Skip to main content

Cancer Biology of Molecular Imaging

  • Reference work entry
  • First Online:
Nuclear Oncology
  • 2073 Accesses

Abstract

Cancer is a complex series of stepwise genetic alterations resulting in common biologic changes in the transformed cells. Distinguishing features of cancer include rapid proliferation of cells, immortality, resistance to apoptosis, resistance to suppression of proliferation, metastatic behavior, characteristic changes in metabolism, and resistance to immunologic attack. Cancer cells recruit normal host tissues to support growth of the tumor mass.

Fibrocytes and collagen producing cells provide structure for the tumor cells. Endothelial cells are recruited to form blood vessels. Tumor blood vessels have incomplete endothelium, making the vessels leaky. This allows large molecules to leak into the tumor interstitium.

The middle of the tumor mass has few, if any, lymphatic vessels. The combination of vessel leakiness and few lymphatics results in an increased interstitial pressure in the tumor, making it difficult for chemotherapy to diffuse into the tumor mass.

A common anatomic approach to measure tumor response (RECIST) employs measurements of the size of the mass on CT before and 4 weeks after therapy. Total disappearance of the lesion is required for a complete response, a 30% reduction in the sum of long dimensions defines a partial response, and >20% increase in the sum of long diameters identifies progressive disease. Adding metabolic information recorded with [18F]FDG-PET/CT and the PERCIST criteria may refine these measurements. In addition to [18F]FDG, radiopharmaceuticals are available to measure other attributes of the tumor. Depending on the radiopharmaceutical, images can provide information on tumor hypoxia, expression of integrins, or specific tumor markers that are overexpressed by the lesion, such as carbonic anhydrase, expressed by renal cell cancer, or receptors, such as somatostatin, expressed on neuroendocrine tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

[18F]FDG:

2-Deoxy-2-[18F]fluoro-d-glucose

18F-FACBC:

Anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid

18F-FDHT:

16β-18F-Fluoro-5-dihydrotestosterone

18F-FGln:

18F-Fluoroglutamine

18F-FLT:

2-18F-Fluoro-L-thymidine

18F-MISO:

18F-Fluoromisonidazole

2-HG:

2-Hydroxyglutarate

68Ga-PSMA:

Glu-urea-Lys-(Ahx)-[68Ga(HBED-CC)]

ABC:

ATP-binding cassette, a transport system superfamily

ABL:

Abelson murine leukemia

AKT:

Protein kinase B

AML:

Acute myeloid leukemia

APC:

Antigen-presenting cell

AR:

Androgen receptor

ASCO:

American Society of Clinical Oncology

ATP:

Adenosine triphosphate

BRAF:

Gene encoding for the B-Raf protein, a serine/threonine-protein kinase; the gene is also known as the proto-oncogene B-Raf and v-Raf murine sarcoma viral oncogene homolog B

BRCA1:

Breast cancer type 1 susceptibility protein

BRCA2:

Breast cancer type 2 susceptibility protein

BRS:

BRAF-RAS score

BSI:

Bone scan index

c-Kit:

Gene encoding for tyrosine-protein kinase Kit (or CD117), also known as Mast/stem cell growth factor receptor (SCFR)

CA9:

Carbonic anhydrase 9 (or carbonic anhydrase IX, CAIX)

CML:

Chronic myeloid leukemia

CRPC:

Castrate-resistant prostate cancer

CT:

X-ray computed tomography

CTL:

Cytotoxic T cell

CTLA4:

Cytotoxic T-lymphocyte antigen 4, also known as CD152

CTLC:

Cutaneous T-cell lymphoma

DHT:

Dihydrotestosterone

DOTA:

1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid

DOTATATE:

DOTA- Tyr3-octreotate

EGFR:

Epidermal growth factor receptor; the mutated form EGFRvIII plays a prominent role in tumorigenesis and proangiogenic signaling

EORTC:

European Organisation for Research and Treatment of Cancer

EPR:

Extravasation and passive retention

ERK:

Extracellular signal-regulated kinase

GIST:

