd ed. London: British Thyroid Association, Royal College of Physicians; 2007.

    Google Scholar 

  103. Hegedus L. Clinical practice. The thyroid nodule. N Engl J Med. 2004;351:1764–71.

    Article  PubMed  Google Scholar 

  104. Kelly NP, Lim JC, DeJong S, Harmath C, Dudiak C, Wojcik EM. Specimen adequacy and diagnostic specificity of ultrasound-guided fine needle aspirations of nonpalpable thyroid nodules. Diagn Cytopathol. 2006;34:188–90.

    Article  PubMed  Google Scholar 

  105. Kesmodel SB, Terhune KP, Canter RJ, Mandel SJ, LiVolsi VA, Baloch ZW, Fraker DL. The diagnostic dilemma of follicular variant of papillary thyroid carcinoma. Surgery. 2003;134:1005–12.

    Article  PubMed  Google Scholar 

  106. Yang GC, Liebeskind D, Messina AV. Should cytopathologists stop reporting follicular neoplasms on fine-needle aspiration of the thyroid? Cancer. 2003;99:69–74.

    Article  PubMed  Google Scholar 

  107. Nardi F, Basolo F, Crescenzi A, et al. Italian consensus for the classification and reporting of thyroid cytology. J Endocrinol Invest. 2014;37:593–9.

    Article  PubMed  Google Scholar 

  108. Nikiforov YE. Molecular diagnostics of thyroid tumors. Arch Pathol Lab Med. 2011;135:569–77.

    CAS  PubMed  Google Scholar 

  109. Alexander EK, Kennedy GC, Baloch ZW, et al. Preoperative diagnosis of benign thyroid nodules with indeterminate cytology. N Engl J Med. 2012;367:705–15.

    Article  CAS  PubMed  Google Scholar 

  110. Nikiforov YE, Carty SE, Chiosea SI, et al. Impact of the multi-gene ThyroSeq next-generation sequencing assay on cancer diagnosis in thyroid nodules with atypia of undetermined significance/follicular lesion of undetermined significance cytology. Thyroid. 2015;25:1217–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lazar V, Bidart JM, Caillou B, Mahé C, Lacroix L, Filetti S, Schlumberger M. Expression of the Na+/I− symporter gene in human thyroid tumors: a comparison study with other thyroid-specific genes. J Clin Endocrinol Metab. 1999;84:3228–34.

    CAS  PubMed  Google Scholar 

  112. Giovanella S, Suriano S, Maffioli M, Ceriani M. 18FDG-positron emission tomography/computed tomography (PET/CT) scanning in thyroid nodules with nondiagnostic cytology. Clin Endocrinol. 2011;74:644–8.

    Article  Google Scholar 

  113. Piccardo A, Puntoni M, Treglia G, Foppiani L, Bertagna F, Paparo F, et al. Thyroid nodules with indeterminate cytology: prospective comparison between 18F-FDG-PET/CT, multiparametric neck ultrasonography, 99mTc-MIBI scintigraphy and histology. Eur J Endocrinol. 2016;174:693–703.

    Article  CAS  PubMed  Google Scholar 

  114. Kim CE, Joyce JM, Patel N, Lichter J. Fortuitous detection of papillary carcinoma of the thyroid with F-18 FDG positron emission tomography in a patient with non-Hodgkin lymphoma. Clin Nucl Med. 2003;28:782–3.

    Article  PubMed  Google Scholar 

  115. Chen W, Li G, Parsons M, Zhuang H, Alavi A. Clinical significance of incidental focal versus diffuse thyroid uptake on FDG-PET imaging. PET Clin. 2007;2:321–9.

    Article  PubMed  Google Scholar 

  116. Nayan S, Ramakrishna J, Gupta MK. The proportion of malignancy in incidental thyroid lesions on 18-FDG PET study: a systematic review and meta-analysis. Otolaryngol Head Neck Surg. 2014;151:190–200.

