Skip to main content

Therapeutic Paradigm Underscoring Glucosinolate Sulforaphane in Chemo- and Radiosensitization of Cancer: Preclinical and Clinical Perspective

  • Reference work entry
  • First Online:
Glucosinolates

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Fruits and vegetables harbor innocuous bioactive compounds which after absorption and distribution tend to have an effect on general defense mechanism of the body including cancer prevention and therapeutic effects. Emerging knowledge from clinical and laboratory studies reveal an important insight regarding their mechanism of action orchestrating therapeutic paradigm with conventional cancer treatment modalities to enhance the curative index of cancer treatment. However, unlike conventional cancer therapeutics, natural bioactive compounds rarely develop resistance undermining their chemopreventive actions. One such bioactive natural compound – sulforaphane, a cognate isothiocyanate limited mostly to vegetables of Brassica family and enriched in broccoli – is considered a promising chemopreventive agent against cancer. Sulforaphane is released from hydrolysis of glucoraphanin isothiocyanate by action of myrosinase enzyme which is also found localized inside vegetal tissues. Overwhelming evidence points to sulforaphane’s multitargeted actions operationally targeting core cell survival signaling pathways in tumor cells and enzyme induction mediated by the nuclear factor erythroid 2-related factor 2 (Nrf2)-regulated transcriptions of genes encoding carcinogen detoxification, antioxidant enzymes, and other effects including reversal of resistance and reduction in the systemic toxicity of drug. This chapter presents a broad perspective on the role of sulforaphane in augmenting multimodal cancer therapy including putative mechanism complementing the efficacy of chemo- and radiotherapy with presumptive notion of its future use in clinics in fight against cancer and patient’s benefit. Clinical trials have also been reviewed to ensure clinical safety and efficacy of sulforaphane in patients diagnosed with cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ALDH-1:

Aldehyde dehydrogenase 1

ARE:

Antioxidant response element

BCl2 :

B-cell lymphoma 2

COX-2:

Cycloxygenase-2

GSC:

Genomic standards consortium

GTC:

Green tea catechins

HCG:

Human chorionic gonadotropin

HNF-3β:

Hepatocyte nuclear factor 3β

HRR:

Homologous recombination repair

IL-1β:

Interleukin-1β

Keap-1:

Kelch-like ECH-associated protein 1

MAPK:

Mitogen-activated protein kinases

NF-κB:

Nuclear factor- kappa B

NHEJ:

Nonhomologous end joining

NOD/SCID:

Nonobese diabetic/severe combined immunodeficiency

Nrf2:

Nuclear factor erythroid 2-related factor 2

Oct 2/3:

Octamer transcription factor-2/3

OTX-2:

Orthodenticle homeobox 2

PDX-1:

Pancreatic and duodenal homeobox 1

PET:

Positron emission tomography

TP63:

Tumor protein p63

UV:

Ultraviolet

VEGFR-2:

Vascular endothelial growth factor receptor-2

References

  1. Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66:7–30

    Article  Google Scholar 

  2. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  Google Scholar 

  3. Steinmetz KA, Potter JD (1991) Vegetables, fruit, and cancer. I. Epidemiology. Cancer Causes Control 2:325–357

    Article  CAS  Google Scholar 

  4. Potter JD, Steinmetz K (1996) Vegetables, fruit and phytoestrogens as preventive agents. IARC Sci Publ 139:61–90

    CAS  Google Scholar 

  5. Liu RH (2003) Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am J Clin Nutr 78:517S–520S

    CAS  Google Scholar 

  6. Block G, Patterson B, Subar A (1992) Fruit, vegetables, and cancer prevention: a review of the epidemiological evidence. Nutr Cancer 18:1–29

    Article  CAS  Google Scholar 

  7. D’Incalci M, Steward WP, Gescher AJ (2005) Use of cancer chemopreventive phytochemicals as antineoplastic agents. Lancet Oncol 6:899–904

    Article  CAS  Google Scholar 

  8. Sarkar FH, Li Y (2006) Using chemopreventive agents to enhance the efficacy of cancer therapy. Cancer Res 66:3347–3350

    Article  CAS  Google Scholar 

  9. van Poppel G, Verhoeven DT, Verhagen H, Goldbohm RA (1999) Brassica vegetables and cancer prevention. Epidemiology and mechanisms. Adv Exp Med Biol 472:159–168

    Article  Google Scholar 

  10. Bosetti C, Filomeno M, Riso P, Polesel J, Levi F, Talamini R, Montella M, Negri E, Franceschi S, La Vecchia C (2012) Cruciferous vegetables and cancer risk in a network of case-control studies. Ann Oncol 23:2198–2203

    Article  CAS  Google Scholar 

  11. IARC (2004) Cruciferous vegetables, isothiocyanates and indoles. International Agency for Research on Cancer, Lyon

    Google Scholar 

  12. Navarro SL, Li F, Lampe JW (2011) Mechanisms of action of isothiocyanates in cancer chemoprevention: an update. Food Funct 2:579–587

    Article  CAS  Google Scholar 

  13. Fahey JW, Zhang Y, Talalay P (1997) Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc Natl Acad Sci U S A 94:10367–10372

    Article  CAS  Google Scholar 

  14. Kushad MM, Brown AF, Kurilich AC, Juvik JA, Klein BP, Wallig MA, Jeffery EH (1999) Variation of glucosinolates in vegetable crops of Brassica oleracea. J Agric Food Chem 47:1541–1548

    Article  CAS  Google Scholar 

  15. Gasper AV, Al-Janobi A, Smith JA, Bacon JR, Fortun P, Atherton C, Taylor MA, Hawkey CJ, Barrett DA, Mithen RF (2005) Glutathione S-transferase M1 polymorphism and metabolism of sulforaphane from standard and high-glucosinolate broccoli. Am J Clin Nutr 82:1283–1291