Gastrointestinal stromal tumor

H&E:

Hematoxylin and eosin staining

HER2:

Human epidermal growth factor receptor 2, also known as receptor tyrosine-protein

HIF-1:

Hypoxia-inducible factor

HK2:

Hexokinase 2

hsvTK:

Herpes simplex virus-1 thymidine kinase

IDH1:

Isocitrate dehydrogenase 1, a cytoplasmic enzyme

IDH1:

Isocitrate dehydrogenase enzymes

IDH2:

Isocitrate dehydrogenase 2, a mitochondrial enzyme

IL2:

Interleukin 2

MEK:

Mitogen-activated protein kinase

MI:

Molecular imaging

MRI:

Magnetic resonance imaging

MSKCC:

Memorial Sloan-Kettering Cancer Center

mTOR:

Mammalian target of rapamycin

Myc:

Regulator gene that encodes for a transcription factor (also known as c-Myc)

NAALADase:

N-Acetylated-alpha-linked-acidic dipeptidase, also known as glutamate carboxypeptidase II

NADPH:

Nicotinamide adenine dinucleotide phosphate

NIH:

United States National Institutes of Health

NSCLC:

Non-small cell lung cancer

p53:

Tumor protein p53, also known as cellular tumor antigen p53, phosphoprotein p53, tumor suppressor p53, antigen NY-CO-13, or transformation-related protein 53 (TRP53)

PARP:

Poly adenosine diphosphate ribose polymerase

PARPi:

Poly adenosine diphosphate ribose polymerase inhibitor

PD-1:

Programmed cell death protein 1, also known as CD279

PERCIST:

Positron emission tomography response criteria in solid tumors

PET:

Positron emission tomography

PET/CT:

Positron emission tomography/Computed tomography

PI13K:

Phosphoinositide 3-kinase

PI3K/AKT/mTOR:

Intracellular signaling pathway regulating the cell cycle

PR:

Partial response

PSMA:

Prostate-specific membrane antigen

PTEN:

Gene encoding for the phosphatase and tensin homolog protein, a tumor suppressor; PTEN deletions indicate a poor prognosis

Ras:

Oncogene regulating signalling cascades

RB:

Gene encoding for the retinoblastoma protein

RCHOP:

Rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone

RECIST:

Response evaluation criteria in solid tumors

SCLC:

Small cell lung cancer

STEAP:

Family of transmembrane epithelial antigens of prostate comprising six members

SUL:

Lean body mass corrected standard uptake value

SULpeak :

Lean body mass corrected standard uptake value at voxels of maximum

SUV:

Standardized uptake value

SUVmax :

Standardized uptake value at point of maximum

SUVpeak :

Standardized uptake value at voxels of maximum, based on correction for lean body mass

TCR:

T-cell receptor

TDS:

Thyroid differentiation score

TIL:

Tumor-infiltrating lymphocyte

VEGF:

Vascular endothelial growth factor

VEGFR:

Vascular endothelial growth factor receptor

VHL:

Von Hippel-Lindau

References

  1. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz Jr LA, Kinzler KW. Cancer genome landscapes. Science (New York, NY). 2013;339:1546–58. doi:10.1126/science.1235122.

    Article  CAS  Google Scholar 

  2. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70 .S0092-8674(00)81683-9 [pii]

    Article  CAS  PubMed  Google Scholar 

  3. Young H, Baum R, Cremerius U, Herholz K, Hoekstra O, Lammertsma AA, et al. Measurement of clinical and subclinical tumour response using [18F]-fAluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group. Eur J Cancer. 1999;35:1773–82 .S0959804999002294 [pii]

    Article  CAS  PubMed  Google Scholar 

  4. Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50(Suppl 1):122S–50S. doi:10.2967/jnumed.108.057307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285:1182–6. doi:10.1056/NEJM197111182852108.

    Article  CAS  PubMed  Google Scholar 

  6. Ferrara N, Adamis AP. Ten years of anti-vascular endothelial growth factor therapy. Nat Rev Drug Discov. 2016;15:385–403. doi:10.1038/nrd.2015.17.