    Article  PubMed  Google Scholar 

  117. Agrawal K, Weaver J, Ul-Hassan F, Jeannon JP, Simo R, Carroll P, et al. Incidence and significance of incidental focal thyroid uptake on 18F-FDG PET study in a large patient cohort: retrospective single-centre experience in the United Kingdom. Eur Thyroid J. 2015;4:115–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Demir Ö, Köse N, Özkan E, Ünlütürk U, Aras G, Erdoğan MF. Clinical significance of thyroid incidentalomas identified by 18F-FDG PET/CT: correlation of ultrasonography findings with cytology results. Nucl Med Commun. 2016;37:715–20.

    Article  CAS  PubMed  Google Scholar 

  119. Pacini F, Schlumberger M, Dralle H, Elisei R, Smit JW, Wiersinga W. European consensus for the management of patients with differentiated thyroid carcinoma of the follicular epithelium. Eur J Endocrinol. 2006;154:787–803.

    Article  CAS  PubMed  Google Scholar 

  120. Tuttle RM, Tala H, Shah J, et al. Estimating risk of recurrence in differentiated thyroid cancer after total thyroidectomy and radioactive iodine remnant ablation: using response to therapy variables to modify the initial risk estimates predicted by the new American Thyroid Association staging system. Thyroid. 2010;20:1341–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kim BS, Kim SJ, Kim IJ, Pak K, Kim K. Factors associated with positive F-18 fluorodeoxyglucose positron emission tomography before thyroidectomy in patients with papillary thyroid carcinoma. Thyroid. 2012;22:725–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Chong A, Ha JM, Han YH, Kong E, Choi Y, Hong KH, Park JH, Kim SH, Park JM. Preoperative lymph node staging by FDG PET/CT with contrast enhancement for thyroid cancer: a multicenter study and comparison with neck CT. Clin Exp Otorhinolaryngol. 2016. doi:10.21053/ceo.2015.01424. Epub ahead of print.

    PubMed  PubMed Central  Google Scholar 

  123. DeGroot LJ, Kaplan EL, McCormick M, Straus FH. Natural history, treatment, and course of papillary thyroid carcinoma. J Clin Endocrinol Metab. 1990;71:414–24.

    Article  CAS  PubMed  Google Scholar 

  124. Ceccarelli C, Pacini F, Lippi F, Elisei R, Arganini M, Miccoli P, Pinchera A. Thyroid cancer in children and adolescents. Surgery. 1988;104:1143–8.

    CAS  PubMed  Google Scholar 

  125. Schlumberger M, De Vathaire F, Travagli JP, et al. Differentiated thyroid carcinoma in childhood: long term follow-up of 72 patients. J Clin Endocrinol Metab. 1987;65:1088–94.

    Article  CAS  PubMed  Google Scholar 

  126. Akslen LA, Haldorsen T, Thoresen SO, Glattre E. Survival and causes of death in thyroid cancer: a population-based study of 2479 cases from Norway. Cancer Res. 1991;51:1234–41.

    CAS  PubMed  Google Scholar 

  127. Mazzaferri EL, Jhiang SM. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am J Med. 1994;97:418–28.

    Article  CAS  PubMed  Google Scholar 

  128. Brennan MD, Bergstralh EJ, van Heerden JA, McConahey WM. Follicular thyroid cancer treated at the Mayo Clinic, 1946 through 1970: initial manifestations, pathologic findings, therapy, and outcome. Mayo Clin Proc. 1991;66:11–22.

    Article  CAS  PubMed  Google Scholar 

  129. Tubiana M, Schlumberger M, Rougier P, et al. Long-term results and prognostic factors in patients with differentiated thyroid carcinoma. Cancer. 1985;55:794–804.

    Article  CAS  PubMed  Google Scholar 

  130. Johnson TL, Lloyd RV, Thompson NW, Beierwaltes WH, Sisson JC. Prognostic implications of the tall cell variant of papillary thyroid carcinoma. Am J Surg Pathol. 1988;12:22–7.

