Skip to main content

Glucosinolates and Plant Defense

  • Reference work entry
  • First Online:

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Glucosinolates are unique secondary metabolites present in the members of family Brassicaceae. The major role of glucosinolates in plants is believed to be responses to external or environmental stimuli. Glucosinolates are also involved in communicating and triggering a range of information pertaining to plant defense against insects, some food bacteria, and against some fungi. Glucosinolates are hydrolyzed by the enzyme myrosinase on injury to plant to produce isothiocyanates and subsequently by PAL to toxic compounds injurious to the pathogen. In this review, the role of glucosinolates in plant defense has been discussed with possible involvement of PAL enzyme.

This is a preview of subscription content, log in via an institution.

Abbreviations

HAG:

High aliphatic glucosinolate

PAL:

Phenylalanine ammonia lyase

SA:

Salicylic acid

SAR:

Systemic acquired resistance

References

  1. Sorensen H (1988) Glucosinolates – structure-properties-function. Abstr Pap Am Chem Soc 195:79-AGFD

    Google Scholar 

  2. Verena J, Jonathan G, Vasao DG (2015) Metabolism of glucosinolates and their hydrolysis products in insect herbivores. In: Jetter R (ed) The formation, structure and activity of phytochemicals. Springer International Publishing, Switzerland, pp 163–194

    Google Scholar 

  3. Abdel-Farid IB, Choi YH, Kim HK, Van den Hondel CAMJJ, van der Meijden HE, Verpoorte R (2006) The role of secondary metabolites in Arabidopsis and Brassica in the interaction with fungi. Curr Top Plant Biol 7:47–73

    CAS  Google Scholar 

  4. Bennett RN, Wallsgrove RM (1994) Secondary metabolites in plant defense-mechanisms. New Phytol 127:617–633

    Article  CAS  Google Scholar 

  5. Kusnierczyk A, Winge P, Jorstad TS, Troczynska J, Rossiter JT, Bones AM (2008) Towards global understanding of plant defence against aphids – timing and dynamics of early Arabidopsis defence responses to cabbage aphid (Brevicoryne Brassicae) attack. Plant Cell Environ 31:1097–1115

    Article  CAS  Google Scholar 

  6. Sun JY, Snderby IE, Halkier BA, Jander G, Md V (2009) Non-volatile intact indole glucosinolates are host recognition cues for ovipositing Plutella xylostella. J Chem Ecol 35:1427–1436

    Article  CAS  Google Scholar 

  7. Fan ZX, Lei WX, Sun XL, Yu B, Wang YZ, Yang GS (2008) The association of Sclerotinia sclerotiorum resistance with glucosinolates in Brassica napus double-low DH population. J Plant Pathol 90:43–48

    CAS  Google Scholar 

  8. Bodnaryk RP (1992) Effects of wounding on glucosinolates in the cotyledons of oilseed rape and mustard. Phytochemistry 31:2671–2677

    Article  CAS  Google Scholar 

  9. Kim JH, Jander G (2007) Myzus persicae (green peach aphid) feeding on Arabidopsis induces the formation of a deterrent indole glucosinolate. Plant J 49:1008–1019

    Article  CAS  Google Scholar 

  10. Bouchereau A, ClossaisBesnard N, Bensaoud A, Leport L, Renard M (1996) Water stress effects on rapeseed quality. Eur J Agron 5:19–30

    Article  Google Scholar 

  11. Antonious GF, Bomford M, Vincelli P (2009) Screening Brassica species for glucosinolate content. J Environ Sci Health B, Pestic, Food Contam Agric Wastes 44:311–316

    Article  CAS  Google Scholar 

  12. Martin N, Muller C (2007) Induction of plant responses by a sequestering insect: relationship of glucosinolate concentration and myrosinase activity. Basic Appl Ecol 8:13–25

    Article  CAS  Google Scholar 

  13. Brandi G, Amagliani G, Schiavano GF, De Santi M, Sisti M (2006) Activity of Brassica oleracea leaf juice on foodborne pathogenic bacteria. J Food Protect 69:2274–2279

    Article  CAS  Google Scholar 

  14. Brader G, Mikkelsen MD, Halkier BA, Palva ET (2006) Altering glucosinolate profiles modulates disease resistance in plants. Plant J 46:758–767