    Article  CAS  PubMed  Google Scholar 

  7. Gaykema SB, Brouwers AH, Lub-de Hooge MN, Pleijhuis RG, Timmer-Bosscha H, Pot L, et al. 89Zr-bevacizumab PET imaging in primary breast cancer. J Nucl Med. 2013;54:1014–8. doi:10.2967/jnumed.112.117218.

    Article  CAS  PubMed  Google Scholar 

  8. Zhu Z, Miao W, Li Q, Dai H, Ma Q, Wang F, et al. 99mTc-3PRGD2 for integrin receptor imaging of lung cancer: a multicenter study. J Nucl Med. 2012;53:716–22. doi:10.2967/jnumed.111.098988.

    Article  PubMed  Google Scholar 

  9. Stacy MR, Maxfield MW, Sinusas AJ. Targeted molecular imaging of angiogenesis in PET and SPECT: a review. Yale J Biol Med. 2012;85:75–86.

    PubMed  PubMed Central  Google Scholar 

  10. Beer AJ, Grosu AL, Carlsen J, Kolk A, Sarbia M, Stangier I, et al. [18F]galacto-RGD positron emission tomography for imaging of alphavbeta3 expression on the neovasculature in patients with squamous cell carcinoma of the head and neck. Clin Cancer Res. 2007;13:6610–6. doi:10.1158/1078-0432.CCR-07-0528. 13/22/6610 [pii].

    Article  CAS  PubMed  Google Scholar 

  11. Schliemann C, Neri D. Antibody-based targeting of the tumor vasculature. Biochim Biophys Acta. 1776;2007:175–92. doi:10.1016/j.bbcan.2007.08.002. S0304-419X(07)00028-5 [pii].

    Google Scholar 

  12. Rajendran JG, Wilson DC, Conrad EU, Peterson LM, Bruckner JD, Rasey JS, et al. [18F]FMISO and [18F]FDG PET imaging in soft tissue sarcomas: correlation of hypoxia, metabolism and VEGF expression. Eur J Nucl Med Mol Imaging. 2003;30:695–704. doi:10.1007/s00259-002-1096-7.

    Article  CAS  PubMed  Google Scholar 

  13. Garcia-Barros M, Paris F, Cordon-Cardo C, Lyden D, Rafii S, Haimovitz-Friedman A, et al. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science (New York, NY). 2003;300:1155–9. doi:10.1126/science.1082504. 300/5622/1155 [pii].

    Article  CAS  Google Scholar 

  14. Levchenko A, Mehta BM, Niu X, Kang G, Villafania L, Way D, et al. Intercellular transfer of P-glycoprotein mediates acquired multidrug resistance in tumor cells. Proc Natl Acad Sci U S A. 2005;102:1933–8. doi:10.1073/pnas.0401851102. 0401851102 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39:1–10. doi:10.1016/j.immuni.2013.07.012.

    Article  PubMed  Google Scholar 

  16. Couzin-Frankel J. Breakthrough of the year 2013. Cancer immunotherapy. Science (New York, NY). 2013;342:1432–3. doi:10.1126/science.342.6165.1432.

    Article  CAS  Google Scholar 

  17. Page DB, Postow MA, Callahan MK, Allison JP, Wolchok JD. Immune modulation in cancer with antibodies. Annu Rev Med. 2014;65:185–202. doi:10.1146/annurev-med-092012-112807.

    Article  CAS  PubMed  Google Scholar 

  18. Wolchok JD, Weber JS, Hamid O, Lebbe C, Maio M, Schadendorf D, et al. Ipilimumab efficacy and safety in patients with advanced melanoma: a retrospective analysis of HLA subtype from four trials. Cancer Immun. 2010;10:9 .101010 [pii]

    PubMed  PubMed Central  Google Scholar 

  19. Fisher B, Packard BS, Read EJ, Carrasquillo JA, Carter CS, Topalian SL, et al. Tumor localization of adoptively transferred indium-111 labeled tumor infiltrating lymphocytes in patients with metastatic melanoma. J Clin Oncol. 1989;7:250–61.

    Article  CAS  PubMed  Google Scholar 

  20. Koehne G, Doubrovin M, Doubrovina E, Zanzonico P, Gallardo HF, Ivanova A, et al. Serial in vivo imaging of the targeted migration of human HSV-TK-transduced antigen-specific lymphocytes. Nat Biotechnol. 2003;21:405–13. doi:10.1038/nbt805.

    Article  CAS  PubMed  Google Scholar 

  21. Carrasquillo JA, Bunn Jr PA, Keenan AM, Reynolds JC, Schroff RW, Foon KA, et al. Radioimmunodetection of cutaneous T-cell lymphoma with 111In-labeled T101 monoclonal antibody. N Engl J Med. 1986;315:673–80. doi:10.1056/nejm198609113151104.

    Article  CAS  PubMed  Google Scholar 

  22. Tavare R, Escuin-Ordinas H, Mok S, McCracken MN, Zettlitz KA, Salazar FB, et al. An effective immuno-PET imaging method to monitor CD8-dependent responses to immunotherapy. Cancer Res. 2016;76:73–82. doi:10.1158/0008-5472.can-15-1707.

    Article  CAS  PubMed  Google Scholar 

  23. Kang Y, He W, Tulley S, Gupta GP, Serganova I, Chen CR, et al. Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc Natl Acad Sci U S A. 2005;102:13909–14. doi:10.1073/pnas.0506517102. 0506517102 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Minn AJ, Kang Y, Serganova I, Gupta GP, Giri DD, Doubrovin M, et al. Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J Clin Invest. 2005;115:44–55. doi:10.1172/JCI22320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bos PD, Zhang XH, Nadal C, Shu W, Gomis RR, Nguyen DX, et al. Genes that mediate breast cancer metastasis to the brain. Nature. 2009;459:1005–9. doi:10.1038/nature08021. nature08021 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Comen E, Norton L, Massague J. Clinical implications of cancer self-seeding. Nat Rev Clin Oncol. 2011;8:369–77 . doi:10.1038/nrclinonc.2011.64.nrclinonc.2011.64 [pii]

    PubMed  Google Scholar 

  27. Kim MY, Oskarsson T, Acharyya S, Nguyen DX, Zhang XH, Norton L, et al. Tumor self-seeding by circulating cancer cells. Cell. 2009;139:1315–26. doi:10.1016/j.cell.2009.11.025. S0092-8674(09)01437-8 [pii].

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lucignani G, Larson SM. Doctor, what does my future hold? The prognostic value of FDG-PET in solid tumours. Eur J Nucl Med Mol Imaging. 2010;37:1032–8. doi:10.1007/s00259-010-1428-y.

    Article  PubMed  Google Scholar 

  29. Downey RJ, Akhurst T, Gonen M, Vincent A, Bains MS, Larson S, et al. Preoperative F-18 fluorodeoxyglucose-positron emission tomography maximal standardized uptake value predicts survival after lung cancer resection. J Clin Oncol. 2004;22:3255–60. doi:10.1200/JCO.2004.11.109. 22/16/3255 [pii].

    Article  PubMed  Google Scholar 

  30. Pandit N, Gonen M, Krug L, Larson SM. Prognostic value of [18F]FDG-PET imaging in small cell lung cancer. Eur J Nucl Med Mol Imaging. 2003;30:78–84. doi:10.1007/s00259-002-0937-8.

    Article  PubMed  Google Scholar 

  31. Cachin F, Prince HM, Hogg A, Ware RE, Hicks RJ. Powerful prognostic stratification by [18F]fluorodeoxyglucose positron emission tomography in patients with metastatic breast cancer treated with high-dose chemotherapy. J Clin Oncol. 2006;24:3026–31. doi:10.1200/JCO.2005.04.6326. JCO.2005.04.6326 [pii].