    Article  CAS  PubMed  Google Scholar 

  131. Silver CE, Owen RP, Rodrigo JP, Rinaldo A, Devaney KO, Ferlito A. Aggressive variants of papillary thyroid carcinoma. Head Neck. 2010;33:1052–9.

    Article  PubMed  Google Scholar 

  132. Lang W, Choritz H, Hundeshagen H. Risk factors in follicular thyroid carcinomas. A retrospective follow-up study covering a 14-year period with emphasis on morphological findings. Am J Surg Pathol. 1986;10:246–55.

    Article  CAS  PubMed  Google Scholar 

  133. Sakamoto A, Kasai N, Sugano H. Poorly differentiated carcinoma of the thyroid. A clinicopathologic entity for a high-risk group of papillary and follicular carcinomas. Cancer. 1983;52:1849–55.

    Article  CAS  PubMed  Google Scholar 

  134. Carcangiu ML, Zampi G, Pupi A, Castagnoli A, Rosai J. Papillary carcinoma of the thyroid. A clinicopathologic study of 241 cases treated at the University of Florence, Italy. Cancer. 1985;55:805–28.

    Article  CAS  PubMed  Google Scholar 

  135. Simpson WJ, McKinney SE, Carruthers JS, Gospodarowicz MK, Sutcliffe SB, Panzarella T. Papillary and follicular thyroid cancer. Prognostic factors in 1,578 patients. Am J Med. 1987;83:479–88.

    Article  CAS  PubMed  Google Scholar 

  136. Yamashita H, Noguchi S, Murakami N, Kawamoto H, Watanabe S. Extracapsular invasion of lymph node metastasis is an indicator of distant metastasis and poor prognosis in patients with thyroid papillary carcinoma. Cancer. 1997;80:2268–72.

    Article  CAS  PubMed  Google Scholar 

  137. Hu A, Clark J, Payne RJ, Eski S, Wal fish PG, Freeman JL. Extrathyroidal extension in well-differentiated thyroid cancer: macroscopic vs microscopic as a predictor of outcome. Arch Otolaryngol Head Neck Surg. 2007;133:644–9.

    Article  PubMed  Google Scholar 

  138. Grebe SK, Hay ID. Follicular cell-derived thyroid carcinomas. Cancer Treat Res. 1997;89:91–140.

    Article  CAS  PubMed  Google Scholar 

  139. Akslen LA, Haldorsen T, Thoresen SO, Glattre E. Incidence of thyroid cancer in Norway 1970–1985. Population review on time trend, sex, age, histological type and tumour stage in 2625 cases. APMIS. 1990;98:549–58.

    Article  CAS  PubMed  Google Scholar 

  140. Hay ID. Papillary thyroid carcinoma. Endocrinol Metab Clin North Am. 1990;19:545–76.

    CAS  PubMed  Google Scholar 

  141. Hay ID, Bergstralh EJ, Goellner JR, Ebersold JR, Grant CS. Predicting outcome in papillary thyroid carcinoma: development of a reliable prognostic scoring system in a cohort of 1779 patients surgically treated at one institution during 1940 through 1989. Surgery. 1993;114:1050–7.

    CAS  PubMed  Google Scholar 

  142. Durante C, Haddy N, Baudin E, et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J Clin Endocrinol Metab. 2006;91:2892–9.

    Article  CAS  PubMed  Google Scholar 

  143. Hoie J, Stenwig AE, Kullmann G, Lindegaard M. Distant metastases in papillary thyroid cancer. A review of 91 patients. Cancer. 1988;61:1–6.

    Article  CAS  PubMed  Google Scholar 

  144. Elisei R, Pinchera A, Romei C, et al. Expression of thyrotropin receptor (TSH-R), thyroglobulin, thyroperoxidase, and calcitonin messenger ribonucleic acids in thyroid carcinomas: evidence of TSH-R gene transcript in medullary histotype. J Clin Endocrinol Metab. 1994;78:867–71.

    CAS  PubMed  Google Scholar 

  145. Xing M. BRAF mutation in thyroid cancer. Endocr Relat Cancer. 2005;12:245–62.

    Article  CAS  PubMed  Google Scholar 

  146. Basolo F, Molinaro E, Agate L, et al. RET protein expression has no prognostic impact on the long-term outcome of papillary thyroid carcinoma. Eur J Endocrinol. 2001;145:599–604.

    Article  CAS  PubMed  Google Scholar 

  147. Basolo F, Pollina L, Fontanini G, Fiore L, Pacini F, Baldanzi A. Apoptosis and proliferation in thyroid carcinoma: correlation with bcl-2 and p53 protein expression. Br J Cancer. 1997;75:537–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Landa I, Ibrahimpasic T, Boucai L, et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest. 2016;126:1052–66.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Basolo F, Pinchera A, Fugazzola L, Fontanini G, Elisei R, Romei C, Pacini F. Expression of p21 ras protein as a prognostic factor in papillary thyroid cancer. Eur J Cancer. 1994;30:171–4.

    Article  Google Scholar 

  150. Chiacchio S, Lorenzoni A, Boni G, Rubello D, Elisei R, Mariani G. Anaplastic thyroid cancer: prevalence, diagnosis and treatment. Minerva Endocrinol. 2008;33:341–57.

    CAS  PubMed  Google Scholar 

  151. Ain KB. Anaplastic thyroid carcinoma: behavior, biology, and therapeutic approaches. Thyroid. 1998;8:715–26.

    Article  CAS  PubMed  Google Scholar 

  152. Giuffrida D, Gharib H. Anaplastic thyroid carcinoma: current diagnosis and treatment. Ann Oncol. 2000;11:1083–9.

    Article  CAS  PubMed  Google Scholar 

  153. Are C, Shaha AR. Anaplastic thyroid carcinoma: biology, pathogenesis, prognostic factors, and treatment approaches. Ann Surg Oncol. 2006;13:453–64.

    Article  PubMed  Google Scholar 

  154. Neff RL, Farrar WB, Kloos RT, Burman KD. Anaplastic thyroid cancer. Endocrinol Metab Clin North Am. 2008;37:525–38.

    Article  PubMed  Google Scholar 

  155. Samaan NA, Ordonez NG. Uncommon types of thyroid cancer. Endocrinol Metab Clin North Am. 1990;19:637–48.

    CAS  PubMed  Google Scholar 

  156. Us-Krasovec M, Golouh R, Auersperg M, Besic N, Ruparcic-Oblak L. Anaplastic thyroid carcinoma in fine needle aspirates. Acta Cytol. 1996;40:953–8.

    Article  CAS  PubMed  Google Scholar 

  157. Ciampi R, Vivaldi A, Romei C, Del Guerra A, Salvadori P, Cosci B, et al. Expression analysis of facilitative glucose transporters (GLUTs) in human thyroid carcinoma cell lines and primary tumors. Mol Cell Endocrinol. 2008;291:57–62.

    Article  CAS  PubMed  Google Scholar 

  158. Conti PS, Durski JM, Bacqai F, Grafton ST, Singer PA. Imaging of locally recurrent and metastatic thyroid cancer with positron emission tomography. Thyroid. 1999;9:797–804.

    Article  CAS  PubMed  Google Scholar 

  159. Khan N, Oriuchi N, Higuchi T, Endo K. Review of fluorine-18-2-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) in the follow-up of medullary and anaplastic thyroid carcinomas. Cancer Control. 2005;12:254–60.

    Article  PubMed  Google Scholar 

  160. Palaniswamy SS, Subramanyam P. Diagnostic utility of PETCT in thyroid malignancies: an update. Ann Nucl Med. 2013;27:681–93.