    Article  CAS  Google Scholar 

  15. Galletti S, Sala E, Leoni O, Burzi PL, Cerato C (2008) Trichoderma spp. tolerance to Brassica carinata seed meal for a combined use in biofumigation. Biol Control 45:319–327

    Article  Google Scholar 

  16. Bhardwaj HL, Hamama AA (2003) Accumulation of glucosinolate, oil, and erucic acid in developing Brassica seeds. Ind Crops Prod 17:47–51

    Article  CAS  Google Scholar 

  17. Tripathi P, Dubey NK (2004) Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables. Postharvest Biol Technol 32:235–245

    Article  Google Scholar 

  18. Lambrix V, Reichelt M, Mitchell-Olds T, Kliebenstein DJ, Gershenzon J (2001) The Arabidopsis epithiospecifier protein promotes the hydrolysis of glucosinolates to nitriles and influences Trichoplusia ni herbivory. Plant Cell 13:2793–2807

    Article  CAS  Google Scholar 

  19. Rask L, Andreasson E, Ekbom B, Eriksson S, Pontoppidan B, Meijer J (2000) Myrosinase: gene family evolution and herbivore defense in Brassicaceae. Plant Mol Biol 42:93–113

    Article  CAS  Google Scholar 

  20. Dinant S, Suárez-López P (2011) Multitude of long-distance signal molecules acting via phloem. In: Witzani G, Baluska F (eds) Biocommunication of plants, vol 14, Signaling and communication in Plants. Springer, Berlin, pp 89–121

    Chapter  Google Scholar 

  21. Dixon RA (2001) Natural products and plant disease resistance. Nature 411:843–847

    Article  CAS  Google Scholar 

  22. Yao Q, Zhu HH, Zeng RS (2007) Role of phenolic compounds in plant defence: induced by arbuscular mycorrhizal fungi. Allelopathy J 20:1–13

    Google Scholar 

  23. Pozo MJ, Verhage A, Garcia-Andrade J, Garcia JM, Azcon-Aguilar C (2009) Priming plant defence against pathogens by arbuscular mycorrhizal fungi. Mycorrhizas – functional processes and ecological impact. 123–135

    Google Scholar 

  24. Gomez-Vasquez R, Day R, Buschmann H, Randles S, Beeching JR, Cooper RM (2004) Phenylpropanoids, phenylalanine ammonia lyase and peroxidases in elicitor-challenged cassava (Manihot esculenta) suspension cells and leaves. Ann Bot 94:87–97

    Article  CAS  Google Scholar 

  25. Hammerschmidt R, Smith-Becker JA (1999) The role of salicylic acid in disease resistance. In: Agrawal A, Tuzun S, Bent E (eds) Induced plant defenses against pathogens and herbivores. APS Press, St. Paul, pp 37–53

    Google Scholar 

  26. Islam N (2009) The effect of Plasmodiophora Brassicae infection, phosphonate and Bion® treatment on glucosinolate levels in broccoli. University of Sydney, Sydney

    Google Scholar 

  27. Singh A (2011) Effect of white rust disease (Albugo candida) on the glucosinolate contents in Bion® and phosphonate treated Brassica crops. University of Sydney, Sydney

    Google Scholar 

  28. Sanchez-Vallet A, Ramos B, Bednarek P, López G, Piślewska- Bednarek M, Schulze-Lefert P, Molina A (2010) Tryptophan derived secondary metabolites in Arabidopsis thaliana confer non-host resistance to necrotrophic Plectosphaerella cucumerina fungi. Plant J 63(1):115–127

    CAS  Google Scholar 

  29. Schlaeppi K, Abou-Mansour E, Buchala A, Mauch F (2010) Disease resistance of Arabidopsis to Phytophthora brassicae is established by the sequential action of indole glucosinolates and camalexin. Plant J 62:840–851

    Article  CAS  Google Scholar 

  30. Wielanek M, Urbanek H (2006) Enhanced glucotropaeolin production in hairy root cultures of Tropaeolum majus L. by combining elicitation and precursor feeding. Plant Cell Tiss Org Cult 86:177–186

    Article  CAS  Google Scholar 

  31. Kelly PJ, Bones A, Rossiter JT (1998) Sub-cellular immunolocalization of the glucosinolate sinigrin in seedlings of Brassica juncea. Planta 206:370–377

    Article  CAS  Google Scholar 

  32. Grob K, Matile P (1979) Vacuolar location of glucosinolates in horseradish root-cells. Plant Sci Lett 14:327–335

    Article  CAS  Google Scholar 

  33. Evans CT, Choma C, Peterson W, Misawa M (1987) Bioconversion of trans-cinnamic acid to l-phenylalanine in an immobilized whole cell reactor. Biotechnol Bioeng 30:1067–1072

    Article  CAS  Google Scholar 

  34. Shukla YM, Dhruve JJ, Patel NJ, Pandey RN (2010) Biochemical alterations in cinnamic acid 4-hydroxylase and phenylalanine ammonia lyase in chickpea infected with Fusarium oxysporum f.spciceri. J Mycol Plant Pathol 40:260–264

    CAS  Google Scholar 

  35. Sticher L, MauchMani B, Metraux JP (1997) Systemic acquired resistance. Ann Rev Phytopathol 35:235–270

    Article  CAS  Google Scholar 

  36. MacDonald MJ, D’Cunha GB (2007) A modern view of phenylalanine ammonia lyase. Biochem Cell Biol 85:273–282

    Article  CAS  Google Scholar 

  37. Kiddle GA, Doughty KJ, Wallsgrove RM (1994) Salicylic acid-induced accumulation of glucosinolates in oilseed rape (Brassica napus L) leaves. J Exp Bot 45:1343–1346

    Article  CAS  Google Scholar 

  38. Byun YJ, Kim HJ, Lee DH (2009) Long SAGE analysis of the early response to cold stress in Arabidopsis leaf. Planta 229(6):1181–1200

    Article  CAS  Google Scholar 

  39. Wielanek M, Krolicka A, Bergier K, Gajewska E, Skodowska M (2009) Transformation of Nasturtium officinale, Barbarea verna and Arabis caucasica for hairy roots and glucosinolate-myrosinase system production. Biotechnol Lett 31:917–921

    Article  CAS  Google Scholar 

  40. Kubicka E, Zadernowski R (2007) Enhanced jasmonate biosynthesis in plants and possible implications for food quality. Acta Alimentaria (Budapest) 36:455–469

    Article  CAS  Google Scholar 

  41. Li S, Schonhof I, Krumbein A, Li L, Stutzel H, Schreiner M (2007) Glucosinolate concentration in turnip (Brassica rapa ssp. rapifera L.) roots as affected by nitrogen and sulfur supply. J Agric Food Chem 55:8452–8457

    Article  CAS  Google Scholar 

  42. Gigolashvili T, Yatusevich R, Berger B, Muller C, Flugge UI (2007) The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana. Plant J 51:247–261

    Article  CAS  Google Scholar 

  43. Schuster J, Knill T, Reichelt M, Gershenzon J, Binder S (2006) Branched-chain aminotransferase 4 is part of the chain elongation pathway in the biosynthesis of methionine-derived glucosinolates in Arabidopsis. Plant Cell 18:2664–2679

    Article  CAS  Google Scholar 

  44. Bjerg B, Eggum BO, Jacobsen I, Otte J, Sørensen H (1989) Antinutritional and toxic effects in rats of individual glucosinolates (± myrosinases) added to a standard diet (2). J Anim Physiol Anim Nutr 61:227–244. doi:10.1111/j.1439-0396.1989.tb00105.x

    Article  CAS  Google Scholar 

  45. Pascholati SF, Nicholson RL, Butler LG (1986) Phenylalanine ammonia-lyase activity and anthocyanin accumulation in wounded maize mesocotyls. J Phytopathol 115:165–172

    Article  CAS  Google Scholar 

  46. Bojorquez-Galvez A, Vega Garcia M, Caro Corrales J, Carrillo Lopez A, Lopez Valenzuela JA (2010) Effect of gradual cooling storage on chilling injury and phenylalanine ammonia-lyase activity in tomato fruit. J Food Biochem 34:295–307

    Article  Google Scholar 

  47. Chen R, Liu T, Huang Y, Cheng D, Chen W (2006) Induced resistance of wheat seedlings to Puccinia triticina by Bion® treatment. Acta Phytophylacica Sin 33:122–126

    CAS  Google Scholar 

  48. Cavalcanti FR, Resende MLV, Carvalho CPS, Silveira JAG, Oliveira JTA (2007) An aqueous suspension of Crinipellis perniciosa mycelium activates tomato defence responses against Xanthomonas vesicatoria. Crop Prot 26(5):729–738

    Article  Google Scholar 

  49. Young JE, Zhao X, Carey EE, Welti R, Yang SS, Wang WQ (2005) Phytochemical phenolics in organically grown vegetables. Mol Nutr Food Res 49:1136–1142

    Article  CAS  Google Scholar 

  50. Suddaby T, Alhussaen K, Daniel R, Guest D (2008) Phosphonate alters the defence responses of Lambertia species challenged by Phytophthora cinnamomi. Aust J Bot 56:550–556

    Article  CAS  Google Scholar 

  51. Daniel R, Guest D (2005) Defence responses induced by potassium phosphonate in Phytophthora palmivora challenged Arabidopsis thaliana. Physiol Mol Plant Pathol 67:194–201

    Article  CAS  Google Scholar 

  52. Kirkham DS, Flood AE (1956) Inhibition of Venturia spp. of analogues of host metabolites. Nature 178:422–423

    Article  Google Scholar 

  53. Norman E, Green L, Hadwiger A (1975) Phenylalanine ammonia-lyase to sine ammonia-lyase lignin in wheat inoculated with Erysiphe graminis f. sp. tritici. Phytopathology 65(10):1071–1074

    Article  Google Scholar 

  54. El-Kereamy A, El-Sharkawy I, Ramamoorthy R, Taheri A, Errampalli D, Kumar P, Jayasankar S (2011) Prunus domestica pathogenesis-related protein-5 activates the defense response pathway and enhances the resistance to fungal infection. Plos One 6:11

    Article  Google Scholar 

  55. Ferrari S, Plotnikova JM, De Lorenzo G, Ausubel FM (2003) Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4. Plant J 35:193–205

    Article  CAS  Google Scholar 

  56. Taheri P, Tarighi S (2010) Riboflavin induces resistance in rice against Rhizoctonia solani via jasmonate-mediated priming of phenylpropanoid pathway. J Plant Physiol 167:201–208

    Article  CAS  Google Scholar 

  57. Singh US, Doughty KJ, Nashaat NI, Bennett RN, Kolte SJ (1999) Induction of systemic resistance to Albugo candida in Brassica juncea by pre- or coinoculation with an incompatible isolate. Phytopathology 89:1226–1232

    Article  CAS  Google Scholar 

  58. Singh A, Guest D, Copeland L (2015) Associations between glucosinolates, white rust, and plant defense activators in Brassica plants: a review. Inter J Veg Sci 21(3):297–313

    Article  Google Scholar 

  59. Morant AV, Jorgensen K, Jorgensen C, Paquette SM, Sanchez-Perez R, Moller BL, Bak S (2008) Beta-glucosidases as detonators of plant chemical defense. Phytochemistry 69:1795–1813

    Article  CAS  Google Scholar 

  60. Redovnikovic IR, Glivetic T, Delonga K, Vorkapic-Furac J (2008) Glucosinolates and their potential role in plants. Period Biol 110:297–309

    CAS  Google Scholar 

  61. Lee SW, Nazar RN, Powell DA, Robb J (1992) Reduced PAL gene suppression in Verticillium-infected resistant tomatoes. Plant Mol Biol 18:345–352

    Article  CAS  Google Scholar 

  62. Hammerschmidt R (1999) Induced disease resistance: how do induced plants stop pathogens? Physiol Mol Plant Pathol 55:77–84

    Article  CAS  Google Scholar 

  63. Ahuja I, Rohloff J, Bones AM (2010) Defence mechanisms of Brassicaceae: implications for plant-insect interactions and potential for integrated pest management. A review. Agron Sustain Dev 30(2):311–348

    Article  Google Scholar 

  64. Jahangir M, Abdel-Farid IB, Kim HK, Choi YH, Verpoorte R (2009) Healthy and unhealthy plants: the effect of stress on the metabolism of brassicaceae. Environ Exp Bot 67:23–33

    Article  CAS  Google Scholar 

  65. Wang BC, Wang JB, Zhao HC, Zhao H (2006) Stress induced plant resistance and enzyme activity varying in cucumber. Colloids Surf B: Biointerfaces 48:138–142

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Astha Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Singh, A. (2017). Glucosinolates and Plant Defense. In: Mérillon, JM., Ramawat, K. (eds) Glucosinolates. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-25462-3_8

Download citation

Publish with us

Policies and ethics