    Article  PubMed  Google Scholar 

  32. Robbins RJ, Wan Q, Grewal RK, Reibke R, Gonen M, Strauss HW, et al. Real-time prognosis for metastatic thyroid carcinoma based on 2-[18F]fluoro-2-deoxy-D-glucose-positron emission tomography scanning. J Clin Endocrinol Metab. 2006;91:498–505. doi:10.1210/jc.2005-1534. jc.2005-1534 [pii].

    Article  CAS  PubMed  Google Scholar 

  33. Pan L, Gu P, Huang G, Xue H, Wu S. Prognostic significance of SUV on PET/CT in patients with esophageal cancer: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol. 2009;21:1008–15. doi:10.1097/MEG.0b013e328323d6fa.

    Article  PubMed  Google Scholar 

  34. Patronas NJ, Di Chiro G, Kufta C, Bairamian D, Kornblith PL, Simon R, et al. Prediction of survival in glioma patients by means of positron emission tomography. J Neurosurg. 1985;62:816–22. doi:10.3171/jns.1985.62.6.0816.

    Article  CAS  PubMed  Google Scholar 

  35. Schoder H, Noy A, Gonen M, Weng L, Green D, Erdi YE, et al. Intensity of 18fluorodeoxyglucose uptake in positron emission tomography distinguishes between indolent and aggressive non-Hodgkin’s lymphoma. J Clin Oncol. 2005;23:4643–51. doi:10.1200/JCO.2005.12.072.

    Article  PubMed  Google Scholar 

  36. Meirelles GS, Schoder H, Ravizzini GC, Gonen M, Fox JJ, Humm J, et al. Prognostic value of baseline [18F]fluorodeoxyglucose positron emission tomography and 99mTc-MDP bone scan in progressing metastatic prostate cancer. Clin Cancer Res. 2010;16:6093–9. doi:10.1158/1078-0432.CCR-10-1357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Warburg O. On the origin of cancer cells. Science (New York, NY). 1956;123:309–14.

    Article  CAS  Google Scholar 

  38. Fantin VR, St-Pierre J, Leder P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell. 2006;9:425–34. doi:10.1016/j.ccr.2006.04.023. S1535-6108(06)00145-0 [pii].

    Article  CAS  PubMed  Google Scholar 

  39. Deberardinis RJ, Sayed N, Ditsworth D, Thompson CB. Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev. 2008;18:54–61. doi:10.1016/j.gde.2008.02.003. S0959-437X(08)00028-2 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hsu PP, Sabatini DM. Cancer cell metabolism: Warburg and beyond. Cell. 2008;134:703–7. doi:10.1016/j.cell.2008.08.021. S0092-8674(08)01066-0 [pii].

    Article  CAS  PubMed  Google Scholar 

  41. Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK, et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci U S A. 2008;105:18782–7. doi:10.1073/pnas.0810199105. 0810199105 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Thompson CB. Metabolic enzymes as oncogenes or tumor suppressors. N Engl J Med. 2009;360:813–5. doi:10.1056/NEJMe0810213. 360/8/813 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009;462:739–44. doi:10.1038/nature08617. nature08617 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zasadny KR, Wahl RL. Standardized uptake values of normal tissues at PET with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose: variations with body weight and a method for correction. Radiology. 1993;189:847–50.

    Article  CAS  PubMed  Google Scholar 

  45. Reshef A, Shirvan A, Akselrod-Ballin A, Wall A, Ziv I. Small-molecule biomarkers for clinical PET imaging of apoptosis. J Nucl Med. 2010;51:837–40. doi:10.2967/jnumed.109.063917.

    Article  CAS  PubMed  Google Scholar 

  46. Carney B, Carlucci G, Salinas B, Di Gialleonardo V, Kossatz S, Vansteene A, et al. Non-invasive PET imaging of PARP1 expression in glioblastoma models. Mol Imaging Biol MIB Off Publ Acad Mol Imaging. 2016;18:386–92. doi:10.1007/s11307-015-0904-y.

    Article  CAS  Google Scholar 

  47. McArthur GA, Puzanov I, Amaravadi R, Ribas A, Chapman P, Kim KB, et al. Marked, homogeneous, and early [18F]fluorodeoxyglucose-positron emission tomography responses to vemurafenib in BRAF-mutant advanced melanoma. J Clin Oncol. 2012;30:1628–34. doi:10.1200/jco.2011.39.1938.

    Article  CAS  PubMed  Google Scholar 

  48. Bollag G, Hirth P, Tsai J, Zhang J, Ibrahim PN, Cho H, et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature. 2010;467:596–9. doi:10.1038/nature09454. nature09454 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159:676–90. doi:10.1016/j.cell.2014.09.050.

    Article  Google Scholar 

  50. Ho AL, Grewal RK, Leboeuf R, Sherman EJ, Pfister DG, Deandreis D, et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N Engl J Med. 2013;368:623–32. doi:10.1056/NEJMoa1209288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Beattie BJ, Smith-Jones PM, Jhanwar YS, Schoder H, Schmidtlein CR, Morris MJ, et al. Pharmacokinetic assessment of the uptake of 16beta-18F-fluoro-5alpha-dihydrotestosterone (FDHT) in prostate tumors as measured by PET. J Nucl Med. 2010;51:183–92. doi:10.2967/jnumed.109.066159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Scher HI, Beer TM, Higano CS, Anand A, Taplin ME, Efstathiou E, et al. Antitumour activity of MDV3100 in castration-resistant prostate cancer: a phase 1-2 study. Lancet (London, England). 2010;375:1437–46. doi:10.1016/s0140-6736(10)60172-9.

    Article  CAS  Google Scholar 

  53. Fox JJ, Morris MJ, Larson SM, Schoder H, Scher HI. Developing imaging strategies for castration resistant prostate cancer. Acta oncologica (Stockholm, Sweden). 2011;50 Suppl 1:39–48. doi:10.3109/0284186x.2011.572914.

    Google Scholar 

  54. Fox JJ, Autran-Blanc E, Morris MJ, Gavane S, Nehmeh S, Van Nuffel A, et al. Practical approach for comparative analysis of multilesion molecular imaging using a semiautomated program for PET/CT. J Nucl Med. 2011;52:1727–32. doi:10.2967/jnumed.111.089326.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ulmert D, Evans MJ, Holland JP, Rice SL, Wongvipat J, Pettersson K, et al. Imaging androgen receptor signaling with a radiotracer targeting free prostate-specific antigen. Cancer Discov. 2012;2:320–7. doi:10.1158/2159-8290.cd-11-0316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Evans MJ, Smith-Jones PM, Wongvipat J, Navarro V, Kim S, Bander NH, et al. Noninvasive measurement of androgen receptor signaling with a positron-emitting radiopharmaceutical that targets prostate-specific membrane antigen. Proc Natl Acad Sci U S A. 2011;108:9578–82. doi:10.1073/pnas.1106383108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pandit-Taskar N, O’Donoghue JA, Ruan S, Lyashchenko S, Carrasquillo JA, Heller G, et al. First-in-human imaging with 89Zr-Df-IAB2M anti-PSMA minibody in patients with metastatic prostate cancer: pharmacokinetics, biodistribution, dosimetry, and lesion uptake. J Nucl Med. 2016;57:1858–64. doi:10.2967/jnumed.116.176206.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Pandit-Taskar N, Veach DR, Fox JJ, Scher HI, Morris MJ, Larson SM. Evaluation of castration-resistant prostate cancer with androgen receptor-axis imaging. J Nucl Med. 2016;57:73s–8s. doi:10.2967/jnumed.115.170134.

    Article  PubMed  Google Scholar 

  59. Divgi CR, Pandit-Taskar N, Jungbluth AA, Reuter VE, Gonen M, Ruan S, et al. Preoperative characterisation of traget renal carcinoma using iodine-124-labelled antibody chimeric G250 (124I-cG250) and PET in patients with renal masses: a phase I trial. Lancet Oncol. 2007;8:304–10. doi:10.1016/S1470-2045(07)70044-X.