    Article  CAS  PubMed  Google Scholar 

  161. Ciarallo A, Marcus C, Taghipour M, Subramaniam RM. Value of fluorodeoxyglucose PET/computed tomography patient management and outcomes in thyroid cancer. PET Clin. 2015;10:265–78.

    Article  PubMed  Google Scholar 

  162. Lloyd RV, Sisson JC, Marangos PJ. Calcitonin, carcinoembryonic antigen and neuron-specific enolase in medullary thyroid carcinoma. Cancer. 1983;51:2234–9.

    Article  CAS  PubMed  Google Scholar 

  163. Rosenberg-Bourgin M, Gardet P, de Sahb R, et al. Comparison of sporadic and hereditary forms of medullary thyroid carcinoma. Henry Ford Hosp Med J. 1989;37:141–3.

    CAS  PubMed  Google Scholar 

  164. Elisei R, Bottici V, Luchetti F, et al. Impact of routine measurement of serum calcitonin on the diagnosis and outcome of medullary thyroid cancer: experience in 10,864 patients with nodular thyroid disorders. J Clin Endocrinol Metab. 2004;89:163–8.

    Article  CAS  PubMed  Google Scholar 

  165. Negri E, Ron E, Franceschi S, et al. A pooled analysis of case-control studies of thyroid cancer. I. Methods. Cancer Causes Control. 1999;10:131–42.

    Article  CAS  PubMed  Google Scholar 

  166. Elisei R, Romei C, Cosci B, et al. RET genetic screening in patients with medullary thyroid cancer and their relatives: experience with 807 individuals at one center. J Clin Endocrinol Metab. 2007;92:4725–9.

    Article  CAS  PubMed  Google Scholar 

  167. Romei C, Ugolini C, Cosci B, et al. Low prevalence of the somatic M918T RET mutation in micro-medullary thyroid cancer. Thyroid. 2012;22:476–81.

    Article  CAS  PubMed  Google Scholar 

  168. Niccoli-Sire P, Murat A, Rohmer V, et al. Familial medullary thyroid carcinoma with noncysteine ret mutations: phenotype-genotype relationship in a large series of patients. J Clin Endocrinol Metab. 2001;86:3746–53.

    Article  CAS  PubMed  Google Scholar 

  169. Wells Jr SA, Asa SL, Dralle H, et al. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid. 2015;25:567–610.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Elisei R, Cosci B, Romei C, et al. Prognostic significance of somatic RET oncogene mutations in sporadic medullary thyroid cancer: a 10-year follow-up study. J Clin Endocrinol Metab. 2008;93:682–7.

    Article  CAS  PubMed  Google Scholar 

  171. Ishikawa N, Hamada S. Association of medullary carcinoma of the thyroid with carcinoembryonic antigen. Br J Cancer. 1976;34:111–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Ohta H, Yamamoto K, Endo K, et al. A new imaging agent for medullary carcinoma of the thyroid. J Nucl Med. 1984;25:323–32.

    CAS  PubMed  Google Scholar 

  173. Rufini V, Salvatori M, Garganese MC, Di Giuda D, Maussier ML, Troncone L. Role of nuclear medicine in the diagnosis and therapy of medullary thyroid carcinoma. Rays. 2000;25:273–82.

    CAS  PubMed  Google Scholar 

  174. Ozkan ZG, Kuyumcu S, Uzum AK, Gecer MF, Ozel S, Aral F, Adalet I. Comparison of 68Ga-DOTATATE PET-CT, 18F-FDG PET-CT and 99mTc-(V)DMSA scintigraphy in the detection of recurrent or metastatic medullary thyroid carcinoma. Nucl Med Commun. 2015;36:242–50.

    Article  CAS  PubMed  Google Scholar 

  175. Reiners C, Eilles C, Spiegel W, Becker W, Börner W. Immunoscintigraphy in medullary thyroid cancer using an 123I- or 111In-labelled monoclonal anti-CEA antibody fragment. Nuklearmedizin. 1986;25:227–31.

    CAS  PubMed  Google Scholar 

  176. Zanin DE, van Dongen A, Hoefnagel CA, Bruning PF. Radioimmunoscintigraphy using iodine-131-anti-CEA monoclonal antibodies and thallium-201 scintigraphy in medullary thyroid carcinoma: a case report. J Nucl Med. 1990;31:1854–5.

    CAS  PubMed  Google Scholar 

  177. O’Byrne KJ, Hamilton D, Robinson I, Sweeney E, Freyne PJ, Cullen MJ. Imaging of medullary carcinoma of the thyroid using 111In-labelled anti-CEA monoclonal antibody fragments. Nucl Med Commun. 1992;13:142–8.

    Article  PubMed  Google Scholar 

  178. Vuillez JP, Peltier P, Caravel JP, Chetanneau A, Saccavini JC, Chatal JF. Immunoscintigraphy using 111In-labeled F(ab’)2 fragments of anticarcinoembryonic antigen monoclonal antibody for detecting recurrences of medullary thyroid carcinoma. J Clin Endocrinol Metab. 1992;74:157–63.

    CAS  PubMed  Google Scholar 

  179. Peltier P, Curtet C, Chatal JF, Le Doussal JM, Daniel G, Aillet G, et al. Radioimmunodetection of medullary thyroid cancer using a bispecific anti-CEA/anti-indium-DTPA antibody and an indium-111-labeled DTPA dimer. J Nucl Med. 1993;34:1267–73.

    CAS  PubMed  Google Scholar 

  180. Baum RP, Hertel A, Lorenz M, Schwarz A, Encke A, Hör G. 99Tcm-labelled anti-CEA monoclonal antibody for tumour immunoscintigraphy: first clinical results. Nucl Med Commun. 1989;10:345–52. Erratum in: Nucl Med Commun 1989;10:772–3.

    Article  CAS  PubMed  Google Scholar 

  181. Bodet-Milin C, Faivre-Chauvet A, Carlier T, Rauscher A, Bourgeois M, Cerato E, et al. Immuno-PET using anti-CEA bispecific antibody and 68Ga-labeled peptide in metastatic medullary thyroid carcinoma: clinical optimization of the pretargeting parameters in a First-in Human trial. J Nucl Med. 2016;57:1505–1511.

    Google Scholar 

  182. Juweid M, Sharkey RM, Behr T, Swayne LC, Rubin AD, Hanley D, et al. Targeting and initial radioimmunotherapy of medullary thyroid carcinoma with 131I-labeled monoclonal antibodies to carcinoembryonic antigen. Cancer Res. 1995;55(23 Suppl):5946s–51.

    CAS  PubMed  Google Scholar 

  183. Chatal JF, Campion L, Kraeber-Bodéré F, Bardet S, Vuillez JP, Charbonnel B, et al. Survival improvement in patients with medullary thyroid carcinoma who undergo pretargeted anti-carcinoembryonic-antigen radioimmunotherapy: a collaborative study with the French Endocrine Tumor Group. J Clin Oncol. 2006;24:1705–11.

    Article  CAS  PubMed  Google Scholar 

  184. Kraeber-Bodéré F, Rousseau C, Bodet-Milin C, Ferrer L, Faivre-Chauvet A, Campion L, et al. Targeting, toxicity, and efficacy of 2-step, pretargeted radioimmunotherapy using a chimeric bispecific antibody and 131I-labeled bivalent hapten in a phase I optimization clinical trial. J Nucl Med. 2006;47:247–55.

    PubMed  Google Scholar 

  185. Kraeber-Bodéré F, Salaun PY, Ansquer C, Drui D, Mirallié E, Faivre-Chauvet A, et al. Pretargeted radioimmunotherapy (pRAIT) in medullary thyroid cancer (MTC). Tumour Biol. 2012;33:601–6.

    Article  PubMed  CAS  Google Scholar 

  186. Salaun PY, Campion L, Bournaud C, Faivre-Chauvet A, Vuillez JP, Taieb D, et al. Phase II trial of anticarcinoembryonic antigen pretargeted radioimmunotherapy in progressive metastatic medullary thyroid carcinoma: biomarker response and survival improvement. J Nucl Med. 2012;53:1185–92.

    Article  CAS  PubMed  Google Scholar 

  187. Endo K, Shiomi K, Kasagi K, Konishi J, Torizuka K, Nakao K, Tanimura H. Imaging of medullary thyroid cancer with 131I-MIBG. Lancet. 1984;2(8396):233.

    Article  CAS  PubMed  Google Scholar 

  188. Connell JM, Hilditch TE, Elliott A, Semple PF. 131I-MIBG and medullary carcinoma of the thyroid. Lancet. 1984;2(8414):1273–4.

    Article  CAS  PubMed  Google Scholar 

  189. Hoefnagel CA, Delprat CC, Valdés Olmos RA. Role of [131I]metaiodobenzylguanidine therapy in medullary thyroid carcinoma. J Nucl Biol Med. 1991;35:334–6.

    CAS  PubMed  Google Scholar 

  190. Divgi C. Targeted systemic radiotherapy of pheochromocytoma and medullary thyroid cancer. Semin Nucl Med. 2011;41:369–73.

    Article  PubMed  Google Scholar 

  191. Sisson JC, Yanik GA. Theranostics: evolution of the radiopharmaceutical meta-iodobenzylguanidine in endocrine tumors. Semin Nucl Med. 2012;42:171–84.

    Article  PubMed  Google Scholar 

  192. Hoegerle S, Altehoefer C, Ghanem N, Brink I, Moser E, Nitzsche E. 18F-DOPA positron emission tomography for tumour detection in patients with medullary thyroid carcinoma and elevated calcitonin levels. Eur J Nucl Med. 2001;28:64–71.

    Article  CAS  PubMed  Google Scholar 

  193. Ambrosini V, Morigi JJ, Nanni C, Castellucci P, Fanti S. Current status of PET imaging of neuroendocrine tumours ([18F]FDOPA, [68Ga]tracers, [11C]/[18F]-HTP). Q J Nucl Med Mol Imaging. 2015;59:58–69.

    CAS  PubMed  Google Scholar 

  194. Kurtaran A, Scheuba C, Kaserer K, Schima W, Czerny C, Angelberger P, et al. Indium-111-DTPA-D-Phe-1-octreotide and technetium-99m-(V)-dimercaptosuccinic acid scanning in the preoperative staging of medullary thyroid carcinoma. J Nucl Med. 1998;39:1907–9.

    CAS  PubMed  Google Scholar 

  195. Parisella M, D’Alessandria C, van de Bossche B, Chianelli M, Ronga G, Papini E, et al. 99mTc-EDDA/HYNIC-TOC in the management of medullary thyroid carcinoma. Cancer Biother Radiopharm. 2004;19:211–7.

    Article  CAS  PubMed  Google Scholar 

  196. Czepczyński R, Parisella MG, Kosowicz J, Mikołajczak R, Ziemnicka K, Gryczyńska M, et al. Somatostatin receptor scintigraphy using 99mTc-EDDA/HYNIC-TOC in patients with medullary thyroid carcinoma. Eur J Nucl Med Mol Imaging. 2007;34:1635–45.

    Article  PubMed  CAS  Google Scholar 

  197. Iten F, Müller B, Schindler C, et al. Response to [90Yttrium-DOTA]-TOC treatment is associated with long-term survival benefit in metastasized medullary thyroid cancer: a phase II clinical trial. Clin Cancer Res. 2007;13:6696–702.

    Article  CAS  PubMed  Google Scholar 

  198. Turker O, Dogan I. The clinical role of molecular imaging: positron emission tomography/computed tomography and 90yttrium-DOTATOC in the management of medullary thyroid cancer. Thyroid. 2010;20:233–4.

    Article  CAS  PubMed  Google Scholar 

  199. Duggal NM, Horattas MC. Metastatic renal cell carcinoma to the thyroid gland. Endocr Pract. 2008;14:1040–6.

    Article  PubMed  Google Scholar 

  200. Wood K, Vini L, Harmer C. Metastases to the thyroid gland: the Royal Marsden experience. Eur J Surg Oncol. 2004;30:583–8.

    Article  CAS  PubMed  Google Scholar 

  201. Bellevicine C, Vigliar E, Malapelle U, et al. Lung adenocarcinoma and its thyroid metastasis characterized on fine-needle aspirates by cytomorphology, immunocytochemistry, and next-generation sequencing. Diagn Cytopathol. 2015;43:585–9.

    Article  PubMed  Google Scholar 

  202. Papi G, Corrado S, LiVolsi VA. Primary spindle cell lesions of the thyroid gland; an overview. Am J Clin Pathol. 2006;125:S95–123.

    PubMed  Google Scholar 

  203. D’Antonio A, Addesso M, De Dominicis G, Boscaino A, Liguori G, Nappi O. Mucinous carcinoma of thyroid gland. Report of a primary and a metastatic mucinous tumour from ovarian adenocarcinoma with immunohistochemical study and review of literature. Virchows Arch. 2007;451:847–51.

    Article  PubMed  CAS  Google Scholar 

  204. Wenig BM, Adair CF, Heffess CS. Primary mucoepidermoid carcinoma of the thyroid gland: a report of six cases and a review of the literature of a follicular epithelial-derived tumor. Hum Pathol. 1995;26:1099–108.

    Article  CAS  PubMed  Google Scholar 

  205. Jung YH, Kang MS. Composite follicular variant of papillary carcinoma and mucoepidermoid carcinoma of thyroid gland: a case report. J Korean Med Sci. 2010;25:1683–7.

    Article  PubMed  PubMed Central  Google Scholar 

  206. Shi H, Wang C, Wei L, Lu S, Cao D. Malignant mesenchymoma of the thyroid: case report and literature review. Tumori. 2010;96:345–8.

    PubMed  Google Scholar 

  207. Graff-Baker A, Sosa JA, Roman SA. Primary thyroid lymphoma: a review of recent developments in diagnosis and histology-driven treatment. Curr Opin Oncol. 2010;22:17–22.

    Article  PubMed  Google Scholar 

  208. Graff-Baker A, Roman SA, Thomas DC, Udelsman R, Sosa JA. Prognosis of primary thyroid lymphoma: demographic, clinical, and pathologic predictors of survival in 1,408 cases. Surgery. 2009;146:1105–15.

    Article  PubMed  Google Scholar 

  209. Widder S, Pasieka JL. Primary thyroid lymphomas. Curr Treat Options Oncol. 2004;5:307–13.

    Article  PubMed  Google Scholar 

  210. Ferri E, Manconi R, Armato E, Ianniello F. Primary paraganglioma of thyroid gland: a clinicopathologic and immunohistochemical study with review of the literature. Acta Otorhinolaryngol Ital. 2009;29:97–102.

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Giuffrida D, Ferra F, Pappalardo A, et al. Metastasis to the thyroid gland: a case report and review of the literature. J Endocrinol Invest. 2003;26:560–3.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rossella Elisei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Elisei, R. et al. (2017). Diagnostic Applications of Nuclear Medicine: Thyroid Tumors. In: Strauss, H., Mariani, G., Volterrani, D., Larson, S. (eds) Nuclear Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-26236-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26236-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26234-5

  • Online ISBN: 978-3-319-26236-9

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics