Skip to main content

Changing Trends in the Methodologies of Extraction and Analysis of Hydrolytic Products of Glucosinolates: A Review

  • Reference work entry
  • First Online:
Glucosinolates

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

The increasing resistance among various pests and pathogens to the available synthetic medicines had lead to the compulsion for exploring new and improved alternatives. The phytochemicals have arisen as effective and safer alternate. Among the many plant secondary metabolites, glucosinolates surpass in biological activity and hence have been exhaustively extracted and explored for their activity against these dreaded diseases. This augmented demand for exploring the biological properties of all the available glucosinolates, especially their hydrolytic products, has lead to the development of new methods for extraction and analysis of these metabolites. The extraction methods are designed to match the volatility of the compound without degrading its quality. These methods have been improved to choose the best extraction conditions including the extracting solvents. The extracted glucosinolate hydrolytic products are further analyzed using an array of analytical methods ranging from as simple as paper chromatography to as complex as microchip analysis. These methods are designed and developed to match the needs of accuracy, reliability, and repeatability in addition to the cost effectiveness. This review thus is a highlight and a milestone for the scientists and budding researchers working on the crucial task of extracting, analyzing, and exploring the biological properties of glucosinolate hydrolytic products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AITC:

Allyl isothiocyanate

DCM:

Methylene chloride

ELISA:

Enzyme linked immunosorbent assay

FID:

Flame ionization detector

GC:

Gas chromatography

GHPs:

Glucosinolate hydrolytic products

GSLs:

Glucosinolates

HILIC:

Hydrophilic interaction liquid chromatography

HPLC:

High performance liquid chromatography

HS:

Head space

HSCCC:

High speed counter-current chromatography

ITCs:

Isothiocyanates

MS:

Mass spectrometry

NIRS:

Near infrared reflectance spectroscopy

NMR:

Nuclear magnetic resonance

PAPS:

3-phosphoadenosine-5′-phosphosufate

PC:

Paper chromatography

S-GT: UDPG:

Thiohydroximateglucosyl transferase

SIXCPC:

Strong ion-exchange centrifugal partition chromatography

SIXCPE:

Strong ion-exchange centrifugal partition extraction

TLC:

Thin layer chromatography

UHPLC:

Ultra high performance liquid chromatography

References

  1. Ahmed ZF, Rizk AM, Hammouda FM, Seif El-Nasr MM (1972) Naturally occurring glucosi with special references to those of family Capparidaceae. Planta Med 21:35–60

    Article  CAS  Google Scholar 

  2. Fenwick GR, Heaney RK, Mullin WJ (1983) Glucosinolates and their breakdown products in food and food plants. Crit Rev Food Sci Nutr 18:123–201

    Article  CAS  Google Scholar 

  3. Dornemann D, Loffelhardt W, Kindl H (1974) Chain elongation of aromatic acid: the role of 2-benzylmalic acid in the biosynthesis of a C6C4 amino acid and a C6C3 mustard oil glucoside. Can J Biochem 52:916–921

    Article  CAS  Google Scholar 

  4. Cole R (1976) Isothiocyanates, nitriles and thiocyanates as products of autolysis of glucosinolates in Cruciferae. Phytochemistry 15:759–762

    Article  CAS  Google Scholar 

  5. Dawson GW, Hick AJ, Bennet RN, Donald AM, Wallsgrove RM (1993) Synthesis of glucosinolate precursors and investigations into the biosynthesis of phenylalkyl- and methylthioalkyl glucosinolates. J Biol Chem 268:27154–27159

    CAS  Google Scholar 

  6. Halkier BA, Du L (1997) The biosynthesis of glucosinolates. Trends Plant Sci 2:425–431

    Article  Google Scholar 

  7. Haristoy X, Fahey JW, Scholtus I, Lozeniewski A (2005) Evaluation of the antimicrobial effects of several isothiocyanates on Helicobacter pylori. Planta Med 71:326–330

    Article  CAS  Google Scholar 

  8. Tiedink HGM, Malingre CE, Broekhoven LW, Jongen WMF, Lewis J, Fenwick GR (1991) Role of glucosinolates in the formation of of N-nitroso compounds. J Agric Food Chem 39:922–926

    Article  CAS  Google Scholar 

  9. Mennicke WH, Gorler K, Krumbiegel G, Lorenz D, Rittmann N (1988) Studies on the metabolism and excretion of benzyl isothiocyanate in man. Xenobiotica 18:441–447

    Article  CAS  Google Scholar 

  10. Smolinska U, Knudsen GR, Morra MJ, Borek V (1997) Inhibition of Aphanomyces euteiches f. sp. pisi by volatiles produced by hydrolysis of Brassica napus seed meal. Plant Dis 81:288–292

    Article  CAS  Google Scholar 

  11. Fahey JW, Haristoy X, Dolan PM, Fahey JW, Haristoy X, Dolan PM et al (2002) Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzo[a]pyrene-induced stomach tumors. Proc Natl Acad Sci U S A 99:7610–7615

    Article  CAS  Google Scholar 

  12. Lin CM, Kim J, Du WX, Wei CI (2000) Bactericidal activity of isothiocyanate against pathogens on fresh produce. J Food Prot 63:25–30

    Article  CAS  Google Scholar 

  13. Greenhalgh JR, Mitchell ND (1976) The involvement of flavour volatiles in the resistance to downy mildew of wild and cultivated forms of Brassica oleracea. New Phytol 77:391–398

    Article  CAS  Google Scholar 

  14. Nadarajah D, Han JH, Holley RA (2005) Use of mustard flour to inactivate Escherichia coli O157:H7 in ground beef under nitrogen flushed packaging. Int J Food Microbiol 99:257–267

    Article  CAS  Google Scholar 

  15. Zsolnai T (1966) Antimicrobial effect of thiocyanates and isothiocyanates. Arztl Forsch 16:870–876

    CAS  Google Scholar 

  16. Angus JF (1994) Biofumigation: isothiocyanates released from Brassica roots inhibit the growth of the take-all fungus. Plant Soil 162:107–112

    Article  CAS  Google Scholar 

  17. Hooker WJ, Walker JC, Smith FG (1943) Toxicity of beta-phenethyl isothiocyanate to certain fungi. Am J Bot 30:632–637

    Article  CAS  Google Scholar 

  18. Gamliel A, Stapleton JJ (1993) Characterization of antifungal volatile compounds evolved from solarized soil amended with cabbage residues. Phytopathology 83:899–905

    Article  CAS  Google Scholar 

  19. Manici LM, Lazzeri L, Baruzzi G, Leoni O, Galletti S, Palmieri S (2000) Suppressive activity of some glucosinolate enzyme degradation products on Pythium irregulare and Rhizoctonia solani in sterile soil. Pest Manag Sci 56:921–926

    Article  CAS  Google Scholar 

  20. Smith BJ, Sarwar M, Wong PTW, Kirkegaard JA (1999) Suppression of cereal pathogens by canola root tissues in soil. In: Proceedings of the 10th international rapeseed congress, pp 334

    Google Scholar 

  21. Dandurand LM, Mosher RD, Knudsen GR (2000) Combined effects of Brassica napus seed meal and Trichoderma harzianum on two soil borne plant pathogens. Can J Microbiol 46:1051–1057

    Article  CAS  Google Scholar 

  22. Mayton HS, Oliver C, Vaughn SF, Loria R (1996) Correlation of fungicidal activity of Brassica species with allyl isothiocyanate production in macerated leaf tissue. Phytopathology 86:267–271

    Article  CAS  Google Scholar 

  23. Lewis JA, Papavizas GC (1971) Effect of sulphur-containing volatile compounds and vapors from cabbage decomposition on Aphanomyces euteiches. Phytopathology 61:208–214

    Article  CAS  Google Scholar 

  24. Ekanayake A, Kester JJ, Li JJ, Zehentbauer GN, Bunke PR, Zent JB (2006) Isogard(tm) a natural anti-microbial agent derived from white mustard seed. Acta Hortic 709:101–108

    Article  CAS  Google Scholar 

  25. Brown PD, Morra MJ (1997) Control of soil-borne plant pests using glucosinolate-containing plants. Adv Agron 61:167–231

    Article  CAS  Google Scholar 

  26. Seo ST, Tang CS (1982) Hawaiian fruit flies (Diptera: Tephritidae): toxicity of benzyl isothiocyanate against eggs or 1st instars of three species. J Econ Entomol 75:1132–1135

    Article  Google Scholar 

  27. Matthiessen JN, Shackleton MA (2000) Advantageous attributes of larval White fringed weevil, Naupactus leucoloma (Coleoptera: Curculionidae) for bioassaying soil fumigants, and responses to pure and plant-derived isothiocyanates. Bull Entomol Res 90:349–355

    Article  CAS  Google Scholar 

  28. Borek V, Elberson LR, McCaffrey JP, Morra MJ (1995) Toxicity of aliphatic and aromatic isothiocyanates to eggs of the black vine weevil (Coleoptera: Curculionidae). J Econ Entomol 88:1192–1196

    Article  CAS  Google Scholar 

  29. Noble RRP, Harvey SG, Sams CE (2002) Toxicity of Indian mustard and allyl isothiocyanate to masked chafer beetle larvae. Plant Health Prog. doi:10.1094/PHP-2002-0610-01-RS

    Google Scholar 

  30. Tsao R, Peterson CJ, Coats JR (2002) Glucosinolate breakdown products as insect fumigants and their effect on carbon dioxide emission of insects. BMC Ecol 2:5

    Article  Google Scholar 

  31. Winkler H, Otto G (1980) Replant losses with strawberries and suggestions for their reduction. Hortic Abstr 50:344

    Google Scholar 

  32. Johnson AW, Golden AM, Auld DL, Sumner DR (1992) Effects of rapeseed and vetch as green manure crops and fallow on nematodes and soil-borne pathogens. J Nematol 24:117–126

    CAS  Google Scholar 

  33. Bhardwaj HL, Hamama AA, Porter DM, Reese PF Jr (1996) Rapeseed meal as a natural pesticide. In: Janick J (ed) Progress in new crops. ASHS Press, Arlington, pp 615–619

    Google Scholar 

  34. Serra B, Rosa E, Iori R, Barillari J, Cardoso A, Abreu C (2002) In vitro activity of 2-phenylethyl glucosinolate, and its hydrolysis derivatives on the root-knot nematode Globodera rostochiensis (Woll.). Sci Hortic 92:75–81

    Article  CAS  Google Scholar 

  35. Zasada IA, Ferris H (2004) Nematode suppression with brassicaceous amendments: application based upon glucosinolate profiles. Soil Biol Biochem 36:1017–1024

    Article  CAS  Google Scholar 

  36. Brown PD, Morra MJ (1995) Hydrolysis products of glucosinolates in Brassica napus tissues as inhibitors of seed germination. Plant Soil 181:307–316

    Article  Google Scholar 

  37. Sarwar M, Kirkegaard JA (1998) Biofumigation potential of brassicas. Plant Soil 201:91–101

    Article  CAS  Google Scholar 

  38. Krishnan G, Holshauser DL, Nissen SJ (1998) Weed control in soybean (Glycine max) with green manure crops. Weed Technol 12:97–102

    Google Scholar 

  39. Norsworthy JK, Brandenberger L, Burgos NR, Riley M (2005) Weed suppression in Vigna unguiculata with a spring-seeded Brassicaceae green manure. Crop Prot 24:441–447

    Article  Google Scholar 

  40. Petersen J, Belz R, Walker F, Hurle K (2001) Weed suppression by release of isothiocyanates from turnip–rape mulch. Agron J 93:37–43

    Article  CAS  Google Scholar 

  41. Sedmikova M, Turek B, Barta I, Strohalm J, Smerak P, Houska M et al (1999) Evaluation of the antimutagenic activity of pressure treated and heat pasteurized cauliflower juice. Czech J Food Sci 17:149–152

    Google Scholar 

  42. Mandelova L, Totusek J (2007) Broccoli juice treated by high pressure: chemoprotective effects of sulforaphane and indole-3-carbinol. High Pressure Res 27:151–156

    Article  CAS  Google Scholar 

  43. Murugan SS, Balakrishnamurthy P, Mathew YJ (2007) Antimutagenic effect of broccoli flower head by the Ames Salmonella reverse mutation assay. Phytother Res 21:545–547

    Article  CAS  Google Scholar 

  44. Cohen JH, Kristal AR, Stanfordm JL (2000) Fruit and vegetable intakes and prostate cancer risk. J Natl Cancer Inst 92:61–68

    Article  CAS  Google Scholar 

  45. Zhang SM, Hunter DJ, Rosner BA, Giovannucci EL, Colditz GA, Speizer FE et al (2000) Intakes of fruits, vegetables, and related nutrients and the risk of non-Hodgkin’s lymphoma among women. Cancer Epidemiol Biomarkers Prev 9:477–485

    CAS  Google Scholar 

  46. Verhoeven DT, Goldbohm RA, Van Poppel G, Verhagen H, Van den Brandt PA (1996) Epidemiological studies on Brassica vegetables and cancer risk. Cancer Epidemiol Biomarkers Prev 5:733–748

    CAS  Google Scholar 

  47. Arora R, Bhushan S, Kumar R, Mannan R, Kaur P, Singh AP, Arora S (2014) Hepatic dysfunction induced by 7, 12-dimethylbenz (α) anthracene and its obviation with erucin using enzymatic and histological changes as indicators. PLoS One 9(11):e112614. doi:10.1371/journal.pone.0112614

    Article  Google Scholar 

  48. Wattenberg LW (1983) Inhibition of neoplasia by minor dietary constituents. Cancer Res 43:2448–2453

    CAS  Google Scholar 

  49. Morse MA, Eklind KI, Hecht SS, Jordan KG, Choi CI, Desai DH (1991) Structure-activity relationships for inhibition of 4-(methylnitrosamino)- 1-(3-pyridyl)-1-butanone lung tumorigenesis by arylalkyl isothiocyanates in A/J mice. Cancer Res 51:1846–1850

    CAS  Google Scholar 

  50. Conaway C, Yang YM, Chung FL (2002) Isothiocyanates as cancer chemopreventive agents: their biological activities and metabolism in rodents and humans. Curr Drug Metab 3:233–255

    Article  CAS  Google Scholar 

  51. Yang YM, Conaway CC, Chiao JW, Wang CX, Amin S, Whysner J (2002) Inhibition of benzo(a)pyrene-induced lung tumorigenesis in A/J mice by dietary N-acetylcysteine conjugates of benzyl and phenethyl isothiocyanates during the post initiation phase is associated with activation of mitogen-activated protein kinases and p53 activity and induction of apoptosis. Cancer Res 62:2–7

    CAS  Google Scholar 

  52. Bell JM, Youngs CG, Downey RK (1971) A nutritional comparison of various rapeseed and mustard seed solvent-extracted meals of different glucosinolate composition. Can J Anim Sci 51:259–269

    Article  CAS  Google Scholar 

  53. Schreiner RP, Koide RT (1993) Antifungal compounds from the roots of mycotrophic and non‐mycotrophic plant species. New Phytol 123:99–105

    Article  CAS  Google Scholar 

  54. Kim HK, Verpoorte R (2010) Sample preparation for plant metabolomics. Phytochem Anal 21:4–13

    Article  CAS  Google Scholar 

  55. Arora R, Sharma D, Kumar R, Singh B, Vig AP, Arora S (2014) Evaluating extraction conditions of glucosinolate hydrolytic products from seeds of Eruca sativa (Mill.) Thell. using GC‐MS. J Food Sci 79:C1964–C1969

    Article  CAS  Google Scholar 

  56. Fahey JW, Zhang Y, Talalay P (1997) Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc Natl Acad Sci 94:10367–10372

    Article  CAS  Google Scholar 

  57. Talreja K, Moon A (2014) Brassica oleracea: phytochemical profiling in Search for anticancer compound. Int J Sci Pharm Res 4. 2250–0480

    Google Scholar 

  58. Paunović D, Šolević-Knudsen T, Krivokapić M, Zlatković B, Antić M (2012) Sinalbin degradation products in mild yellow mustard paste. Hem Ind 66:29–32

    Article  Google Scholar 

  59. Wei L, Zhang Y, Jiang B (2013) Comparison of microwave-assisted hydrodistillation with the traditional hydrodistillation method in the extraction of essential oils from dwarfed Cinnamomum camphora var. Linaolifera Fujita leaves and twigs. Adv J Food Sci Technol 5:1436–1442

    Google Scholar 

  60. Capuzzo A, Maffei ME, Occhipinti A (2013) Supercritical fluid extraction of plant flavours and fragrances. Molecules 18:7194–7238

    Article  CAS  Google Scholar 

  61. Truscott RJ, Minchinton I, Sang J (1983) The isolation and purification of indole glucosinolates from Brassica species. J Sci Food Agric 34:247–254

    Article  CAS  Google Scholar 

  62. Kjær A, Rubinstein K (1953) Paper chromatography of thioureas. Nature 171:840–841

    Article  Google Scholar 

  63. Croft AG (1979) The determination of total glucosinolates in rapeseed meal by titration of enzyme‐liberated acid and the identification of individual glucosinolates. J Sci Food Agric 30:417–423

    Article  CAS  Google Scholar 

  64. Bennett RN, Mellon FA, Kroon PA (2004) Screening crucifer seeds as sources of specific intact glucosinolates using ion-pair high-performance liquid chromatography negative ion electrospray mass spectrometry. J Agric Food Chem 52:428–438

    Article  CAS  Google Scholar 

  65. Troyer JK, Stephenson KK, Fahey JW (2001) Analysis of glucosinolates from broccoli and other cruciferous vegetables by hydrophilic interaction liquid chromatography. J Chromatogr A 919:299–304

    Article  CAS  Google Scholar 

  66. Fahey JW, Wade KL, Stephenson KK, Chou FE (2003) Separation and purification of glucosinolates from crude plant homogenates by high-speed counter-current chromatography. J Chromatogr A 996:85–93

    Article  CAS  Google Scholar 

  67. Vaughn SF, Berhow MA (2005) Glucosinolate hydrolysis products from various plant sources: pH effects, isolation, and purification. Ind Crop Prod 21:193–202

    Article  CAS  Google Scholar 

  68. Taveira M, Fernandes F, de Pinho PG, Andrade PB, Pereira JA, Valentão P (2009) Evolution of Brassica rapa var. rapa L. volatile composition by HS-SPME and GC/IT-MS. Microchem J 93:140–146

    Article  CAS  Google Scholar 

  69. Toribio A, Boudesocque L, Richard B, Nuzillard JM, Renault JH (2011) Preparative isolation of glucosinolates from various edible plants by strong ion-exchange centrifugal partition chromatography. Sep Purif Technol 83:15–22

    Article  Google Scholar 

  70. Hamzaoui M, Hubert J, Reynaud R, Marchal L, Foucault A, Renault JH (2012) Strong ion exchange in centrifugal partition extraction (SIX-CPE): effect of partition cell design and dimensions on purification process efficiency. J Chromatogr A 1247:18–25

    Article  CAS  Google Scholar 

  71. Schnug E, Haneklaus S (1988) Theoretical principles for the indirect determination of the total glucosinolate content in rapeseed and meal quantifying the sulphur concentration via X‐ray fluorescence (X‐RF method). J Sci Food Agric 45:243–254

    Article  CAS  Google Scholar 

  72. Evans EJ, Bilsborrow P, Grant A, Kwiatkowska CA, Spinks E, Heaney RK, Fenwick GR (1989) A comparison of rapid‐(X‐ray fluorescence, near‐infrared reflectance) and glucose‐release methods for the determination of the glucosinolate content of oilseed rape (Brassica oleracea). J Sci Food Agric 49:297–305

    Article  CAS  Google Scholar 

  73. Cox IJ, Hanley AB, Belton PS, Fenwick GR (1984) NMR spectra (1H, 13C) of glucosinolates. Carbohydr Res 132:323–329

    Article  CAS  Google Scholar 

  74. Prestera T, Fahey JW, Holtzclaw WD, Abeygunawardana C, Kachinski JL, Talalay P (1996) Comprehensive chromatographic and spectroscopic methods for the separation and identification of intact glucosinolates. Anal Biochem 239:168–179

    Article  CAS  Google Scholar 

  75. Hom NH, Becker HC, Möllers C (2007) Non-destructive analysis of rapeseed quality by NIRS of small seed samples and single seeds. Euphytica 153:27–34

    Article  CAS  Google Scholar 

  76. van Doorn HE, van Holst GJ, van der Kruk GC, Raaijmakers-Ruijs NC, Postma E (1998) Quantitative determination of the glucosinolates sinigrin and progoitrin by specific antibody ELISA assays in Brussels sprouts. J Agric Food Chem 46:793–800

    Article  Google Scholar 

  77. Arora R, Vig AP, Arora S (2014) Glucosinolates: transposing trends of identification methods from paper chromatography to microchip analysis. Int J Life Sci Biotechnol Pharma Res 3:42–61

    Google Scholar 

  78. Fouad M, Jabasini M, Kaji N, Terasaka K, Tokeshi M, Mizukami H, Baba Y (2008) Microchip analysis of plant glucosinolates. Electrophoresis 29:2280–2287

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The study was supported by the funding provided by Department of Science and Technology (DST) and University Grants Commission (UGC), New Delhi and Guru Nanak Dev University, Amritsar.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rohit Arora , Sakshi Bhushan or Saroj Arora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Arora, R., Bhushan, S., Arora, S. (2017). Changing Trends in the Methodologies of Extraction and Analysis of Hydrolytic Products of Glucosinolates: A Review. In: Mérillon, JM., Ramawat, K. (eds) Glucosinolates. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-25462-3_13

Download citation

Publish with us

Policies and ethics