    CAS  Google Scholar 

  16. Hu R, Khor TO, Shen G, Jeong WS, Hebbar V, Chen C, Xu C, Reddy B, Chada K, Kong AN (2006) Cancer chemoprevention of intestinal polyposis in ApcMin/+ mice by sulforaphane, a natural product derived from cruciferous vegetable. Carcinogenesis 27:2038–2046

    Article  CAS  Google Scholar 

  17. Kassahun K, Davis M, Hu P, Martin B, Baillie T (1997) Biotransformation of the naturally occurring isothiocyanate sulforaphane in the rat: identification of phase I metabolites and glutathione conjugates. Chem Res Toxicol 10:1228–1233

    Article  CAS  Google Scholar 

  18. Clarke JD, Dashwood RH, Ho E (2008) Multi-targeted prevention of cancer by sulforaphane. Cancer Lett 269:291–304

    Article  CAS  Google Scholar 

  19. Cornblatt BS, Ye L, Dinkova-Kostova AT, Erb M, Fahey JW, Singh NK, Chen MS, Stierer T, Garrett-Mayer E, Argani P et al (2007) Preclinical and clinical evaluation of sulforaphane for chemoprevention in the breast. Carcinogenesis 28:1485–1490

    Article  CAS  Google Scholar 

  20. Zhang Y, Tang L (2007) Discovery and development of sulforaphane as a cancer chemopreventive phytochemical. Acta Pharmacol Sin 28:1343–1354

    Article  CAS  Google Scholar 

  21. Juge N, Mithen RF, Traka M (2007) Molecular basis for chemoprevention by sulforaphane: a comprehensive review. Cell Mol Life Sci 64:1105–1127

    Article  CAS  Google Scholar 

  22. Fimognari C, Hrelia P (2007) Sulforaphane as a promising molecule for fighting cancer. Mutat Res 635:90–104

    Article  CAS  Google Scholar 

  23. Awasthi YC, Jaiswal S, Sahu M, Sharma A (2014) Mechanisms of chemopreventive activity of Sulforaphane. Springer, India

    Book  Google Scholar 

  24. Fahey JW, Talalay P (1999) Antioxidant functions of sulforaphane: a potent inducer of Phase II detoxication enzymes. Food Chem Toxicol 37:973–979

    Article  CAS  Google Scholar 

  25. Myzak MC, Dashwood RH (2006) Chemoprotection by sulforaphane: keep one eye beyond Keap1. Cancer Lett 233:208–218

    Article  CAS  Google Scholar 

  26. Jakubikova J, Sedlak J, Mithen R, Bao Y (2005) Role of PI3K/Akt and MEK/ERK signaling pathways in sulforaphane- and erucin-induced phase II enzymes and MRP2 transcription, G2/M arrest and cell death in Caco-2 cells. Biochem Pharmacol 69:1543–1552

    Article  CAS  Google Scholar 

  27. Tortorella SM, Royce SG, Licciardi PV, Karagiannis TC (2015) Dietary sulforaphane in cancer chemoprevention: the role of epigenetic regulation and HDAC inhibition. Antioxid Redox Signal 22:1382–1424

    Article  CAS  Google Scholar 

  28. Rajendran P, Delage B, Dashwood WM, Yu TW, Wuth B, Williams DE, Ho E, Dashwood RH (2011) Histone deacetylase turnover and recovery in sulforaphane-treated colon cancer cells: competing actions of 14-3-3 and Pin1 in HDAC3/SMRT corepressor complex dissociation/reassembly. Mol Cancer 10:68

    Article  CAS  Google Scholar 

  29. Myzak MC, Karplus PA, Chung FL, Dashwood RH (2004) A novel mechanism of chemoprotection by sulforaphane: inhibition of histone deacetylase. Cancer Res 64:5767–5774

    Article  CAS  Google Scholar 

  30. Ambrosone CB, McCann SE, Freudenheim JL, Marshall JR, Zhang Y, Shields PG (2004) Breast cancer risk in premenopausal women is inversely associated with consumption of broccoli, a source of isothiocyanates, but is not modified by GST genotype. J Nutr 134:1134–1138

    CAS  Google Scholar 

  31. Fowke JH, Chung FL, Jin F, Qi D, Cai Q, Conaway C, Cheng JR, Shu XO, Gao YT, Zheng W (2003) Urinary isothiocyanate levels, brassica, and human breast cancer. Cancer Res 63:3980–3986

    CAS  Google Scholar 

  32. Terry P, Wolk A, Persson I, Magnusson C (2001) Brassica vegetables and breast cancer risk. JAMA 285:2975–2977

    Article  CAS  Google Scholar 

  33. Pawlik A, Slominska-Wojewodzka M, Herman-Antosiewicz A (2016) Sensitization of estrogen receptor-positive breast cancer cell lines to 4-hydroxytamoxifen by isothiocyanates present in cruciferous plants. Eur J Nutr 55:1165–1180

    Article  CAS  Google Scholar 

  34. O’Brien NA, Browne BC, Chow L, Wang Y, Ginther C, Arboleda J, Duffy MJ, Crown J, O’Donovan N, Slamon DJ (2010) Activated phosphoinositide 3-kinase/AKT signaling confers resistance to trastuzumab but not lapatinib. Mol Cancer Ther 9:1489–1502

    Article  CAS  Google Scholar 

  35. Pawlik A, Wiczk A, Kaczynska A, Antosiewicz J, Herman-Antosiewicz A (2013) Sulforaphane inhibits growth of phenotypically different breast cancer cells. Eur J Nutr 52:1949–1958

    Article  CAS  Google Scholar 

  36. Kaczynska A, Swierczynska J, Herman-Antosiewicz A (2015) Sensitization of HER2 positive breast cancer cells to Lapatinib using plants-derived isothiocyanates. Nutr Cancer 67:976–986

    Article  CAS  Google Scholar 

  37. Kaczynska A, Herman-Antosiewicz A (2016). Combination of lapatinib with isothiocyanates overcomes drug resistance and inhibits migration of HER2 positive breast cancer cells. Breast Cancer

    Google Scholar 

  38. Lubecka-Pietruszewska K, Kaufman-Szymczyk A, Stefanska B, Cebula-Obrzut B, Smolewski P, Fabianowska-Majewska K (2014) Clofarabine, a novel adenosine analogue, reactivates DNA methylation-silenced tumour suppressor genes and inhibits cell growth in breast cancer cells. Eur J Pharmacol 723:276–287

    Article  CAS  Google Scholar 

  39. Hussain A, Mohsin J, Prabhu SA, Begum S, Nusri Qel A, Harish G, Javed E, Khan MA, Sharma C (2013) Sulforaphane inhibits growth of human breast cancer cells and augments the therapeutic index of the chemotherapeutic drug, gemcitabine. Asian Pac J Cancer Prev 14:5855–5860

    Article  Google Scholar 

  40. Erzinger MM, Bovet C, Hecht KM, Senger S, Winiker P, Sobotzki N, Cristea S, Beerenwinkel N, Shay JW, Marra G et al (2016) Sulforaphane preconditioning sensitizes human colon cancer cells towards the bioreductive anticancer prodrug PR-104A. PLoS One 11:e0150219

    Article  CAS  Google Scholar 

  41. Wang X, Doherty GP, Leith MK, Curphey TJ, Begleiter A (1999) Enhanced cytotoxicity of mitomycin C in human tumour cells with inducers of DT-diaphorase. Br J Cancer 80:1223–1230

    Article  CAS  Google Scholar 

  42. Rahmati-Yamchi M, Zarghami N, Nozad Charoudeh H, Ahmadi Y, Baradaran B, Khalaj-Kondori M, Milani M, Akbarzadeh A, Shaker M, Pourhassan-Moghaddam M (2015) Clofarabine has apoptotic effect on T47D breast cancer cell line via P53R2 gene expression. Adv Pharm Bull 5:471–476

    Article  Google Scholar 

  43. Lubecka-Pietruszewska K, Kaufman-Szymczyk A, Stefanska B, Cebula-Obrzut B, Smolewski P, Fabianowska-Majewska K (2015) Sulforaphane alone and in combination with clofarabine epigenetically regulates the expression of DNA methylation-silenced tumour suppressor genes in human breast cancer cells. J Nutrigenet Nutrigenomics 8:91–101

    Article  CAS  Google Scholar 

  44. Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, Kros JM, Hainfellner JA, Mason W, Mariani L et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003

    Article  CAS  Google Scholar 

  45. Stedt H, Samaranayake H, Pikkarainen J, Maatta AM, Alasaarela L, Airenne K, Yla-Herttuala S (2013) Improved therapeutic effect on malignant glioma with adenoviral suicide gene therapy combined with temozolomide. Gene Ther 20:1165–1171

    Article  CAS  Google Scholar 

  46. Zhang Z, Li C, Shang L, Zhang Y, Zou R, Zhan Y, Bi B (2016) Sulforaphane induces apoptosis and inhibits invasion in U251MG glioblastoma cells. SpringerPlus 5:235

    Article  CAS  Google Scholar 

  47. Karmakar S, Weinberg MS, Banik NL, Patel SJ, Ray SK (2006) Activation of multiple molecular mechanisms for apoptosis in human malignant glioblastoma T98G and U87MG cells treated with sulforaphane. Neuroscience 141:1265–1280

    Article  CAS  Google Scholar 

  48. Li C, Zhou Y, Peng X, Du L, Tian H, Yang G, Niu J, Wu W (2014) Sulforaphane inhibits invasion via activating ERK1/2 signaling in human glioblastoma U87MG and U373MG cells. PLoS One 9:e90520

    Article  CAS  Google Scholar 

  49. Lan F, Yang Y, Han J, Wu Q, Yu H, Yue X (2016) Sulforaphane reverses chemo-resistance to temozolomide in glioblastoma cells by NF-kappaB-dependent pathway downregulating MGMT expression. Int J Oncol 48:559–568

    CAS  Google Scholar 

  50. Lan F, Pan Q, Yu H, Yue X (2015) Sulforaphane enhances temozolomide-induced apoptosis because of down-regulation of miR-21 via Wnt/beta-catenin signaling in glioblastoma. J Neurochem 134:811–818

    Article  CAS  Google Scholar 

  51. Shi L, Chen J, Yang J, Pan T, Zhang S, Wang Z (2010) MiR-21 protected human glioblastoma U87MG cells from chemotherapeutic drug temozolomide induced apoptosis by decreasing Bax/Bcl-2 ratio and caspase-3 activity. Brain Res 1352:255–264

    Article  CAS  Google Scholar 

  52. Kotowski U, Heiduschka G, Brunner M, Czembirek C, Eder-Czembirek C, Schmidt R, Fahim T, Thurnher D (2011) Radiosensitization of head and neck cancer cells by the phytochemical agent sulforaphane. Strahlenther Onkol 187:575–580

    Article  Google Scholar 

  53. Biel MA (2010) Photodynamic therapy of head and neck cancers. Methods Mol Biol 635:281–293

    Article  Google Scholar 

  54. Lee SJ, Hwang HJ, Shin JI, Ahn JC, Chung PS (2015) Enhancement of cytotoxic effect on human head and neck cancer cells by combination of photodynamic therapy and sulforaphane. Gen Physiol Biophys 34:13–21

    Article  CAS  Google Scholar 

  55. Laurie SA, Licitra L (2006) Systemic therapy in the palliative management of advanced salivary gland cancers. J Clin Oncol 24:2673–2678

    Article  CAS  Google Scholar 

  56. Chu WF, Wu DM, Liu W, Wu LJ, Li DZ, Xu DY, Wang XF (2009) Sulforaphane induces G2-M arrest and apoptosis in high metastasis cell line of salivary gland adenoid cystic carcinoma. Oral Oncol 45:998–1004

    Article  CAS  Google Scholar 

  57. Wang XF, Wu DM, Li BX, Lu YJ, Yang BF (2009) Synergistic inhibitory effect of sulforaphane and 5-fluorouracil in high and low metastasis cell lines of salivary gland adenoid cystic carcinoma. Phytother Res 23:303–307

    Article  CAS  Google Scholar 

  58. Chang CC, Hung CM, Yang YR, Lee MJ, Hsu YC (2013) Sulforaphane induced cell cycle arrest in the G2/M phase via the blockade of cyclin B1/CDC2 in human ovarian cancer cells. J Ovarian Res 6:41

    Article  CAS  Google Scholar 

  59. Chuang LT, Moqattash ST, Gretz HF, Nezhat F, Rahaman J, Chiao JW (2007) Sulforaphane induces growth arrest and apoptosis in human ovarian cancer cells. Acta Obstet Gynecol Scand 86:1263–1268

    Article  Google Scholar 

  60. Bryant CS, Kumar S, Chamala S, Shah J, Pal J, Haider M, Seward S, Qazi AM, Morris R, Semaan A et al (2010) Sulforaphane induces cell cycle arrest by protecting RB-E2F-1 complex in epithelial ovarian cancer cells. Mol Cancer 9:47

    Article  CAS  Google Scholar 

  61. Hunakova L, Gronesova P, Horvathova E, Chalupa I, Cholujova D, Duraj J, Sedlak J (2014) Modulation of cisplatin sensitivity in human ovarian carcinoma A2780 and SKOV3 cell lines by sulforaphane. Toxicol Lett 230:479–486

    Article  CAS  Google Scholar 

  62. Sharma C, Sadrieh L, Priyani A, Ahmed M, Hassan AH, Hussain A (2011) Anti-carcinogenic effects of sulforaphane in association with its apoptosis-inducing and anti-inflammatory properties in human cervical cancer cells. Cancer Epidemiol 35:272–278

    Article  CAS  Google Scholar 

  63. Wang X, Govind S, Sajankila SP, Mi L, Roy R, Chung FL (2011) Phenethyl isothiocyanate sensitizes human cervical cancer cells to apoptosis induced by cisplatin. Mol Nutr Food Res 55:1572–1581

    Article  CAS  Google Scholar 

  64. Yu D, Sekine-Suzuki E, Xue L, Fujimori A, Kubota N, Okayasu R (2009) Chemopreventive agent sulforaphane enhances radiosensitivity in human tumor cells. Int J Cancer 125:1205–1211

    Article  CAS  Google Scholar 

  65. Zak-Prelich M, Narbutt J, Sysa-Jedrzejowska A (2004) Environmental risk factors predisposing to the development of basal cell carcinoma. Dermatol Surg 30:248–252

    Google Scholar 

  66. Knatko EV, Ibbotson SH, Zhang Y, Higgins M, Fahey JW, Talalay P, Dawe RS, Ferguson J, Huang JT, Clarke R et al (2015) Nrf2 activation protects against solar-simulated ultraviolet radiation in mice and humans. Cancer Prev Res 8:475–486

    Article  CAS  Google Scholar 

  67. Berg D, Otley CC (2002) Skin cancer in organ transplant recipients: epidemiology, pathogenesis, and management. J Am Acad Dermatol 47:1–17, quiz 18-20

    Article  Google Scholar 

  68. Benedict AL, Knatko EV, Dinkova-Kostova AT (2012) The indirect antioxidant sulforaphane protects against thiopurine-mediated photooxidative stress. Carcinogenesis 33:2457–2466

    Article  CAS  Google Scholar 

  69. Kalra S, Zhang Y, Knatko EV, Finlayson S, Yamamoto M, Dinkova-Kostova AT (2011) Oral azathioprine leads to higher incorporation of 6-thioguanine in DNA of skin than liver: the protective role of the Keap1/Nrf2/ARE pathway. Cancer Prev Res 4:1665–1674

    Article  CAS  Google Scholar 

  70. Devesa SS, Blot WJ, Fraumeni JF Jr (1998) Changing patterns in the incidence of esophageal and gastric carcinoma in the United States. Cancer 83:2049–2053

    Article  CAS  Google Scholar 

  71. Qazi A, Pal J, Maitah M, Fulciniti M, Pelluru D, Nanjappa P, Lee S, Batchu RB, Prasad M, Bryant CS et al (2010) Anticancer activity of a broccoli derivative, sulforaphane, in barrett adenocarcinoma: potential use in chemoprevention and as adjuvant in chemotherapy. Transl Oncol 3:389–399

    Article  Google Scholar 

  72. Kallifatidis G, Labsch S, Rausch V, Mattern J, Gladkich J, Moldenhauer G, Buchler MW, Salnikov AV, Herr I (2011) Sulforaphane increases drug-mediated cytotoxicity toward cancer stem-like cells of pancreas and prostate. Mol Ther 19:188–195

    Article  CAS  Google Scholar 

  73. Walther DJ, Peter JU, Bader M (2002) 7-Hydroxytryptophan, a novel, specific, cytotoxic agent for carcinoids and other serotonin-producing tumors. Cancer 94:3135–3140

    Article  CAS  Google Scholar 

  74. Cianchi F, Vinci MC, Supuran CT, Peruzzi B, De Giuli P, Fasolis G, Perigli G, Pastorekova S, Papucci L, Pini A et al (2010) Selective inhibition of carbonic anhydrase IX decreases cell proliferation and induces ceramide-mediated apoptosis in human cancer cells. J Pharmacol Exp Ther 334:710–719

    Article  CAS  Google Scholar 

  75. Potter C, Harris AL (2004) Hypoxia inducible carbonic anhydrase IX, marker of tumour hypoxia, survival pathway and therapy target. Cell Cycle 3:164–167

    Article  CAS  Google Scholar 

  76. Mastrangelo L, Cassidy A, Mulholland F, Wang W, Bao Y (2008) Serotonin receptors, novel targets of sulforaphane identified by proteomic analysis in Caco-2 cells. Cancer Res 68:5487–5491

    Article  CAS  Google Scholar 

  77. Mokhtari RB, Kumar S, Islam SS, Yazdanpanah M, Adeli K, Cutz E, Yeger H (2013) Combination of carbonic anhydrase inhibitor, acetazolamide, and sulforaphane, reduces the viability and growth of bronchial carcinoid cell lines. BMC Cancer 13:378

    Article  CAS  Google Scholar 

  78. Chauhan D, Hideshima T, Anderson KC (2008) Targeting proteasomes as therapy in multiple myeloma. Adv Exp Med Biol 615:251–260

    Article  CAS  Google Scholar 

  79. Orlowski RZ, Kuhn DJ (2008) Proteasome inhibitors in cancer therapy: lessons from the first decade. Clin Cancer Res 14:1649–1657

    Article  CAS  Google Scholar 

  80. Oakervee HE, Popat R, Curry N, Smith P, Morris C, Drake M, Agrawal S, Stec J, Schenkein D, Esseltine DL et al (2005) PAD combination therapy (PS-341/bortezomib, doxorubicin and dexamethasone) for previously untreated patients with multiple myeloma. Br J Haematol 129:755–762

    Article  CAS  Google Scholar 

  81. Jakubikova J, Cervi D, Ooi M, Kim K, Nahar S, Klippel S, Cholujova D, Leiba M, Daley JF, Delmore J et al (2011) Anti-tumor activity and signaling events triggered by the isothiocyanates, sulforaphane and phenethyl isothiocyanate, in multiple myeloma. Haematologica 96:1170–1179

    Article  CAS  Google Scholar 

  82. Chou TC (2006) Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 58:621–681

    Article  CAS  Google Scholar 

  83. He X, Yang K, Chen P, Liu B, Zhang Y, Wang F, Guo Z, Liu X, Lou J, Chen H (2014) Arsenic trioxide-based therapy in relapsed/refractory multiple myeloma patients: a meta-analysis and systematic review. OncoTargets Ther 7:1593–1599

    Article  CAS  Google Scholar 

  84. Takahashi S (2010) Combination therapy with arsenic trioxide for hematological malignancies. Anticancer Agents Med Chem 10:504–510

    Article  CAS  Google Scholar 

  85. Rollig C, Illmer T (2009) The efficacy of arsenic trioxide for the treatment of relapsed and refractory multiple myeloma: a systematic review. Cancer Treat Rev 35:425–430

    Article  CAS  Google Scholar 

  86. Munshi NC, Tricot G, Desikan R, Badros A, Zangari M, Toor A, Morris C, Anaissie E, Barlogie B (2002) Clinical activity of arsenic trioxide for the treatment of multiple myeloma. Leukemia 16:1835–1837

    Article  CAS  Google Scholar 

  87. Doudican NA, Wen SY, Mazumder A, Orlow SJ (2012) Sulforaphane synergistically enhances the cytotoxicity of arsenic trioxide in multiple myeloma cells via stress-mediated pathways. Oncol Rep 28:1851–1858

    CAS  Google Scholar 

  88. Greenstein S, Krett NL, Kurosawa Y, Ma C, Chauhan D, Hideshima T, Anderson KC, Rosen ST (2003) Characterization of the MM.1 human multiple myeloma (MM) cell lines: a model system to elucidate the characteristics, behavior, and signaling of steroid-sensitive and -resistant MM cells. Exp Hematol 31:271–282

    Article  CAS  Google Scholar 

  89. Fox E, Razzouk BI, Widemann BC, Xiao S, O’Brien M, Goodspeed W, Reaman GH, Blaney SM, Murgo AJ, Balis FM et al (2008) Phase 1 trial and pharmacokinetic study of arsenic trioxide in children and adolescents with refractory or relapsed acute leukemia, including acute promyelocytic leukemia or lymphoma. Blood 111:566–573

    Article  CAS  Google Scholar 

  90. Doudican NA, Bowling B, Orlow SJ (2010) Enhancement of arsenic trioxide cytotoxicity by dietary isothiocyanates in human leukemic cells via a reactive oxygen species-dependent mechanism. Leuk Res 34:229–234

    Article  CAS  Google Scholar 

  91. Miller WH Jr, Schipper HM, Lee JS, Singer J, Waxman S (2002) Mechanisms of action of arsenic trioxide. Cancer Res 62:3893–3903

    CAS  Google Scholar 

  92. Lunghi P, Tabilio A, Lo-Coco F, Pelicci PG, Bonati A (2005) Arsenic trioxide (ATO) and MEK1 inhibition synergize to induce apoptosis in acute promyelocytic leukemia cells. Leukemia 19:234–244

    Article  CAS  Google Scholar 

  93. Deininger MW, Druker BJ (2003) Specific targeted therapy of chronic myelogenous leukemia with imatinib. Pharmacol Rev 55:401–423

    Article  CAS  Google Scholar 

  94. Lin LC, Yeh CT, Kuo CC, Lee CM, Yen GC, Wang LS, Wu CH, Yang WC, Wu AT (2012) Sulforaphane potentiates the efficacy of imatinib against chronic leukemia cancer stem cells through enhanced abrogation of Wnt/beta-catenin function. J Agric Food Chem 60:7031–7039

    Article  CAS  Google Scholar 

  95. Capdevila J, Elez E, Peralta S, Macarulla T, Ramos FJ, Tabernero J (2008) Oxaliplatin-based chemotherapy in the management of colorectal cancer. Expert Rev Anticancer Ther 8:1223–1236

    Article  CAS  Google Scholar 

  96. Rixe O, Ortuzar W, Alvarez M, Parker R, Reed E, Paull K, Fojo T (1996) Oxaliplatin, tetraplatin, cisplatin, and carboplatin: spectrum of activity in drug-resistant cell lines and in the cell lines of the National Cancer Institute’s Anticancer Drug Screen panel. Biochem Pharmacol 52:1855–1865

    Article  CAS  Google Scholar 

  97. Kaminski BM, Weigert A, Brune B, Schumacher M, Wenzel U, Steinhilber D, Stein J, Ulrich S (2011) Sulforaphane potentiates oxaliplatin-induced cell growth inhibition in colorectal cancer cells via induction of different modes of cell death. Cancer Chemother Pharmacol 67:1167–1178

    Article  CAS  Google Scholar 

  98. Guise CP, Abbattista MR, Singleton RS, Holford SD, Connolly J, Dachs GU, Fox SB, Pollock R, Harvey J, Guilford P et al (2010) The bioreductive prodrug PR-104A is activated under aerobic conditions by human aldo-keto reductase 1C3. Cancer Res 70:1573–1584

    Article  CAS  Google Scholar 

  99. Singleton RS, Guise CP, Ferry DM, Pullen SM, Dorie MJ, Brown JM, Patterson AV, Wilson WR (2009) DNA cross-links in human tumor cells exposed to the prodrug PR-104A: relationships to hypoxia, bioreductive metabolism, and cytotoxicity. Cancer Res 69:3884–3891

    Article  CAS  Google Scholar 

  100. Gu Y, Patterson AV, Atwell GJ, Chernikova SB, Brown JM, Thompson LH, Wilson WR (2009) Roles of DNA repair and reductase activity in the cytotoxicity of the hypoxia-activated dinitrobenzamide mustard PR-104A. Mol Cancer Ther 8:1714–1723

    Article  CAS  Google Scholar 

  101. Jameson MB, Rischin D, Pegram M, Gutheil J, Patterson AV, Denny WA, Wilson WR (2010) A phase I trial of PR-104, a nitrogen mustard prodrug activated by both hypoxia and aldo-keto reductase 1C3, in patients with solid tumors. Cancer Chemother Pharmacol 65:791–801

    Article  CAS  Google Scholar 

  102. Abou-Alfa GK, Chan SL, Lin CC, Chiorean EG, Holcombe RF, Mulcahy MF, Carter WD, Patel K, Wilson WR, Melink TJ et al (2011) PR-104 plus sorafenib in patients with advanced hepatocellular carcinoma. Cancer Chemother Pharmacol 68:539–545

    Article  CAS  Google Scholar 

  103. McKeage MJ, Gu Y, Wilson WR, Hill A, Amies K, Melink TJ, Jameson MB (2011) A phase I trial of PR-104, a pre-prodrug of the bioreductive prodrug PR-104A, given weekly to solid tumour patients. BMC Cancer 11:432

    Article  CAS  Google Scholar 

  104. McKeage MJ, Jameson MB, Ramanathan RK, Rajendran J, Gu Y, Wilson WR, Melink TJ, Tchekmedyian NS (2012) PR-104 a bioreductive pre-prodrug combined with gemcitabine or docetaxel in a phase Ib study of patients with advanced solid tumours. BMC Cancer 12:496

    Article  CAS  Google Scholar 

  105. Jamieson SM, Gu Y, Manesh DM, El-Hoss J, Jing D, Mackenzie KL, Guise CP, Foehrenbacher A, Pullen SM, Benito J et al (2014) A novel fluorometric assay for aldo-keto reductase 1C3 predicts metabolic activation of the nitrogen mustard prodrug PR-104A in human leukaemia cells. Biochem Pharmacol 88:36–45

    Article  CAS  Google Scholar 

  106. Roig AI, Eskiocak U, Hight SK, Kim SB, Delgado O, Souza RF, Spechler SJ, Wright WE, Shay JW (2010) Immortalized epithelial cells derived from human colon biopsies express stem cell markers and differentiate in vitro. Gastroenterology 138(1012–1021):e1011–e1015

    Google Scholar 

  107. Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, Bruns CJ, Heeschen C (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1:313–323

    Article  CAS  Google Scholar 

  108. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone DM (2007) Identification of pancreatic cancer stem cells. Cancer Res 67:1030–1037

    Article  CAS  Google Scholar 

  109. Kallifatidis G, Rausch V, Baumann B, Apel A, Beckermann BM, Groth A, Mattern J, Li Z, Kolb A, Moldenhauer G et al (2009) Sulforaphane targets pancreatic tumour-initiating cells by NF-kappaB-induced antiapoptotic signalling. Gut 58:949–963

    Article  CAS  Google Scholar 

  110. Rausch V, Liu L, Kallifatidis G, Baumann B, Mattern J, Gladkich J, Wirth T, Schemmer P, Buchler MW, Zoller M et al (2010) Synergistic activity of sorafenib and sulforaphane abolishes pancreatic cancer stem cell characteristics. Cancer Res 70:5004–5013

    Article  CAS  Google Scholar 

  111. Li Y, Zhang T, Schwartz SJ, Sun D (2011) Sulforaphane potentiates the efficacy of 17-allylamino 17-demethoxygeldanamycin against pancreatic cancer through enhanced abrogation of Hsp90 chaperone function. Nutr Cancer 63:1151–1159

    Article  CAS  Google Scholar 

  112. Kamal A, Boehm MF, Burrows FJ (2004) Therapeutic and diagnostic implications of Hsp90 activation. Trends Mol Med 10:283–290

    Article  CAS  Google Scholar 

  113. Whitesell L, Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nature reviews. Cancer 5:761–772

    CAS  Google Scholar 

  114. Dai X, Zhang J, Arfuso F, Chinnathambi A, Zayed ME, Alharbi SA, Kumar AP, Ahn KS, Sethi G (2015) Targeting TNF-related apoptosis-inducing ligand (TRAIL) receptor by natural products as a potential therapeutic approach for cancer therapy. Exp Biol Med 240:760–773

    Article  CAS  Google Scholar 

  115. Maksimovic-Ivanic D, Stosic-Grujicic S, Nicoletti F, Mijatovic S (2012) Resistance to TRAIL and how to surmount it. Immunol Res 52:157–168

    Article  CAS  Google Scholar 

  116. Wang F, Lin J, Xu R (2014) The molecular mechanisms of TRAIL resistance in cancer cells: help in designing new drugs. Curr Pharm Des 20:6714–6722

    Article  CAS  Google Scholar 

  117. Lim B, Allen JE, Prabhu VV, Talekar MK, Finnberg NK, El-Deiry WS (2015) Targeting TRAIL in the treatment of cancer: new developments. Expert Opin Ther Targets 19:1171–1185

    Article  CAS  Google Scholar 

  118. Trivedi R, Mishra DP (2015) Trailing TRAIL resistance: novel targets for TRAIL sensitization in cancer cells. Front Oncol 5:69

    Article  Google Scholar 

  119. Zhang L, Fang B (2005) Mechanisms of resistance to TRAIL-induced apoptosis in cancer. Cancer Gene Ther 12:228–237

    Article  CAS  Google Scholar 

  120. Matsui TA, Sowa Y, Yoshida T, Murata H, Horinaka M, Wakada M, Nakanishi R, Sakabe T, Kubo T, Sakai T (2006) Sulforaphane enhances TRAIL-induced apoptosis through the induction of DR5 expression in human osteosarcoma cells. Carcinogenesis 27:1768–1777

    Article  CAS  Google Scholar 

  121. Lowe SW, Ruley HE, Jacks T, Housman DE (1993) p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74:957–967

    Article  CAS  Google Scholar 

  122. Wang LH, Okaichi K, Ihara M, Okumura Y (1998) Sensitivity of anticancer drugs in Saos-2 cells transfected with mutant p53 varied with mutation point. Anticancer Res 18:321–325

    Google Scholar 

  123. Kandasamy K, Srivastava RK (2002) Role of the phosphatidylinositol 3′-kinase/PTEN/Akt kinase pathway in tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in non-small cell lung cancer cells. Cancer Res 62:4929–4937

    CAS  Google Scholar 

  124. Jin CY, Moon DO, Lee JD, Heo MS, Choi YH, Lee CM, Park YM, Kim GY (2007) Sulforaphane sensitizes tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis through downregulation of ERK and Akt in lung adenocarcinoma A549 cells. Carcinogenesis 28:1058–1066

    Article  CAS  Google Scholar 

  125. Sorensen PH, Lynch JC, Qualman SJ, Tirabosco R, Lim JF, Maurer HM, Bridge JA, Crist WM, Triche TJ, Barr FG (2002) PAX3-FKHR and PAX7-FKHR gene fusions are prognostic indicators in alveolar rhabdomyosarcoma: a report from the children’s oncology group. J Clin Oncol 20:2672–2679

    Article  CAS  Google Scholar 

  126. Bergantin E, Quarta C, Nanni C, Fanti S, Pession A, Cantelli-Forti G, Tonelli R, Hrelia P (2014) Sulforaphane induces apoptosis in rhabdomyosarcoma and restores TRAIL-sensitivity in the aggressive alveolar subtype leading to tumor elimination in mice. Cancer Biol Ther 15:1219–1225

    Article  CAS  Google Scholar 

  127. Yamanaka T, Shiraki K, Sugimoto K, Ito T, Fujikawa K, Ito M, Takase K, Moriyama M, Nakano T, Suzuki A (2000) Chemotherapeutic agents augment TRAIL-induced apoptosis in human hepatocellular carcinoma cell lines. Hepatology 32:482–490

    Article  CAS  Google Scholar 

  128. Shankar S, Srivastava RK (2004) Enhancement of therapeutic potential of TRAIL by cancer chemotherapy and irradiation: mechanisms and clinical implications. Drug Resist Updat 7:139–156

    Article  CAS  Google Scholar 

  129. Kim H, Kim EH, Eom YW, Kim WH, Kwon TK, Lee SJ, Choi KS (2006) Sulforaphane sensitizes tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-resistant hepatoma cells to TRAIL-induced apoptosis through reactive oxygen species-mediated up-regulation of DR5. Cancer Res 66:1740–1750

    Article  CAS  Google Scholar 

  130. Shankar S, Ganapathy S, Srivastava RK (2008) Sulforaphane enhances the therapeutic potential of TRAIL in prostate cancer orthotopic model through regulation of apoptosis, metastasis, and angiogenesis. Clin Cancer Res 14:6855–6866

    Article  CAS  Google Scholar 

  131. Sharpe B, Beresford M, Bowen R, Mitchard J, Chalmers AD (2013) Searching for prostate cancer stem cells: markers and methods. Stem Cell Rev 9:721–730

    Article  CAS  Google Scholar 

  132. Labsch S, Liu L, Bauer N, Zhang Y, Aleksandrowicz E, Gladkich J, Schonsiegel F, Herr I (2014) Sulforaphane and TRAIL induce a synergistic elimination of advanced prostate cancer stem-like cells. Int J Oncol 44:1470–1480

    CAS  Google Scholar 

  133. Shen G, Khor TO, Hu R, Yu S, Nair S, Ho CT, Reddy BS, Huang MT, Newmark HL, Kong AN (2007) Chemoprevention of familial adenomatous polyposis by natural dietary compounds sulforaphane and dibenzoylmethane alone and in combination in ApcMin/+ mouse. Cancer Res 67:9937–9944

    Article  CAS  Google Scholar 

  134. Shen G, Xu C, Chen C, Hebbar V, Kong AN (2006) p53-independent G1 cell cycle arrest of human colon carcinoma cells HT-29 by sulforaphane is associated with induction of p21CIP1 and inhibition of expression of cyclin D1. Cancer Chemother Pharmacol 57:317–327

    Article  CAS  Google Scholar 

  135. Chen H, Landen CN, Li Y, Alvarez RD, Tollefsbol TO (2013) Epigallocatechin gallate and sulforaphane combination treatment induce apoptosis in paclitaxel-resistant ovarian cancer cells through hTERT and Bcl-2 down-regulation. Exp Cell Res 319:697–706

    Article  CAS  Google Scholar 

  136. Nair S, Hebbar V, Shen G, Gopalakrishnan A, Khor TO, Yu S, Xu C, Kong AN (2008) Synergistic effects of a combination of dietary factors sulforaphane and (-) epigallocatechin-3-gallate in HT-29 AP-1 human colon carcinoma cells. Pharm Res 25:387–399

    Article  CAS  Google Scholar 

  137. Nair S, Barve A, Khor TO, Shen GX, Lin W, Chan JY, Cai L, Kong AN (2010) Regulation of Nrf2- and AP-1-mediated gene expression by epigallocatechin-3-gallate and sulforaphane in prostate of Nrf2-knockout or C57BL/6J mice and PC-3 AP-1 human prostate cancer cells. Acta Pharmacol Sin 31:1223–1240

    Article  CAS  Google Scholar 

  138. Zhang M, Binns CW, Lee AH (2002) Tea consumption and ovarian cancer risk: a case-control study in China. Cancer Epid Biomark Prev 11:713–718

    Google Scholar 

  139. Lee AH, Su D, Pasalich M, Binns CW (2013) Tea consumption reduces ovarian cancer risk. Cancer Epidemiol 37:54–59

    Article  CAS  Google Scholar 

  140. Hu J, Hu Y, Hu Y, Zheng S (2015) Intake of cruciferous vegetables is associated with reduced risk of ovarian cancer: a meta-analysis. Asia Pac J Clin Nutr 24:101–109

    Google Scholar 

  141. Nagle CM, Olsen CM, Bain CJ, Whiteman DC, Green AC, Webb PM (2010) Tea consumption and risk of ovarian cancer. Cancer Causes Control 21:1485–1491

    Article  Google Scholar 

  142. Jiang H, Shang X, Wu H, Huang G, Wang Y, Al-Holou S, Gautam SC, Chopp M (2010) Combination treatment with resveratrol and sulforaphane induces apoptosis in human U251 glioma cells. Neurochem Res 35:152–161

    Article  CAS  Google Scholar 

  143. Hussain A, Priyani A, Sadrieh L, Brahmbhatt K, Ahmed M, Sharma C (2012) Concurrent sulforaphane and eugenol induces differential effects on human cervical cancer cells. Integr Cancer Ther 11:154–165

    Article  CAS  Google Scholar 

  144. Pappa G, Strathmann J, Lowinger M, Bartsch H, Gerhauser C (2007) Quantitative combination effects between sulforaphane and 3,3′-diindolylmethane on proliferation of human colon cancer cells in vitro. Carcinogenesis 28:1471–1477

    Article  CAS  Google Scholar 

  145. Kristal AR, Lampe JW (2002) Brassica vegetables and prostate cancer risk: a review of the epidemiological evidence. Nutr Cancer 42:1–9

    Article  Google Scholar 

  146. Liu B, Mao Q, Cao M, Xie L (2012) Cruciferous vegetables intake and risk of prostate cancer: a meta-analysis. Int J Urol 19:134–141

    Article  Google Scholar 

  147. Steinbrecher A, Nimptsch K, Husing A, Rohrmann S, Linseisen J (2009) Dietary glucosinolate intake and risk of prostate cancer in the EPIC-Heidelberg cohort study. Int J Cancer 125:2179–2186

    Article  CAS  Google Scholar 

  148. Frydoonfar HR, McGrath DR, Spigelman AD (2003) The effect of indole-3-carbinol and sulforaphane on a prostate cancer cell line. ANZ J Surg 73:154–156

    Article  Google Scholar 

  149. Larsson SC, Hakansson N, Naslund I, Bergkvist L, Wolk A (2006) Fruit and vegetable consumption in relation to pancreatic cancer risk: a prospective study. Cancer Epid, Biomark Prev 15:301–305

    Article  Google Scholar 

  150. Hutzen B, Willis W, Jones S, Cen L, Deangelis S, Fuh B, Lin J (2009) Dietary agent, benzyl isothiocyanate inhibits signal transducer and activator of transcription 3 phosphorylation and collaborates with sulforaphane in the growth suppression of PANC-1 cancer cells. Cancer Cell Int 9:24

    Article  CAS  Google Scholar 

  151. Kuroiwa Y, Nishikawa A, Kitamura Y, Kanki K, Ishii Y, Umemura T, Hirose M (2006) Protective effects of benzyl isothiocyanate and sulforaphane but not resveratrol against initiation of pancreatic carcinogenesis in hamsters. Cancer Lett 241:275–280

    Article  CAS  Google Scholar 

  152. Thakkar A, Sutaria D, Grandhi BK, Wang J, Prabhu S (2013) The molecular mechanism of action of aspirin, curcumin and sulforaphane combinations in the chemoprevention of pancreatic cancer. Oncol Rep 29:1671–1677

    CAS  Google Scholar 

  153. Sutaria D, Grandhi BK, Thakkar A, Wang J, Prabhu S (2012) Chemoprevention of pancreatic cancer using solid-lipid nanoparticulate delivery of a novel aspirin, curcumin and sulforaphane drug combination regimen. Int J Oncol 41:2260–2268

    CAS  Google Scholar 

  154. Appari M, Babu KR, Kaczorowski A, Gross W, Herr I (2014) Sulforaphane, quercetin and catechins complement each other in elimination of advanced pancreatic cancer by miR-let-7 induction and K-ras inhibition. Int J Oncol 45:1391–1400

    CAS  Google Scholar 

  155. Srivastava RK, Tang SN, Zhu W, Meeker D, Shankar S (2011) Sulforaphane synergizes with quercetin to inhibit self-renewal capacity of pancreatic cancer stem cells. Front Biosci 3:515–528

    Article  Google Scholar 

  156. Shapiro TA, Fahey JW, Dinkova-Kostova AT, Holtzclaw WD, Stephenson KK, Wade KL, Ye L, Talalay P (2006) Safety, tolerance, and metabolism of broccoli sprout glucosinolates and isothiocyanates: a clinical phase I study. Nutr Cancer 55:53–62

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev Banerjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Banerjee, S., Paruthy, S.B. (2017). Therapeutic Paradigm Underscoring Glucosinolate Sulforaphane in Chemo- and Radiosensitization of Cancer: Preclinical and Clinical Perspective. In: Mérillon, JM., Ramawat, K. (eds) Glucosinolates. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-25462-3_19

Download citation

Publish with us

Policies and ethics