    Article  CAS  PubMed  Google Scholar 

  60. Smith-Jones PM, Solit D, Afroze F, Rosen N, Larson SM. Early tumor response to Hsp90 therapy using HER2 PET: comparison with 18F-FDG PET. J Nucl Med. 2006;47:793–6 .47/5/793 [pii]

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Smith-Jones PM, Solit DB, Akhurst T, Afroze F, Rosen N, Larson SM. Imaging the pharmacodynamics of HER2 degradation in response to Hsp90 inhibitors. Nat Biotechnol. 2004;22:701–6. doi:10.1038/nbt968. nbt968 [pii].

    Article  CAS  PubMed  Google Scholar 

  62. Kramer K, Kushner BH, Modak S, Pandit-Taskar N, Smith-Jones P, Zanzonico P, et al. Compartmental intrathecal radioimmunotherapy: results for treatment for metastatic CNS neuroblastoma. J Neurooncol. 2010;97:409–18. doi:10.1007/s11060-009-0038-7.

    Article  PubMed  Google Scholar 

  63. Modak S, Guo HF, Humm JL, Smith-Jones PM, Larson SM, Cheung NK. Radioimmunotargeting of human rhabdomyosarcoma using monoclonal antibody 8H9. Cancer Biother Radiopharm. 2005;20:534–46. doi:10.1089/cbr.2005.20.534.

    Article  CAS  PubMed  Google Scholar 

  64. Jurcic JG, Larson SM, Sgouros G, McDevitt MR, Finn RD, Divgi CR, et al. Targeted alpha particle immunotherapy for myeloid leukemia. Blood. 2002;100:1233–9.

    CAS  PubMed  Google Scholar 

  65. Abdelnour AF, Nehmeh SA, Pan T, Humm JL, Vernon P, Schoder H, et al. Phase and amplitude binning for 4D-CT imaging. Phys Med Biol. 2007;52:3515–29. doi:10.1088/0031-9155/52/12/012. S0031-9155(07)37628-8 [pii].

    Article  CAS  PubMed  Google Scholar 

  66. Holland JP, Divilov V, Bander NH, Smith-Jones PM, Larson SM, Lewis JS. 89Zr-DFO-J591 for immunoPET of prostate-specific membrane antigen expression in vivo. J Nucl Med. 2010;51:1293–300. doi:10.2967/jnumed.110.076174. jnumed.110.076174 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cheal SM, Xu H, Guo HF, Lee SG, Punzalan B, Chalasani S, et al. Theranostic pretargeted radioimmunotherapy of colorectal cancer xenografts in mice using picomolar affinity 86Y- or 177Lu-DOTA-Bn binding scFv C825/GPA33 IgG bispecific immunoconjugates. Eur J Nucl Med Mol Imaging. 2016;43:925–37. doi:10.1007/s00259-015-3254-8.

    Article  CAS  PubMed  Google Scholar 

  68. Cheal SM, Xu H, Guo HF, Zanzonico PB, Larson SM, Cheung NK. Preclinical evaluation of multistep targeting of diasialoganglioside GD2 using an IgG-scFv bispecific antibody with high affinity for GD2 and DOTA metal complex. Mol Cancer Ther. 2014;13:1803–12. doi:10.1158/1535-7163.mct-13-0933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. O’Donoghue JA, Smith-Jones PM, Humm JL, Ruan S, Pryma DA, Jungbluth AA, et al. 124I-huA33 antibody uptake is driven by A33 antigen concentration in tissues from colorectal cancer patients imaged by immuno-PET. J Nucl Med. 2011;52:1878–85. doi:10.2967/jnumed.111.095596.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Larson, S.M. (2017). Cancer Biology of Molecular Imaging. In: Strauss, H., Mariani, G., Volterrani, D., Larson, S. (eds) Nuclear Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-26236-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26236-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26234-5

  • Online ISBN: 978-3-319-26236-9

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics